In addition to being driven by tidal winds,the sporadic E(Es)layers are modulated by gravity waves(GWs),although the effects are not yet comprehensively understood.In this article,we discuss the effects of mesoscale G...In addition to being driven by tidal winds,the sporadic E(Es)layers are modulated by gravity waves(GWs),although the effects are not yet comprehensively understood.In this article,we discuss the effects of mesoscale GWs on the Es layers determined by using a newly developed model,MISE-1D(one-dimensional Model of Ionospheric Sporadic E),with low numerical dissipation and high resolution.Driven by the wind fields resolved by the high-resolution version of the Whole Atmosphere Community Climate Model with thermosphere and ionosphere extension(WACCM-X),the MISE-1D simulation revealed that GWs significantly influence the evolution of the Es layer above 100 km but have a very limited effect at lower altitudes.The effects of GWs are diverse and complex,generally including the generation of fluctuating wavelike structures on the Es layer with frequencies similar to those of the GWs.The mesoscale GWs can also cause increases in the density of Es layers,or they can disperse or diffuse the Es layers and increase their thickness.In addition,the presence of GWs is a key factor in sustaining the Es layers in some cases.展开更多
Sporadic E(Es)layers in the ionosphere are characterized by intense plasma irregularities in the E region at altitudes of 90-130 km.Because they can significantly influence radio communications and navigation systems,...Sporadic E(Es)layers in the ionosphere are characterized by intense plasma irregularities in the E region at altitudes of 90-130 km.Because they can significantly influence radio communications and navigation systems,accurate forecasting of Es layers is crucial for ensuring the precision and dependability of navigation satellite systems.In this study,we present Es predictions made by an empirical model and by a deep learning model,and analyze their differences comprehensively by comparing the model predictions to satellite RO measurements and ground-based ionosonde observations.The deep learning model exhibited significantly better performance,as indicated by its high coefficient of correlation(r=0.87)with RO observations and predictions,than did the empirical model(r=0.53).This study highlights the importance of integrating artificial intelligence technology into ionosphere modelling generally,and into predicting Es layer occurrences and characteristics,in particular.展开更多
The formation of an embedded electron current sheet within the magnetotail plasma sheet has been poorly understood.In this article,we present an electron current layer detected at the edge of the magnetotail plasma sh...The formation of an embedded electron current sheet within the magnetotail plasma sheet has been poorly understood.In this article,we present an electron current layer detected at the edge of the magnetotail plasma sheet.The ions were demagnetized inside the electron current layer,but the electrons were still frozen in with the magnetic field line.Thus,this decoupling of ions and electrons gave rise to a strong Hall electric field,which could be the reason for the formation of the embedded thin current layer.The magnetized electrons,the absence of the nongyrotropic electron distribution,and negligible energy dissipation in the layer indicate that magnetic reconnection had not been triggered within the embedded thin current layer.The highly asymmetric plasma on the two sides of the current layer and low magnetic shear across it could suppress magnetic reconnection.The observations indicate that the embedded electric current layer,probably generated by the Hall electric field,even down to electron scale,is not a sufficient condition for magnetic reconnection.展开更多
Electrostatic ion-cyclotron wave(EICW)and ion-Bernstein wave(IBW)are two typical normal modes of plasma propagating vertically to a magnetic field.These modes satisfy the extreme conditionsω《k_(||)v_(te)andω》k_(||...Electrostatic ion-cyclotron wave(EICW)and ion-Bernstein wave(IBW)are two typical normal modes of plasma propagating vertically to a magnetic field.These modes satisfy the extreme conditionsω《k_(||)v_(te)andω》k_(||)v_(te),whereω,k_(||),and v_(te)are the wave angular frequency,wave number parallel to the magnetic field,and the electron thermal speed.Between these extremities,there exist IBW-like waves that have not been studied.In this paper,the co-excitation of the EICW and IBW-like wave in an experiment is presented.It is shown that,in an argon(Ar)discharge,the EICW appears in the fundamental and second harmonic frequency bands of the ioncyclotron frequency.In contrast,the IBW-like wave appears in the higher harmonic frequency bands and in the case of a relatively strong magnetic field.In a helium(He)discharge,the IBW-like wave is excited in the fundamental frequency band,but the wave behaviour becomes complicated in the harmonic frequency bands.The measured dispersion relations of the excited EICW are in agreement with the results of the fluid and kinetic models in some range of frequencies,but those of the excited IBW-like wave are only in qualitative agreement with the kinetic model of the IBW.This study is important for identifying the IBW-like mode that may have potential application in plasma heating via Landau damping.展开更多
The solar wind's interaction with the Moon has traditionally been understood through the Moon's absorption of solar wind particles and the formation of a plasma cavity on its nightside,known as the lunar wake....The solar wind's interaction with the Moon has traditionally been understood through the Moon's absorption of solar wind particles and the formation of a plasma cavity on its nightside,known as the lunar wake.This study reveals unexpected,large-scale perturbations in the solar wind upstream of the Moon,using 11 years of data from the OMNI and ARTEMIS(Acceleration,Reconnection,Turbulence and Electrodynamics of Moon's Interaction with the Sun)missions(2012-2023).We find systematic moonward deviations of~tens of km/s in a direction perpendicular to the solar wind(moonward),at altitudes of up to 1000 km,particularly when the interplanetary magnetic field(IMF)lines are oblique to the solar wind(30°<θ<60°)and connected to the lunar dayside.The longer the duration of the interaction,the greater the moonward deviation.These perturbations can be explained by neither solar wind pickup of the reflected ions,nor lunar wake dynamics.Instead,they appear to correlate with magnetic connectivity between the ARTEMIS probes and the lunar surface,suggesting a more complex solar wind interaction than previously thought.展开更多
