期刊文献+
共找到96篇文章
< 1 2 5 >
每页显示 20 50 100
Eliminating active CO_(2) concentration in Carbon Capture and Storage(CCUS):Molten carbonate decarbonization through an insulation/diffusion membrane 被引量:1
1
作者 Gad Licht Ethan Peltier +1 位作者 Simon Gee Stuart Licht 《DeCarbon》 2025年第1期71-79,共9页
Present industrial decarbonization technologies require an active CO_(2)-concentration system,often based on lime reaction or amine binding reactions,which is energy intensive and carries a high CO_(2)-footprint.Here ... Present industrial decarbonization technologies require an active CO_(2)-concentration system,often based on lime reaction or amine binding reactions,which is energy intensive and carries a high CO_(2)-footprint.Here instead,an effective process without active CO_(2)concentration is demonstrated in a new process-termed IC2CNT(Insulationdiffusion facilitated CO_(2) to Carbon Nanomaterial Technology)decarbonization process.Molten carbonates such as Li_(2)CO_(3)(mp 723℃)are highly insoluble to industrial feed gas principal components(N2,O_(2),and H2O).However,CO_(2) can readily dissolve and react in molten carbonates.We have recently characterized high CO_(2) diffusion rates through porous aluminosilicate and calcium-magnesium silicate thermal insulations.Here,the CO_(2) in ambient feed gas passes through these membranes into molten Li_(2)CO_(3).The membrane also concurrently insulates the feed gas from the hot molten carbonate chamber,obviating the need to heat the(non-CO_(2))majority of the feed gas to high temperature.In this insulation facilitated decarbonization process CO_(2)is split by electrolysis in the molten carbonate producing sequestered,high-purity carbon nanomaterials(such as CNTs)and O_(2). 展开更多
关键词 Carbon CCUS(Carbon Capture Utilization Storage) Carbon nanomaterials Carbon dioxide electrolysis Molten carbonate Greenhouse gas mitigation
在线阅读 下载PDF
Review on current advances,future challenges and consideration issues for post-combustion CO_2 capture using amine-based absorbents 被引量:48
2
作者 Zhiwu Liang Kaiyun Fu +1 位作者 Raphael Idem Paitoon Tontiwachwuthikul 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2016年第2期278-288,共11页
Among the current technologies for post-combustion CO2 capture,amine-based chemical absorption appears to be the most technologically mature and commercially viable method.This review highlights the opportunities and ... Among the current technologies for post-combustion CO2 capture,amine-based chemical absorption appears to be the most technologically mature and commercially viable method.This review highlights the opportunities and challenges in post-combustion CO2 capture using amine-based chemical absorption technologies.In addition,this review provides current types and emerging trends for chemical solvents.The issues and performance of amine solvents are reviewed and addressed in terms of thermodynamics,kinetics,mass transfer,regeneration and solvent management.This review also looks at emerging and future trends in post-combustion CO2 capture using chemical solvents in the near to mid-term. 展开更多
关键词 Carbon dioxide capture Post-combustion Power plants Chemical absorpiion Amines solvent
在线阅读 下载PDF
Carbon dioxide capture by solvent absorption using amino acids: A review 被引量:5
3
作者 Guoping Hu Kathryn H.Smith +3 位作者 Yue Wu Kathryn A.Mumford Sandra E.Kentish Geoffrey W.Stevens 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2018年第11期2229-2237,共9页
The emission of large amounts of carbon dioxide is of major concern with regard to increasing the risk of climate change. Carbon capture, utilisation and storage (CCUS) has been proposed as an important pathway for sl... The emission of large amounts of carbon dioxide is of major concern with regard to increasing the risk of climate change. Carbon capture, utilisation and storage (CCUS) has been proposed as an important pathway for slowing the rate of these emissions. Solvent absorption of CO_2 using amino acid solvents has drawn much attention over the last few years due to advantages including their ionic nature, low evaporation rate, low toxicity, high