Under the paraxial approximation, the analytical propagation expression of an Airy–Gaussian beam(Ai GB) in uniaxial crystals orthogonal to the optical axis is investigated. The propagation dynamics of the Ai GB is ...Under the paraxial approximation, the analytical propagation expression of an Airy–Gaussian beam(Ai GB) in uniaxial crystals orthogonal to the optical axis is investigated. The propagation dynamics of the Ai GB is given for different ratios of the extraordinary index to the ordinary refractive index. It has been found that the continuity and the self-bending effect of Ai GB become weaker when the ratio increases. From the figure of the maximum intensity of Ai GB, one can see that the maximum intensity is not monotone decreasing due to the anisotropic effect of the crystals. The intensity distribution of Ai GB in different distribution factors is shown. The Ai GB converges toward a Gaussian beam as the distribution factor increases.展开更多
The propagation dynamics of the Airy Gaussian vortex beams in uniaxial crystals orthogonal to the optical axis has been investigated analytically and numerically. The propagation expression of the beams has been obtai...The propagation dynamics of the Airy Gaussian vortex beams in uniaxial crystals orthogonal to the optical axis has been investigated analytically and numerically. The propagation expression of the beams has been obtained. The propagation features of the Airy Gaussian vortex beams are shown with changes of the distribution factor and the ratio of the extraordinary refractive index to the ordinary refractive index. The correlations between the ratio and the maximum intensity value during the propagation, and its appearing distance have been investigated.展开更多
Readout electronics is developed for a prototype time-of-flight(TOF) ion composition spectrometer for in situ measurement of the mass/charge distributions of major ion species from 200 to 100 ke V/e in space plasma.By...Readout electronics is developed for a prototype time-of-flight(TOF) ion composition spectrometer for in situ measurement of the mass/charge distributions of major ion species from 200 to 100 ke V/e in space plasma.By utilizing a constant fraction discriminator(CFD) and time-to-digital converter(TDC), challenging dynamic range measurements were performed with high time resolution and event rates. CFD was employed to discriminate the TOF signals from the micro-channel plate and channel electron multipliers. TDC based on the combination of counter and OR-gate delay chain was designed in a highreliability flash field programmable gate array. Owing to the non-uniformity of the delay chain, a correction algorithm based on integral nonlinearity compensation was implemented to reduce the time uncertainty. The test results showed that the electronics achieved a low timingerror of < 200 ps in the input range from 35 to 500 m V for the CFD, and a time resolution of ~550 ps with time uncertainty < 180 ps after correction and a time range of6.4 ls for the TDC. The TOF spectrum from an electron beam experiment of the impacting N_2 gas further indicated the good performance of this readout electronic.展开更多
Wereport experimental research on laser plasma interaction(LPI)conducted in Shenguang laser facilities during the past ten years.The research generally consists of three phases:(1)developing platforms for LPI research...Wereport experimental research on laser plasma interaction(LPI)conducted in Shenguang laser facilities during the past ten years.The research generally consists of three phases:(1)developing platforms for LPI research in mm-scale plasma with limited drive energy,where both gasbag and gas-filled hohlraum targets are tested;(2)studying the effects of beam-smoothing techniques,such as continuous phase plate and polarization smoothing,on the suppression of LPI;and(3)exploring the factors affecting LPI in integrated implosion experiments,which include the laser intensity,gas-fill pressure,size of the laser-entrance hole,and interplay between different beam cones.Results obtained in each phase will be presented and discussed in detail.展开更多
A meteor radar chain located along the 120°E meridian in the Northern Hemisphere from low to middle latitudes provides longterm horizontal wind observations of the mesosphere and lower thermosphere(MLT)region.In ...A meteor radar chain located along the 120°E meridian in the Northern Hemisphere from low to middle latitudes provides longterm horizontal wind observations of the mesosphere and lower thermosphere(MLT)region.In this study,we report a seasonal variation and its latitudinal feature in the horizontal mean wind in the MLT region observed by six meteor radar instruments located at Mohe(53.5°N,122.3°E),Beijing(40.3°N,116.2°E),Mengcheng(33.4°N,116.5°E),Wuhan(30.6°N,114.4°E),Kunming(25.6°N,108.3°E),and Fuke(19.5°N,109.1°E)stations.In addition,we compare the wind in the MLT region measured by the meteor radar stations with those simulated by the Whole Atmosphere Community Climate Model(WACCM).In general,the WACCM appears to capture well the seasonal and latitudinal variations in the zonal wind component.In particular,the temporal evolution of the eastward zonal wind maximum shifts from July to May as the latitude decreases.However,the simulated WACCM meridional wind exhibits differences from the meteor radar observations.展开更多
Readout electronics is developed for a prototype spectrometer for in situ measurement of low-energy ions of30 e V/e–20 ke V/e in the solar wind plasma.A low-noise preamplifier/discriminator(A111F) is employed for eac...Readout electronics is developed for a prototype spectrometer for in situ measurement of low-energy ions of30 e V/e–20 ke V/e in the solar wind plasma.A low-noise preamplifier/discriminator(A111F) is employed for each channel to process the signal from micro-channel plate(MCP) detectors.A high-voltage(HV) supply solution based on a HV module and a HV optocoupler is adopted to generate a fast sweeping HV and a fixed HV.Due to limitation of telemetry bandwidth in space communication,an algorithm is implemented in an FPGA(field programmable gate array) to compress the raw data.Test results show that the electronics achieves a 1 MHz event rate and a large input dynamic range of 95 p C.A slew rate of 0.8 V/ls and an integral nonlinearity of 0.7-LSB for the sweeping HV,and a precision of less than 0.8 % for the fixed HV are obtained.A vacuum beam test shows an energy resolution of 12 ± 0.7 % full width at half maximum(FWHM) is achieved,and noise counts are less than10/sec,indicating that the performance meets the physical requirement.展开更多
Based on the nonlinear Schr o¨dinger equation, the interactions of the two Airy–Gaussian components in the incidence are analyzed in saturable media, under the circumstances of the same amplitude and different a...Based on the nonlinear Schr o¨dinger equation, the interactions of the two Airy–Gaussian components in the incidence are analyzed in saturable media, under the circumstances of the same amplitude and different amplitudes, respectively. It is found that the interaction can be both attractive and repulsive depending on the relative phase. The smaller the interval between two Airy–Gaussian components in the incidence is, the stronger the intensity of the interaction. However, with the equal amplitude, the symmetry is shown and the change of quasi-breathers is opposite in the in-phase case and out-of-phase case. As the distribution factor is increased, the phenomena of the quasi-breather and the self-accelerating of the two Airy–Gaussian components are weakened. When the amplitude is not equal, the image does not have symmetry. The obvious phenomenon of the interaction always arises on the side of larger input power in the incidence. The maximum intensity image is also simulated. Many of the characteristics which are contained within other images can also be concluded in this figure.展开更多