absorption rate and high biodegradation potential, compared to traditional amine solvents. In this review, recent progress on the absorption kinetics of amino acids is summarised, and the engineering potential of using amino acids as carbon capture solvents is discussed. The reaction orders between amino acids and carbon dioxide are typ- ically between 1 and 2. Glycine exhibits a reaction order of 1, whilst, by comparison, lysine, proline and sarcosine have the largest reaction constants with carbon dioxide which is much larger than that of the benchmark solvent monoethanolamine (MEA). Ionic strength, p H and cations such as sodium and potassium have been shown to be important factors influencing the reactivity of amino acids. Corrosivity and reactivity with impurities such as SOx and NOxare not considered to be significant problems for amino acids solvents. The precipitation of CO_2 loaded amino acid salts is thought to be a good pathway for increasing CO_2loading capacity and cutting desorption energy costs if well-controlled. It is recommended that more detailed research on amino acid degradation and overall process energy costs is conducted. Overall, amino acid solvents are recognised as promising potential solvents for car- bon dioxide capture. 展开更多
关键词 AMINO ACIDS Carbon CAPTURE ABSORPTION Solvents
在线阅读 下载PDF
Carbon Capture and Storage:History and the Road Ahead 被引量:28
4
作者 Jinfeng Ma Lin Li +4 位作者 Haofan Wang Yi Du Junjie Ma Xiaoli Zhang Zhenliang Wang 《Engineering》 SCIE EI CAS 2022年第7期33-43,共11页
The large-scale deployment of carbon capture and storage(CCS)is becoming increasingly urgent in the global path toward net zero emissions;however,global CCS deployment is significantly lagging behind its expected cont... The large-scale deployment of carbon capture and storage(CCS)is becoming increasingly urgent in the global path toward net zero emissions;however,global CCS deployment is significantly lagging behind its expected contribution to greenhouse gas emission reduction.Reviewing and learning from the examples and history of successful CCS practices in advanced countries will help other countries,including China,to promote and deploy CCS projects using scientific methods.This paper shows that the establishment of major science and technology CCS infrastructures in advanced countries has become the main source of CCS technological innovation,cost reduction,risk reduction,commercial promotion,and talent training in the development and demonstration of key CCS technologies.Sound development of CCS requires a transition from pilot-scale science and technology infrastructures to large-scale commercial infrastructures,in addition to incentive policies;otherwise,it will be difficult to overcome the technical barriers between small-scale demonstrations and the implementation of million-tonne-scale CCS and ten-million-tonne-scale CCS hubs.Geological CO_(2) storage is the ultimate goal of CCS projects and the driving force of CO_(2) capture.Further improving the accuracy of technologies for the measurement,monitoring,and verification(MMV)of CO_(2) storage capacity,emission reduction,and safety remains a problem for geological storage.CO_(2) storage in saline aquifers can better couple multiple carbon emission sources and is currently a priority direction for development.Reducing the energy consumption of lowconcentration CO_(2) capture and the depletion of chemical absorbents and improving the operational efficiency and stability of post-combustion CO_(2) capture systems have become the key constraints to largescale CCS deployment.Enhanced oil recovery(EOR)is also important in order for countries to maximize fossil fuel extraction instead of importing oil from less environmentally friendly oil-producing countries. 展开更多
关键词 CCS research facility Net GHG emission reduction Energy consumption Monitoring
在线阅读 下载PDF
Boron neutron capture therapy: Current status and future perspectives 被引量:29
5
作者 Mayya Alexandrovna Dymova Sergey Yurjevich Taskaev +1 位作者 Vladimir Alexandrovich Richter Elena Vladimirovna Kuligina 《Cancer Communications》 SCIE 2020年第9期406-421,共16页