One of the important effects of the ionospheric modification by high-power waves is the airglow enhancement. Both the thermal electrons and the dissociation recombination contribute to generate the airglow emissions d...One of the important effects of the ionospheric modification by high-power waves is the airglow enhancement. Both the thermal electrons and the dissociation recombination contribute to generate the airglow emissions during HF heating. However, the relative importance of the airglow emission induced by dissociative recombination and thermal electrons has been rarely investigated. In this study, we carry out a simulation study on the airglow produced by high-power HF heating at nighttime associated with dissociative recombination and thermal electrons. SAMI2(Sami2 is Another Model of the Ionosphere) is employed to simulate the ionospheric variations during the HF heating. The main conclusions from this study are as follows:(1) For the airglow induced by dissociative recombination, both 630.0 nm and 557.7 nm emissions show a decrease at the heating wave reflection height during the heating period,while when the heating is turned off, an increase is shown at lower altitudes. The reduction of airglow during the heating is caused by the rapid increase of electron temperature and the diffusion of plasmas dominates the after-heating airglow enhancement.(2) 630.0 nm emission due to thermal electrons is greatly enhanced at the wave reflection height, indicating that thermal electrons play a major role in exciting 630.0 nm emission. For the 557.7 nm emission, the excitation threshold(4.17 e V) is too high for thermal electrons.(3) The combined effect of dissociative recombination and thermal electrons could be the possible reason for the observed X-mode(extraordinary mode) suppression of 630.0 nm airglow during O-mode(ordinary mode) enhancement.展开更多
The Mars Orbiter MAGnetometer(MOMAG)is a scientific instrument onboard the orbiter of China’s first mission for Mars—Tianwen-1.Since November 13,2021,it has been recording magnetic field data from the solar wind to ...The Mars Orbiter MAGnetometer(MOMAG)is a scientific instrument onboard the orbiter of China’s first mission for Mars—Tianwen-1.Since November 13,2021,it has been recording magnetic field data from the solar wind to the magnetic pile-up region surrounding Mars.Here we present its in-flight performance and first science results,based on its first one and one-half months’data.Comparing these early MOMAG observations to the magnetic field data in the solar wind from NASA’s Mars Atmosphere and Volatile EvolutioN(MAVEN)mission,we report that the MOMAG magnetic field data are at the same level in magnitude,and describe the same magnetic structures with similar variations in three components.We recognize 158 clear bow shock(BS)crossings in these MOMAG data;their locations match well statistically with the modeled average BS.We also identify and compare five pairs of datasets collected when Tianwen-1’s orbiter and the MAVEN probe made simultaneous BS crossings.These BS crossings confirm the global shape of modeled BS,as well as the south-north asymmetry of the Martian BS.Two cases presented in this paper suggest that the BS is probably more dynamic at flank than near the nose.So far,MOMAG performs well,and provides accurate magnetic field vectors.MOMAG is continuously scanning the magnetic field surrounding Mars.Data from MOMAG’s measurements complement data from MAVEN and will undoubt edly advance our understanding of the plasma environment of Mars.展开更多
A mobile Rayleigh Doppler lidar based on double-edge technique is implemented for simultaneously observing wind and temperature at heights of 15 km-60 km away from ground.Before the inversion of the Doppler shift due ...A mobile Rayleigh Doppler lidar based on double-edge technique is implemented for simultaneously observing wind and temperature at heights of 15 km-60 km away from ground.Before the inversion of the Doppler shift due to wind,the Rayleigh response function should be calculated,which is a convolution of the laser spectrum,Rayleigh backscattering function,and the transmission function of the Fabry-Perot interferometer used as the frequency discriminator in the lidar.An analysis of the influence of the temperature on the accuracy of the Une-of-sight winds shows that real-time temperature profiles are needed because the bandwidth of the Rayleigh backscattering function is temperature-dependent.An integration method is employed in the inversion of the temperature,where the convergence of this method and the high signal-to-noise ratio below 60 km ensure the accuracy and precision of the temperature profiles inverted.Then,real-time and on-site temperature profiles are applied to correct the wind instead of using temperature profiles from a numerical prediction system or atmosphere model.The corrected wind profiles show satisfactory agreement with the wind profiles acquired from radiosondes,proving the reliability of the method.展开更多
Two-dimensional particle-in-cell simulations are performed to study the coupling between ion and electron motions in collisionless magnetic reconnection.The electron diffusion region(EDR),where the electron motions ar...Two-dimensional particle-in-cell simulations are performed to study the coupling between ion and electron motions in collisionless magnetic reconnection.The electron diffusion region(EDR),where the electron motions are demagnetized,is found to have a two-layer structure:an inner EDR near the reconnection site and an outer EDR that is elongated to nearly 10 ion inertial lengths in the outflow direction.In the inner EDR,the speed of the electron outflow increases when the electrons move away from the X line.In the outer EDR,the speed of the electron outflow first increases and then decreases until the electrons reach the boundary of the outer EDR.In the boundary of the outer EDR,the magnetic field piles up and forms a depolarization front.From the perspective of the fluid,a force analysis on the formation of electron and ion outflows has also been investigated.Around the X line,the electrons are accelerated by the reconnection electric field in the out-of-plane direction.When the electrons move away from the X line,we find that the Lorentz force converts the direction of the accelerated electrons to the x direction,forming an electron outflow.Both electric field forces and electron gradient forces tend to drag the electron outflow.Ion acceleration along the x direction is caused by the Lorentz force,whereas the pressure gradient force tends to decelerate the ion outflow.Although these two terms are important,their effects on ions are almost offset.The Hall electric field force does positive work on ions and is not negligible.The ions are continuously accelerated,and the ion and electron outflow velocities are almost the same near the depolarization front.展开更多