The development of new accelerators has given a new impetus to the development of new drugs and treatment technologies using boron neutron capture therapy(BNCT).We analyzed the current status and future directions of ... The development of new accelerators has given a new impetus to the development of new drugs and treatment technologies using boron neutron capture therapy(BNCT).We analyzed the current status and future directions of BNCT for cancer treatment,as well as the main issues related to its introduction.This review highlights the principles of BNCT and the key milestones in its development:new boron delivery drugs and different types of charged particle accelerators are described;several important aspects of BNCT implementation are discussed.BCNT could be used alone or in combination with chemotherapy and radiotherapy,and it is evaluated in light of the outlined issues.For the speedy implementation of BCNT in medical practice,it is necessary to develop more selective boron delivery agents and to generate an epithermal neutron beamwith definite characteristics.Pharmacological companies and research laboratories should have access to accelerators for large-scale screening of new,more specific boron delivery agents. 展开更多
关键词 boron compounds Boron neutron capture therapy cancer treatment CANCER drug delivery
原文传递
Gadolinium Neutron Capture Reaction-Induced Nucleodynamic Therapy Potentiates Antitumor Immunity 被引量:1
6
作者 Dongban Duan Yi Han +10 位作者 Zhiyu Tu Haoxuan Guo Zizhu Zhang Yaxin Shi Jiyuan Li Qi Sun Junyi Chen Zhu Li Tong Liu Daqing Cui Zhibo Liu 《CCS Chemistry》 CSCD 2023年第11期2589-2602,共14页
A nuclear reaction-induced dynamic therapy,denoted as nucleodynamic therapy(NDT),has been invented that triggers immunogenic cell death and successfully treats metastatic tumors due to its unexpected abscopal effect.G... A nuclear reaction-induced dynamic therapy,denoted as nucleodynamic therapy(NDT),has been invented that triggers immunogenic cell death and successfully treats metastatic tumors due to its unexpected abscopal effect.Gadolinium neutron capture therapy(GdNCT)is binary radiotherapy based on a localized nuclear reaction that produces high-energy radiations(e.g.,Auger electrons,γ-rays,etc.)in cancer cells when^(157Gd)is irradiated with thermal neutrons.Yet,its clinical application has been postponed due to the poor ability of Auger electrons andγ-rays to kill cells.Here,we engineered a^(157Gd)-porphyrin framework that synergizes GdNCT and dynamic therapy to efficiently produce both•OH and immunogenic 1O2 in cancer cells,thereby provoking a strong antitumor immune response.This study unveils the fact and mechanism that NDT heats tumor immunity.Another unexpected finding is that the Auger electron can be the most effective energy-transfer medium for radiation-induced activation of nanomedicines because its nanoscale trajectory perfectlymatches the size of nanomaterials.Inmouse tumormodels,NDT causes nearly complete regression of both primary and distant tumor grafts.Thus,this^(157Gd)-porphyrin framework radioenhancer endows GdNCT with the exotic function of triggering dynamic therapy;its applicationmay expand in clinics as a new radiotherapy modality that utilizes GdNCT to provoke whole-body antitumor immune response for treating metastases,which are responsible for 90%of all cancer deaths. 展开更多
关键词 neutron capture therapy RADIOCHEMISTRY RADIOTHERAPY IMMUNOTHERAPY
暂未订购
Volumetric and viscometric properties of aqueous 1,2-dimethylethylenediamine solution for carbon capture application
7
作者 Hossein Haghani Teerawat Sema +5 位作者 Pipat Na Ranong Thanthip Kiattinirachara Benjapon Chalermsinsuwan Hongxia Gao Zhiwu Liang Paitoon Tontiwachwuthikul 《Petroleum》 EI CSCD 2024年第2期326-337,共12页
The present work investigates the volumetric and viscometric properties of an aqueous solution of 1,2-dimethylethylenediamine(DEEDA)over an entire concentration range and an absorber operating temperature range of 313... The present work investigates the volumetric and viscometric properties of an aqueous solution of 1,2-dimethylethylenediamine(DEEDA)over an entire concentration range and an absorber operating temperature range of 313.15K-333.15K at atmospheric pressure.The investigated volumetric properties included the density,excess molar volume,partial molar volume,and the investigated viscometric properties included the viscosity,viscosity deviation,free energy for activation of viscous flow,excess free energy for activation of viscous flow,and excess entropy for activation of viscous flow.The results indicated that there are strong intermolecular interactions and suitable molecular packing in the binary DEEDA-water mixture.Hence,the mixture was found to deviate from a real mixture according to the calculated excess properties.The DEEDA solvent's preliminary volumetric and viscometric properties revealed convincing potential as a novel amine for carbon capture.Additionally,the Redlich-Kister-based correlations showed favorable correlative performance for excess molar volume,viscosity deviation,and excess entropy for activation of viscous flow. 展开更多
关键词 DENSITY VISCOSITY Excess property AMINE Carbon capture
原文传递
Perspective of mixed matrix membranes for carbon capture 被引量:3
8
作者 Shinji Kanehashi Colin AScholes 《Frontiers of Chemical Science and Engineering》 SCIE EI CAS CSCD 2020年第3期460-469,共10页
Polymeric membrane-based gas separation has found wide applications in industry,such as carbon capture,hydrogen recovery,natural gas sweetening,as well as oxygen enrichment.Commercial gas separation membranes are requ... Polymeric membrane-based gas separation has found wide applications in industry,such as carbon capture,hydrogen recovery,natural gas sweetening,as well as oxygen enrichment.Commercial gas separation membranes are required to have high gas permeability and selectivity,while being cost-effective to process.Mixed matrix membranes(MMMs)have a composite structure that consists of polymers and fillers,therefore featuring the advantages of both materials.Much effort has been made to improve the gas separation performance of MMMs as well as general membrane properties,such as mechanical strength and thermal stability.This perspective describes potential use of MMMs for carbon capture applications,explores their limitations in fabrication and methods to overcome them,and addresses their performance under industry gas conditions. 展开更多
关键词 membranes POLYMERIC mixed matrix IMPURITIES
原文传递
National Carbon Capture Center:advancing fossil energy technology solutions
9
作者 Jo Alice Driggers 《Clean Energy》 EI 2020年第3期300-304,共5页
Introduction The National Carbon Capture Center is the primary carbon-capture research facility for the US Department of Energy(DOE).Through its role as a neutral test site,the centre is advancing technologies to redu... Introduction The National Carbon Capture Center is the primary carbon-capture research facility for the US Department of Energy(DOE).Through its role as a neutral test site,the centre is advancing technologies to reduce greenhouse-gas(GHG)emis-sions from fossil-fueled power plants,while also supporting the development of technology solutions for carbon-dioxide(CO_(2))utilization and direct air capture(DAC). 展开更多
关键词 SOLUTIONS dioxide NEUTRAL
原文传递
Mycorrhizal fungi enhance plant resistance to environmental stresses:from mechanisms to applications
10
作者 Jing Wang Mengwei Wei Ertao Wang 《Journal of Genetics and Genomics》 2025年第3期273-275,共3页
Plantshave evolvedvariousmechanismsto interact withmicroorganisms,which help them acquire nutrients from the soil and enhance their tolerance to environmental stresses.One of the most widespread mutualistic interactio... Plantshave evolvedvariousmechanismsto interact withmicroorganisms,which help them acquire nutrients from the soil and enhance their tolerance to environmental stresses.One of the most widespread mutualistic interactions is arbuscular mycorrhizal(AM)symbiosis,which is formed by 80%-90%of terrestrial plants in association with AM fungi.In AM symbiosis,plants acquire mineral nutrients from the fungi in exchange for fatty acids and sugars that are produced during photosynthesis(Jiang et al.,2017). 展开更多