Propagation of whistler-mode waves in a magnetized plasma structure is investigated in the Keda linear magnetized plasma device.The magnetized plasma structure has its density peak in the center,and the background mag...Propagation of whistler-mode waves in a magnetized plasma structure is investigated in the Keda linear magnetized plasma device.The magnetized plasma structure has its density peak in the center,and the background magnetic field is homogeneous along the axial direction.A whistlermode wave with a frequency of 0.3 times of electron cyclotron frequency(fce)is launched into the plasma structure.The wave normal angle(WNA)is about 25°,and the wavefront exhibits a wedge structure.During propagation of the whistler wave,both the propagating angle and WNA slowly approach zero,and then the wave is converged toward the center of the structure.Therefore,the wave tends to be trapped in the plasma structure.The results present observational evidence of the propagation of a whistler-mode wave trapped in the enhanced-density structure in a laboratory plasma.This trapping effect is consistent with satellite observations in the inner magnetosphere.展开更多
The global ionosphere maps(GIM)provided by the International GNSS Service(IGS)are extensively utilized for ionospheric morphology monitoring,scientific research,and practical application.Assessing the credibility of G...The global ionosphere maps(GIM)provided by the International GNSS Service(IGS)are extensively utilized for ionospheric morphology monitoring,scientific research,and practical application.Assessing the credibility of GIM products in data-sparse regions is of paramount importance.In this study,measurements from the Crustal Movement Observation Network of China(CMONOC)are leveraged to evaluate the suitability of IGS-GIM products over China region in 2013-2014.The indices of mean error(ME),root mean square error(RMSE),and normalized RMSE(NRMSE)are then utilized to quantify the accuracy of IGS-GIM products.Results revealed distinct local time and latitudinal dependencies in IGS-GIM errors,with substantially high errors at nighttime(NRMSE:39%)and above 40°latitude(NRMSE:49%).Seasonal differences also emerged,with larger equinoctial deviations(NRMSE:33.5%)compared with summer(20%).A preliminary analysis implied that the irregular assimilation of sparse IGS observations,compounded by China’s distinct geomagnetic topology,may manifest as error variations.These results suggest that modeling based solely on IGS-GIM observations engenders inadequate representations across China and that a thorough examination would proffer the necessary foundation for advancing regional total electron content(TEC)constructions.展开更多
The stabilizing mechanism of toroidal rotation on the tearing mode is studied using the 3 D toroidal resistive magnetohydrodynamic code M3 D.It is found that the dominating mechanism,either the centrifugal effect or t...The stabilizing mechanism of toroidal rotation on the tearing mode is studied using the 3 D toroidal resistive magnetohydrodynamic code M3 D.It is found that the dominating mechanism,either the centrifugal effect or the Coriolis effect, depends on the specific pressure β and rotation frequency Ω.On the premise that Ω is sufficiently large, when β is greater than a critical value,the effect of the centrifugal force is dominant, and the stabilizing effect mainly comes from the modification of equilibrium induced by the centrifugal force;when β is less than a critical value,the stabilizing effect from the Coriolis force overcomes that from the centrifugal force.However,if Ω is small, then the effect of equilibrium modification due to the centrifugal force is not significant even if β is large.Finally, the results showed that toroidal rotation shear enhances the stabilizing effect.展开更多
We study the sunspot activity in relation to spotless days(SLDs)during the descending phase of solar cycles 11-24 to predict the amplitude of sunspot cycle 25.For this purpose,in addition to SLD,we also consider the g...We study the sunspot activity in relation to spotless days(SLDs)during the descending phase of solar cycles 11-24 to predict the amplitude of sunspot cycle 25.For this purpose,in addition to SLD,we also consider the geomagnetic activity(aa index)during the descending phase of a given cycle.A very strong correlation of the SLD(0.68)and aa index(0.86)during the descending phase of a given cycle with the maximum amplitude of next solar cycle has been estimated.The empirical relationship led us to deduce the amplitude of cycle 25 to be 99.13±14.97 and 104.23±17.35 using SLD and aa index,respectively as predictors.Both the predictors provide comparable amplitude for solar cycle 25 and reveal that solar cycle 25 will be weaker than cycle 24.Further,we predict that the maximum of cycle 25 is likely to occur between February and March 2024.While the aa index has been utilized extensively in the past,this work establishes SLDs as another potential candidate for predicting the characteristics of the next cycle.展开更多
基金supported by the Project of Stable Support for Youth Teams in Basic Research Field,Chinese Academy of Sciences(CASGrant No.YSBR-018)+2 种基金the B-type Strategic Priority Program of CAS(Grant No.XDB41000000)the National Natural Science Foundation of China(Grant No.42204165)the National Key Research and Development Program(Grant No.2022YFF0504400).
文摘In addition to being driven by tidal winds,the sporadic E(Es)layers are modulated by gravity waves(GWs),although the effects are not yet comprehensively understood.In this article,we discuss the effects of mesoscale GWs on the Es layers determined by using a newly developed model,MISE-1D(one-dimensional Model of Ionospheric Sporadic E),with low numerical dissipation and high resolution.Driven by the wind fields resolved by the high-resolution version of the Whole Atmosphere Community Climate Model with thermosphere and ionosphere extension(WACCM-X),the MISE-1D simulation revealed that GWs significantly influence the evolution of the Es layer above 100 km but have a very limited effect at lower altitudes.The effects of GWs are diverse and complex,generally including the generation of fluctuating wavelike structures on the Es layer with frequencies similar to those of the GWs.The mesoscale GWs can also cause increases in the density of Es layers,or they can disperse or diffuse the Es layers and increase their thickness.In addition,the presence of GWs is a key factor in sustaining the Es layers in some cases.