关键词 acquire nutrients mineral nutrients environmental stresses fatty acids mutualistic interactions arbuscular mycorrhizal am symbiosiswhich mycorrhizal fungi enhance their tolerance environmental stressesone
原文传递
Effect of catalyst ink preparation on formate production from CO_(2)electroreduction using Sn as electrocatalyst
11
作者 Asier Grijalvo Rodriguez Zhiyuan Chen +1 位作者 Deepak Pant Jolien Dendooven 《International Journal of Minerals,Metallurgy and Materials》 2025年第9期2270-2279,共10页
Electrochemical CO_(2) reduction is a sustainable method for producing fuels and chemicals using renewable energy sources.Sn is a widely employed catalyst for formate production,with its performance closely influenced... Electrochemical CO_(2) reduction is a sustainable method for producing fuels and chemicals using renewable energy sources.Sn is a widely employed catalyst for formate production,with its performance closely influenced by the catalyst ink formulations and reac-tion conditions.The present study explores the influence of catalyst loading,current density,and binder choice on Sn-based CO_(2) reduc-tion systems.Decreasing catalyst loading from 10 to 1.685 mg·cm^(-2) and increasing current density in highly concentrated bicarbonate solutions significantly enhances formate selectivity,achieving 88%faradaic efficiency(FE)at a current density of−30 mA·cm^(-2) with a cathodic potential of−1.22 V vs.reversible hydrogen electrode(RHE)and a catalyst loading of 1.685 mg·cm^(-2).This low-loading strategy not only reduces catalyst costs but also enhances surface utilization and suppresses the hydrogen evolution reaction.Nafion enhances formate production when applied as a surface coating rather than pre-mixed in the ink,as evidenced by improved faradaic efficiency and lower cathodic potentials.However,this performance still does not match that of binder-free systems because Sn-based catalysts intrinsic-ally exhibit high catalytic activity,making the binder contribution less significant.Although modifying the electrode surface with binders leads to blocked active sites and increased resistance,polyvinylidene fluoride(PVDF)remains promising because of its stability,strength,and conductivity,achieving up to 72%FE to formate at−30 mA·cm^(-2) and−1.66 V vs.RHE.The findings of this research reveal method-ologies for optimizing the catalyst ink formulations and binder utilization to enhance the conversion of CO_(2) to formate,thereby offering crucial insights for the development of a cost-efficient catalyst for high-current-density operations. 展开更多
关键词 carbon dioxide electroreduction catalyst loading catalyst distribution BINDER FORMATE tin nanoparticles
在线阅读 下载PDF
Nano-thermometry in photothermal catalysis
12
作者 Lin Zhang Chaoran Li +2 位作者 Thongthai Witoon Xingda An Le He 《Chinese Journal of Structural Chemistry》 2025年第4期18-21,共4页
Photothermal catalysis represents an emerging technology for solar energy conversion that combines the principles and advantages of photoand thermal catalytic mechanisms[1–5].Driven by the inter/intra-band transition... Photothermal catalysis represents an emerging technology for solar energy conversion that combines the principles and advantages of photoand thermal catalytic mechanisms[1–5].Driven by the inter/intra-band transitions and subsequent electron-phonon scattering processes,photothermal catalysts can achieve rapid and highly localized heating,providing thermal activation to the chemical conversions.Besides,direct participation of photo-generated charge carriers could also drastically reduce the activation energy barriers and modulate the catalytic pathways.However,distinction between thermal and non-thermal contributions remains a key challenge for both fundamental understandings and large-scale applications of photothermal catalysis[6,7].This issue is largely due to a lack of precise in-situ surface-temperature measurement techniques that accurately quantify the light-to-heat conversion under reaction conditions at the nanoscale.Conventional macroscopic temperature measurement techniques,such as infrared cameras and thermocouples,suffer from the lack of spatiotemporal resolutions required for the localized photothermal conversion.They are,thus,measuring an average temperature of the ambient medium.Besides,they typically cannot be applied in in-situ temperature measurements,which is crucial since inaccurate heat dissipation rates may be predicted by ex-situ temperature measurement techniques.For instance,differences in gas pressure,composition and flow rate could lead to significantly different convective heat fluxes. 展开更多