基金supported by the Project of Stable Support for Youth Team in Basic Research Field,CAS(grant No.YSBR-018)the National Natural Science Foundation of China(grant Nos.42188101,42130204)+4 种基金the B-type Strategic Priority Program of CAS(grant no.XDB41000000)the National Natural Science Foundation of China(NSFC)Distinguished Overseas Young Talents Program,Innovation Program for Quantum Science and Technology(2021ZD0300301)the Open Research Project of Large Research Infrastructures of CAS-“Study on the interaction between low/mid-latitude atmosphere and ionosphere based on the Chinese Meridian Project”.The project was supported also by the National Key Laboratory of Deep Space Exploration(Grant No.NKLDSE2023A002)the Open Fund of Anhui Provincial Key Laboratory of Intelligent Underground Detection(Grant No.APKLIUD23KF01)the China National Space Administration(CNSA)pre-research Project on Civil Aerospace Technologies No.D010305,D010301.
文摘Sporadic E(Es)layers in the ionosphere are characterized by intense plasma irregularities in the E region at altitudes of 90-130 km.Because they can significantly influence radio communications and navigation systems,accurate forecasting of Es layers is crucial for ensuring the precision and dependability of navigation satellite systems.In this study,we present Es predictions made by an empirical model and by a deep learning model,and analyze their differences comprehensively by comparing the model predictions to satellite RO measurements and ground-based ionosonde observations.The deep learning model exhibited significantly better performance,as indicated by its high coefficient of correlation(r=0.87)with RO observations and predictions,than did the empirical model(r=0.53).This study highlights the importance of integrating artificial intelligence technology into ionosphere modelling generally,and into predicting Es layer occurrences and characteristics,in particular.
基金the National Natural Science Founda-tion of China(NSFC,Grant No.42174181)and the Key Research Program of Frontier Sciences,CAS(Grant No.QYZDJ-SSW-DQC010).
文摘The formation of an embedded electron current sheet within the magnetotail plasma sheet has been poorly understood.In this article,we present an electron current layer detected at the edge of the magnetotail plasma sheet.The ions were demagnetized inside the electron current layer,but the electrons were still frozen in with the magnetic field line.Thus,this decoupling of ions and electrons gave rise to a strong Hall electric field,which could be the reason for the formation of the embedded thin current layer.The magnetized electrons,the absence of the nongyrotropic electron distribution,and negligible energy dissipation in the layer indicate that magnetic reconnection had not been triggered within the embedded thin current layer.The highly asymmetric plasma on the two sides of the current layer and low magnetic shear across it could suppress magnetic reconnection.The observations indicate that the embedded electric current layer,probably generated by the Hall electric field,even down to electron scale,is not a sufficient condition for magnetic reconnection.
基金supported by National Natural Science Foundation of China (No.11975229)。
文摘Electrostatic ion-cyclotron wave(EICW)and ion-Bernstein wave(IBW)are two typical normal modes of plasma propagating vertically to a magnetic field.These modes satisfy the extreme conditionsω《k_(||)v_(te)andω》k_(||)v_(te),whereω,k_(||),and v_(te)are the wave angular frequency,wave number parallel to the magnetic field,and the electron thermal speed.Between these extremities,there exist IBW-like waves that have not been studied.In this paper,the co-excitation of the EICW and IBW-like wave in an experiment is presented.It is shown that,in an argon(Ar)discharge,the EICW appears in the fundamental and second harmonic frequency bands of the ioncyclotron frequency.In contrast,the IBW-like wave appears in the higher harmonic frequency bands and in the case of a relatively strong magnetic field.In a helium(He)discharge,the IBW-like wave is excited in the fundamental frequency band,but the wave behaviour becomes complicated in the harmonic frequency bands.The measured dispersion relations of the excited EICW are in agreement with the results of the fluid and kinetic models in some range of frequencies,but those of the excited IBW-like wave are only in qualitative agreement with the kinetic model of the IBW.This study is important for identifying the IBW-like mode that may have potential application in plasma heating via Landau damping.
基金supported by the National Natural Science Foundation of China(Grant No.42474227,42241106,42388101)financial support through the German Ministry for Economy and Technology and the German Center for Aviation and Space(DLR)under contract 50 OC 0302
文摘The solar wind's interaction with the Moon has traditionally been understood through the Moon's absorption of solar wind particles and the formation of a plasma cavity on its nightside,known as the lunar wake.This study reveals unexpected,large-scale perturbations in the solar wind upstream of the Moon,using 11 years of data from the OMNI and ARTEMIS(Acceleration,Reconnection,Turbulence and Electrodynamics of Moon's Interaction with the Sun)missions(2012-2023).We find systematic moonward deviations of~tens of km/s in a direction perpendicular to the solar wind(moonward),at altitudes of up to 1000 km,particularly when the interplanetary magnetic field(IMF)lines are oblique to the solar wind(30°<θ<60°)and connected to the lunar dayside.The longer the duration of the interaction,the greater the moonward deviation.These perturbations can be explained by neither solar wind pickup of the reflected ions,nor lunar wake dynamics.Instead,they appear to correlate with magnetic connectivity between the ARTEMIS probes and the lunar surface,suggesting a more complex solar wind interaction than previously thought.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11374108 and 10904041)the Foundation for the Author of Guangdong Provincial Excellent Doctoral Dissertation+6 种基金China(Grant No.SYBZZXM201227)the Foundation of Cultivating Outstanding Young Scholars("ThousandHundredTen"Program)of Guangdong Province in Chinathe Fund from the Key Laboratory of Geospace EnvironmentUniversity of Science and Technology of ChinaChinese Academy of Sciences
文摘Under the paraxial approximation, the analytical propagation expression of an Airy–Gaussian beam(Ai GB) in uniaxial crystals orthogonal to the optical axis is investigated. The propagation dynamics of the Ai GB is given for different ratios of the extraordinary index to the ordinary refractive index. It has been found that the continuity and the self-bending effect of Ai GB become weaker when the ratio increases. From the figure of the maximum intensity of Ai GB, one can see that the maximum intensity is not monotone decreasing due to the anisotropic effect of the crystals. The intensity distribution of Ai GB in different distribution factors is shown. The Ai GB converges toward a Gaussian beam as the distribution factor increases.
基金supported by the National Natural Science Foundation of China(Grant Nos.11374108,11374107,10904041,and 11547212)the Foundation of Cultivating Outstanding Young Scholars of Guangdong Province,China+2 种基金the CAS Key Laboratory of Geospace Environment,University of Science and Technology of Chinathe National Training Program of Innovation and Entrepreneurship for Undergraduates(Grant No.2015093)the Science and Technology Projects of Guangdong Province,China(Grant No.2013B031800011)
文摘The propagation dynamics of the Airy Gaussian vortex beams in uniaxial crystals orthogonal to the optical axis has been investigated analytically and numerically. The propagation expression of the beams has been obtained. The propagation features of the Airy Gaussian vortex beams are shown with changes of the distribution factor and the ratio of the extraordinary refractive index to the ordinary refractive index. The correlations between the ratio and the maximum intensity value during the propagation, and its appearing distance have been investigated.
基金supported by the National Key Scientific Instrument and Equipment Development Projects of the National Natural Science Foundation of China(No.41327802)China Mars Project
文摘Readout electronics is developed for a prototype time-of-flight(TOF) ion composition spectrometer for in situ measurement of the mass/charge distributions of major ion species from 200 to 100 ke V/e in space plasma.By utilizing a constant fraction discriminator(CFD) and time-to-digital converter(TDC), challenging dynamic range measurements were performed with high time resolution and event rates. CFD was employed to discriminate the TOF signals from the micro-channel plate and channel electron multipliers. TDC based on the combination of counter and OR-gate delay chain was designed in a highreliability flash field programmable gate array. Owing to the non-uniformity of the delay chain, a correction algorithm based on integral nonlinearity compensation was implemented to reduce the time uncertainty. The test results showed that the electronics achieved a low timingerror of < 200 ps in the input range from 35 to 500 m V for the CFD, and a time resolution of ~550 ps with time uncertainty < 180 ps after correction and a time range of6.4 ls for the TDC. The TOF spectrum from an electron beam experiment of the impacting N_2 gas further indicated the good performance of this readout electronic.
基金This work was supported by the Science Challenge Project(Grant No.TZ2016005)the Natural Science Foundation of China(Grant Nos.11435011,11875093,and 11875241)the CAEP Foundation(Grant No.PY2019108).
文摘Wereport experimental research on laser plasma interaction(LPI)conducted in Shenguang laser facilities during the past ten years.The research generally consists of three phases:(1)developing platforms for LPI research in mm-scale plasma with limited drive energy,where both gasbag and gas-filled hohlraum targets are tested;(2)studying the effects of beam-smoothing techniques,such as continuous phase plate and polarization smoothing,on the suppression of LPI;and(3)exploring the factors affecting LPI in integrated implosion experiments,which include the laser intensity,gas-fill pressure,size of the laser-entrance hole,and interplay between different beam cones.Results obtained in each phase will be presented and discussed in detail.
基金supported by the National Natural Science Founda-tion of China(Grant Nos.42125402,41974174,42074181,42188101,41831071,42174183,and 41904135)the B-type Strate-gic Priority Program of the Chinese Academy of Sciences(CAS,Grant No.XDB41000000)+4 种基金the Project of Stable Support for Youth Team in Basic Research Field,CAS(Grant No.YSBR-018)the Open Research Project of Large Research Infrastructures of CAS,titled“Study on the Interaction Between Low/Mid-Latitude Atmosphere and Ionosphere Based on the Chinese Meridian Project,”the Fundamental Research Funds for the Central Universities(Grant No.YD3420002004)the Anhui Provincial Natural Science Foun-dation(Grant No.2008085MD113)the Joint Open Fund of Mengcheng National Geophysical Observatory(MENGO-202209)the foundation of the National Key Laboratory of Electromag-netic Environment(Grant No.JCKY2020210C614240301).
文摘A meteor radar chain located along the 120°E meridian in the Northern Hemisphere from low to middle latitudes provides longterm horizontal wind observations of the mesosphere and lower thermosphere(MLT)region.In this study,we report a seasonal variation and its latitudinal feature in the horizontal mean wind in the MLT region observed by six meteor radar instruments located at Mohe(53.5°N,122.3°E),Beijing(40.3°N,116.2°E),Mengcheng(33.4°N,116.5°E),Wuhan(30.6°N,114.4°E),Kunming(25.6°N,108.3°E),and Fuke(19.5°N,109.1°E)stations.In addition,we compare the wind in the MLT region measured by the meteor radar stations with those simulated by the Whole Atmosphere Community Climate Model(WACCM).In general,the WACCM appears to capture well the seasonal and latitudinal variations in the zonal wind component.In particular,the temporal evolution of the eastward zonal wind maximum shifts from July to May as the latitude decreases.However,the simulated WACCM meridional wind exhibits differences from the meteor radar observations.
基金supported by the National Key Scientific Instrument and Equipment Development Projects of the National Natural Science Foundation of China(No.41327802)the Fundamental Research Funds for the Central Universities(WK2030040066)
文摘Readout electronics is developed for a prototype spectrometer for in situ measurement of low-energy ions of30 e V/e–20 ke V/e in the solar wind plasma.A low-noise preamplifier/discriminator(A111F) is employed for each channel to process the signal from micro-channel plate(MCP) detectors.A high-voltage(HV) supply solution based on a HV module and a HV optocoupler is adopted to generate a fast sweeping HV and a fixed HV.Due to limitation of telemetry bandwidth in space communication,an algorithm is implemented in an FPGA(field programmable gate array) to compress the raw data.Test results show that the electronics achieves a 1 MHz event rate and a large input dynamic range of 95 p C.A slew rate of 0.8 V/ls and an integral nonlinearity of 0.7-LSB for the sweeping HV,and a precision of less than 0.8 % for the fixed HV are obtained.A vacuum beam test shows an energy resolution of 12 ± 0.7 % full width at half maximum(FWHM) is achieved,and noise counts are less than10/sec,indicating that the performance meets the physical requirement.