关键词 solar energy conversion chemical conversionsbesidesdirect nano thermometry situ temperature measurement thermal activation light heat conversion photoand thermal catalytic mechanisms driven photothermal catalysis
原文传递
Review on in‑situ CO_(2) mineralization sequestration:mechanistic understanding and research frontiers
13
作者 Hang Ye Qi Liu +5 位作者 Qi Bao Zhanpeng Wang Yan Xie Tiong Michelle Wentao Zhao Chenggang Xian 《International Journal of Coal Science & Technology》 2025年第1期43-73,共31页
The substantial emissions of greenhouse gases,particularly CO_(2),constitute a primary driver of global warming.CCUS is proposed as an effective mitigation strategy which is often estimated to account for about 15%of ... The substantial emissions of greenhouse gases,particularly CO_(2),constitute a primary driver of global warming.CCUS is proposed as an effective mitigation strategy which is often estimated to account for about 15%of cumulative carbon emission reduction.In-situ CO_(2) mineralization sequestration,compared to conventional geological storage methods such as depleted oil and gas reservoirs,unmineable coal seams,and deep saline aquifers,offers the advantage of permanent immobilization of injected carbon.However,uncertainties persist regarding the characteristics of geochemical interactions under reservoir pore conditions,as well as the kinetic mechanisms of mineralization reactions.Additionally,geochemical reactions may lead to solid particle transport and deposition,potentially causing pore throat occlusion.Pilot projects in Iceland and the United States have demonstrated the feasibility of this technology,but the field remains in the early deployment stage.In this review,the mechanisms of in-situ mineralization have been elucidated,the primary factors influencing the reaction kinetics have been discussed,and the current research status in this field has been summarized.It is emphasized that establishing a reliable system for evaluating storage capacity and understanding the kinetic mechanisms governing CO_(2) conversion into minerals at multi-phase interfaces are key priorities for future work. 展开更多
关键词 In-situ mineral carbonation Geochemical interactions Mineralization kinetics Mafic and ultramafic rocks CO_(2)storage
在线阅读 下载PDF
Control of Differential Tectonic Evolution on Tectonic Fractures in Different Tectonic Segments of Tight Gas Sandstone Reservoirs:Upper Triassic Xujiahe Formation,Western Sichuan Foreland Basin
14
作者 Yunzhao Zhang Lianbo Zeng +3 位作者 Rongjun Zhang Le Qu Hao Wu Quanqi Dai 《Journal of Earth Science》 2025年第5期2161-2178,共18页
In the context of complex tectonic evolution,due to the control of tectonic compression stress and faults on tectonic fractures,the formation and development of tectonic fractures in the T_3x~2 tight reservoirs presen... In the context of complex tectonic evolution,due to the control of tectonic compression stress and faults on tectonic fractures,the formation and development of tectonic fractures in the T_3x~2 tight reservoirs present significant variations across different tectonic segments in the Western Sichuan Foreland Basin.We clarified the control of differential tectonic evolution on the formation and development of tectonic fractures in different tectonic segments through field-based observations,core samples,image logging,as well as fluid inclusion petrography and temperature determinations of fracture-filling materials,combined with 2D balanced cross-section restoration.The study area primarily manifests two types of tectonic fractures in the tight reservoirs:orogen-related fractures(regional fractures)and fault-related fractures.The orientations of these fractures are predominantly E-W,nearly N-S,NE,and NW.Specifically,the northern segment area only shows the development of regional fractures,while the southern and middle segments exhibit the development of both regional and tectonic fractures.There are three phases of tectonic fractures in different tectonic segments,and their formation times are relatively consistent.The Mesozoic tectonic events had a significant impact on the northern and central segments,with the amount of tectonic shortening and the rate of stratigraphic shortening gradually decreasing from the northeast to the southwest.The compressional stress resulting from tectonic compression also decreases from the northeast to the southwest.As a result,the development of first-phase and second-phase tectonic shear fractures is more pronounced in the northern and middle segments compared to the southern segment.Under the significant control of faults,the development of N-S-and NE-oriented fault-related fractures is more pronounced in the southern segment,while the development of NE-oriented fault-related fractures is relatively higher in the middle segment.Overall,there is an increased density of fractures and an increasing trend in fracture scale from the northern to the middle and then to the southern segment. 展开更多
关键词 tectonic evolution natural fracture tight gas petroleum geology Xujiahe Formation Western Sichuan Basin
原文传递
新疆高钙煤混烧对灰中含钙矿物熔融特性影响 被引量:10
15
作者 陈胜 于敦喜 +3 位作者 吴建群 夏祎旻 王越明 徐明厚 《化工学报》 EI CAS CSCD 北大核心 2020年第9期4260-4269,共10页
选用一种高钙和一种高硅铝新疆煤,在沉降炉中进行不同比例的混煤和单煤燃烧实验。采用计算机控制扫描电镜(CCSEM)分别对燃烧后总灰矿物成分和粒径分布进行分析。基于CCSEM分析获取单颗粒灰成分数据,采用热力学平衡方法对灰中矿物液相比... 选用一种高钙和一种高硅铝新疆煤,在沉降炉中进行不同比例的混煤和单煤燃烧实验。采用计算机控制扫描电镜(CCSEM)分别对燃烧后总灰矿物成分和粒径分布进行分析。基于CCSEM分析获取单颗粒灰成分数据,采用热力学平衡方法对灰中矿物液相比例进行计算,分析混煤燃烧对灰中含钙矿物熔融特性影响。结果表明,煤中有机结合态Ca极易与煤中其他矿物元素发生交互反应,交互反应后含钙矿物种类取决于煤中内在矿种类。混煤燃烧会促进灰中含钙硅铝酸盐向含钙复杂硅铝酸盐转化,同时促进含钙矿物的熔融。在低温条件下,混烧煤灰中熔融含钙矿物粒径分布受碱金属粒径分布影响;但是高温条件下,混烧促进熔融含钙矿物向大粒径煤灰迁移。 展开更多
关键词 煤燃烧 反应 结渣 混合 CCSEM 熔融特性
在线阅读 下载PDF
燃烧后CO_2捕获流程模拟研究进展 被引量:4
16
作者 梁志武 奚飞 +2 位作者 Tontiwachwuthikul P T 那艳清 李文生 《化工进展》 EI CAS CSCD 北大核心 2010年第S1期28-33,共6页
重点介绍了Aspen Plus和ProMax计算机流程模拟软件的特性和燃烧后CO2胺溶液捕获流程的关键参数对捕获性能及捕获成本影响的计算机模拟研究进展,并对今后的研究方向提出了建议。
关键词 二氧化碳 燃烧后捕获 过程模拟软件 参数模拟
在线阅读 下载PDF
单乙醇胺(MEA)捕获二氧化碳过程解吸能耗的模拟 被引量:5
17
作者 梁志武 那艳清 +1 位作者 李文生 TONTIWACHWUTHIKUL P T 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2009年第11期57-61,共5页
采用ProMax2.0模拟了30%(质量分数)单乙醇胺填料塔吸收-解吸CO2的传统流程,考察了贫吸收液CO2负载(CLL)和溶液循环流速(SCR)对解吸用再沸器热负荷(Qreb)的影响.全系统模拟结果表明,当CO2移除效率为90%时,CLL增加导致Qreb显著下降后再缓... 采用ProMax2.0模拟了30%(质量分数)单乙醇胺填料塔吸收-解吸CO2的传统流程,考察了贫吸收液CO2负载(CLL)和溶液循环流速(SCR)对解吸用再沸器热负荷(Qreb)的影响.全系统模拟结果表明,当CO2移除效率为90%时,CLL增加导致Qreb显著下降后再缓慢上升,其最佳值为0.20 mol CO2/mol MEA(MCPM),此时Qreb达最小值3.24 GJ/t CO2.单独的解吸系统模拟结果显示,当CLL和富吸收液CO2负载(CRL)不变时,解吸塔中富胺进料流量的变化不影响热负荷.然而,由于全吸收-解吸系统CLL和CRL的变化则直接导致解吸塔富胺进料流量和热负荷的变化. 展开更多
关键词 二氧化碳 燃烧后捕获 吸收 解吸热负荷 模拟
在线阅读 下载PDF
CCS Research Development and Deployment in a Clean Energy Future: Lessons from Australia over the Past Two Decades 被引量:6
18
作者 Peter J. Cook 《Engineering》 SCIE EI 2017年第4期477-484,共8页
There is widespread, though by no means universal, recognition of the importance of carbon capture and storage (CCS) as a carbon mitigation technology. However, the rate of deployment does not match what is required... There is widespread, though by no means universal, recognition of the importance of carbon capture and storage (CCS) as a carbon mitigation technology. However, the rate of deployment does not match what is required for global temperatures to stay well below 2℃. Although some consider the hurdles to achieving the widespread application of CCS to he almost insurmountable, a more optimistic view is that a great deal is now known about CCS through research, demonstration, and deployment. We know how to do it; we are confident it can be done safely and effectively; we know what it costs; and we know that costs are decreasing and will continue to do so. We also know that the world will need CCS as long as countries, companies, and