基金supported by the National Natural Science Foundation of China(Grant Nos.11374108 and 10904041)the Foundation for the Author of Guangdong Province Excellent Doctoral Dissertation(Grant No.SYBZZXM201227)+1 种基金the Foundation of Cultivating Outstanding Young Scholars("Thousand,Hundred,Ten"Program)of Guangdong Province,ChinaCAS Key Laboratory of Geospace Environment,University of Science and Technology of China
文摘Based on the nonlinear Schr o¨dinger equation, the interactions of the two Airy–Gaussian components in the incidence are analyzed in saturable media, under the circumstances of the same amplitude and different amplitudes, respectively. It is found that the interaction can be both attractive and repulsive depending on the relative phase. The smaller the interval between two Airy–Gaussian components in the incidence is, the stronger the intensity of the interaction. However, with the equal amplitude, the symmetry is shown and the change of quasi-breathers is opposite in the in-phase case and out-of-phase case. As the distribution factor is increased, the phenomena of the quasi-breather and the self-accelerating of the two Airy–Gaussian components are weakened. When the amplitude is not equal, the image does not have symmetry. The obvious phenomenon of the interaction always arises on the side of larger input power in the incidence. The maximum intensity image is also simulated. Many of the characteristics which are contained within other images can also be concluded in this figure.
基金supported by the National Natural Science Foundation of China(41325017,41274158,41274157,and 41421063)the fundamental research funds for the central universitiesThousand Young Talents Program of China
文摘One of the important effects of the ionospheric modification by high-power waves is the airglow enhancement. Both the thermal electrons and the dissociation recombination contribute to generate the airglow emissions during HF heating. However, the relative importance of the airglow emission induced by dissociative recombination and thermal electrons has been rarely investigated. In this study, we carry out a simulation study on the airglow produced by high-power HF heating at nighttime associated with dissociative recombination and thermal electrons. SAMI2(Sami2 is Another Model of the Ionosphere) is employed to simulate the ionospheric variations during the HF heating. The main conclusions from this study are as follows:(1) For the airglow induced by dissociative recombination, both 630.0 nm and 557.7 nm emissions show a decrease at the heating wave reflection height during the heating period,while when the heating is turned off, an increase is shown at lower altitudes. The reduction of airglow during the heating is caused by the rapid increase of electron temperature and the diffusion of plasmas dominates the after-heating airglow enhancement.(2) 630.0 nm emission due to thermal electrons is greatly enhanced at the wave reflection height, indicating that thermal electrons play a major role in exciting 630.0 nm emission. For the 557.7 nm emission, the excitation threshold(4.17 e V) is too high for thermal electrons.(3) The combined effect of dissociative recombination and thermal electrons could be the possible reason for the observed X-mode(extraordinary mode) suppression of 630.0 nm airglow during O-mode(ordinary mode) enhancement.
基金supported by the NSFC(Grant Nos 42130204 and 42188101)the Strategic Priority Program of the Chinese Academy of Sciences(Grant No.XDB41000000)the support of the Tencent Foundation.
文摘The Mars Orbiter MAGnetometer(MOMAG)is a scientific instrument onboard the orbiter of China’s first mission for Mars—Tianwen-1.Since November 13,2021,it has been recording magnetic field data from the solar wind to the magnetic pile-up region surrounding Mars.Here we present its in-flight performance and first science results,based on its first one and one-half months’data.Comparing these early MOMAG observations to the magnetic field data in the solar wind from NASA’s Mars Atmosphere and Volatile EvolutioN(MAVEN)mission,we report that the MOMAG magnetic field data are at the same level in magnitude,and describe the same magnetic structures with similar variations in three components.We recognize 158 clear bow shock(BS)crossings in these MOMAG data;their locations match well statistically with the modeled average BS.We also identify and compare five pairs of datasets collected when Tianwen-1’s orbiter and the MAVEN probe made simultaneous BS crossings.These BS crossings confirm the global shape of modeled BS,as well as the south-north asymmetry of the Martian BS.Two cases presented in this paper suggest that the BS is probably more dynamic at flank than near the nose.So far,MOMAG performs well,and provides accurate magnetic field vectors.MOMAG is continuously scanning the magnetic field surrounding Mars.Data from MOMAG’s measurements complement data from MAVEN and will undoubt edly advance our understanding of the plasma environment of Mars.
基金supported by the National Natural Science Foundation of China(Grant Nos.41174130,41174131,41274151,and 41304123)
文摘A mobile Rayleigh Doppler lidar based on double-edge technique is implemented for simultaneously observing wind and temperature at heights of 15 km-60 km away from ground.Before the inversion of the Doppler shift due to wind,the Rayleigh response function should be calculated,which is a convolution of the laser spectrum,Rayleigh backscattering function,and the transmission function of the Fabry-Perot interferometer used as the frequency discriminator in the lidar.An analysis of the influence of the temperature on the accuracy of the Une-of-sight winds shows that real-time temperature profiles are needed because the bandwidth of the Rayleigh backscattering function is temperature-dependent.An integration method is employed in the inversion of the temperature,where the convergence of this method and the high signal-to-noise ratio below 60 km ensure the accuracy and precision of the temperature profiles inverted.Then,real-time and on-site temperature profiles are applied to correct the wind instead of using temperature profiles from a numerical prediction system or atmosphere model.The corrected wind profiles show satisfactory agreement with the wind profiles acquired from radiosondes,proving the reliability of the method.
基金the National Key Research and Development Program of China(Grant No.2022YFA1604600)the National Natural Science Foundation of China(NSFC,Grant No.42174181)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB 41000000).
文摘Two-dimensional particle-in-cell simulations are performed to study the coupling between ion and electron motions in collisionless magnetic reconnection.The electron diffusion region(EDR),where the electron motions are demagnetized,is found to have a two-layer structure:an inner EDR near the reconnection site and an outer EDR that is elongated to nearly 10 ion inertial lengths in the outflow direction.In the inner EDR,the speed of the electron outflow increases when the electrons move away from the X line.In the outer EDR,the speed of the electron outflow first increases and then decreases until the electrons reach the boundary of the outer EDR.In the boundary of the outer EDR,the magnetic field piles up and forms a depolarization front.From the perspective of the fluid,a force analysis on the formation of electron and ion outflows has also been investigated.Around the X line,the electrons are accelerated by the reconnection electric field in the out-of-plane direction.When the electrons move away from the X line,we find that the Lorentz force converts the direction of the accelerated electrons to the x direction,forming an electron outflow.Both electric field forces and electron gradient forces tend to drag the electron outflow.Ion acceleration along the x direction is caused by the Lorentz force,whereas the pressure gradient force tends to decelerate the ion outflow.Although these two terms are important,their effects on ions are almost offset.The Hall electric field force does positive work on ions and is not negligible.The ions are continuously accelerated,and the ion and electron outflow velocities are almost the same near the depolarization front.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB 41000000)the Key Research Program of Frontier Sciences,CAS(No.QYZDJ-SSW-DQC010)Fundamental Research Funds for the Central Universities(Nos.WK3420000006,WK3420000013,WK3420000017 and WK2080000135).
文摘Propagation of whistler-mode waves in a magnetized plasma structure is investigated in the Keda linear magnetized plasma device.The magnetized plasma structure has its density peak in the center,and the background magnetic field is homogeneous along the axial direction.A whistlermode wave with a frequency of 0.3 times of electron cyclotron frequency(fce)is launched into the plasma structure.The wave normal angle(WNA)is about 25°,and the wavefront exhibits a wedge structure.During propagation of the whistler wave,both the propagating angle and WNA slowly approach zero,and then the wave is converged toward the center of the structure.Therefore,the wave tends to be trapped in the plasma structure.The results present observational evidence of the propagation of a whistler-mode wave trapped in the enhanced-density structure in a laboratory plasma.This trapping effect is consistent with satellite observations in the inner magnetosphere.
基金the National Key R&D Program of China(Grant No.2022YFF0503702)the National Natural Science Foundation of China(Grant Nos.42074186,41831071,42004136,and 42274195)+1 种基金the Natural Science Foundation of Jiangsu Province(Grant No.BK20211036)the Specialized Research Fund for State Key Laboratories,and the University of Science and Technology of China Research Funds of the Double First-Class Initiative(Grant No.YD2080002013).
文摘The global ionosphere maps(GIM)provided by the International GNSS Service(IGS)are extensively utilized for ionospheric morphology monitoring,scientific research,and practical application.Assessing the credibility of GIM products in data-sparse regions is of paramount importance.In this study,measurements from the Crustal Movement Observation Network of China(CMONOC)are leveraged to evaluate the suitability of IGS-GIM products over China region in 2013-2014.The indices of mean error(ME),root mean square error(RMSE),and normalized RMSE(NRMSE)are then utilized to quantify the accuracy of IGS-GIM products.Results revealed distinct local time and latitudinal dependencies in IGS-GIM errors,with substantially high errors at nighttime(NRMSE:39%)and above 40°latitude(NRMSE:49%).Seasonal differences also emerged,with larger equinoctial deviations(NRMSE:33.5%)compared with summer(20%).A preliminary analysis implied that the irregular assimilation of sparse IGS observations,compounded by China’s distinct geomagnetic topology,may manifest as error variations.These results suggest that modeling based solely on IGS-GIM observations engenders inadequate representations across China and that a thorough examination would proffer the necessary foundation for advancing regional total electron content(TEC)constructions.
基金supported by National Natural Science Foundation of China(Grant Nos.11975068 and 11605021)the National Key R&D Program of China(Grant No.2017YFE0301900)+2 种基金the Key Research Program of Frontier Science of Chinese Academy of Sciences(Grant No.QYZDJSSW-SYS016)the Youth Innovation Promotion Association of CASthe Fundamental Research Funds for the Central Universities(Grant No.DUT18ZD101)。
文摘The stabilizing mechanism of toroidal rotation on the tearing mode is studied using the 3 D toroidal resistive magnetohydrodynamic code M3 D.It is found that the dominating mechanism,either the centrifugal effect or the Coriolis effect, depends on the specific pressure β and rotation frequency Ω.On the premise that Ω is sufficiently large, when β is greater than a critical value,the effect of the centrifugal force is dominant, and the stabilizing effect mainly comes from the modification of equilibrium induced by the centrifugal force;when β is less than a critical value,the stabilizing effect from the Coriolis force overcomes that from the centrifugal force.However,if Ω is small, then the effect of equilibrium modification due to the centrifugal force is not significant even if β is large.Finally, the results showed that toroidal rotation shear enhances the stabilizing effect.
基金funding support from NSFC-11950410498KLSA-202010 grants。
文摘We study the sunspot activity in relation to spotless days(SLDs)during the descending phase of solar cycles 11-24 to predict the amplitude of sunspot cycle 25.For this purpose,in addition to SLD,we also consider the geomagnetic activity(aa index)during the descending phase of a given cycle.A very strong correlation of the SLD(0.68)and aa index(0.86)during the descending phase of a given cycle with the maximum amplitude of next solar cycle has been estimated.The empirical relationship led us to deduce the amplitude of cycle 25 to be 99.13±14.97 and 104.23±17.35 using SLD and aa index,respectively as predictors.Both the predictors provide comparable amplitude for solar cycle 25 and reveal that solar cycle 25 will be weaker than cycle 24.Further,we predict that the maximum of cycle 25 is likely to occur between February and March 2024.While the aa index has been utilized extensively in the past,this work establishes SLDs as another potential candidate for predicting the characteristics of the next cycle.