communities continue to use fossil fuels for energy and industrial processes. What is lacking are the necessary policy drivers, along with a technology-neutral approach to decrease carbon emissions in a cost-effective and timely manner while retaining the undoubted benefits of ready access to reliable and secure electricity and energy-intensive industrial products. In this paper, Australia is used as an example of what has been undertaken in CCS over the past 20 years, particularly in research and demonstration, hut also in international collaboration. Progress in the large-scale deployment of CCS in Australia has been too slow. However, the world's largest storage project will soon be operational in Australia as part of the Gorgon liquefied natural gas (LNG) project, and investigations are underway into several large-scale CCS Flagship program opportunities. The organization and progress of the Cooperative Research Centre for Greenhouse Gas Technologies (CO2CRC) Otway Project, which is currently Australia's only operational storage project, is discussed in some detail because of its relevance to the commercial deployment of CCS. The point is made that there is scope for building on this Otway activity to investigate more broadly (through the proposed Otway Stage 3 and Deep Earth Energy and Environment Programme (AusDEEP)) the role of the subsurface in carbon reduction. There are challenges ahead if CCS is to he deployed as widely as bodies such as the International Energy Agency (IEA) and the Intergovernmental Panel on Climate Change (IPCC) consider to be necessary. Closer international collaboration in CCS will be essential to meeting that challenge. 展开更多
关键词 Carbon dioxide Carbon capture and storage Otway Australia
在线阅读 下载PDF
Facile and controllable synthesis of BaCO_3 crystals superstructures using a CO_2-storage material 被引量:1
19
作者 Feng Sha Bo Guo +5 位作者 Jing Zhao Fei Zhang Xianshu Qiao Liang Ma Chang Liu Jianbin Zhang 《Green Energy & Environment》 SCIE 2017年第4期401-411,共11页
We here report a new CO_2 capture and storage method that converts CO_2 into a novel alkyl carbonate salt, denoted as CO_2 SM, by a system consisting of equimolar 1,4-butanediol(BDO) and 1,2-ethylenediamine(EDA). This... We here report a new CO_2 capture and storage method that converts CO_2 into a novel alkyl carbonate salt, denoted as CO_2 SM, by a system consisting of equimolar 1,4-butanediol(BDO) and 1,2-ethylenediamine(EDA). This novel CO_2 SM was then used to prepare BaCO_3 crystals through a simple and fast hydrothermal synthesis under mild conditions. The CO_2 SM was both the source of CO_2 and the modifier to regulate the nucleation and growth of BaCO_3 crystals. The morphology of the BaCO_3 crystals could be tuned from rod to shuttle by adjusting the key influencing factors, including CO_2 SM concentration, mineralization temperature, and mineralization time. A possible mechanism for the synthesis of BaCO_3 crystals from the CO_2 SM was also presented. After the BaCO_3 crystals were isolated, the filtrate of the hydrothermal reaction could be recycled to again absorb CO_2 and prepare BaCO_3 crystals of the same polymorph. This novel approach appears promising for preparing well-formed metal carbonates. 展开更多
关键词 BACO3 CO2-storage material Morphology control CO2 capture and utilization
在线阅读 下载PDF
Superoxide Dismutase Plays an Important Role in Maize Resistance to Soil CO_(2)Stress 被引量:1
20
作者 XUE Lu MA Junjie +1 位作者 HU Qian MA Jinfeng 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2023年第3期995-1001,共7页
CO_(2)capture and storage(CCS)has the risk of CO_(2)leakage,and this leakage always increases soil CO_(2)concentration,and the long-term CO_(2)stress damages crop production in farmland.Using maize,the growth characte... CO_(2)capture and storage(CCS)has the risk of CO_(2)leakage,and this leakage always increases soil CO_(2)concentration,and the long-term CO_(2)stress damages crop production in farmland.Using maize,the growth characteristics,such as plant height and yield,and physiological indexes(osmoregulation substances and antioxidant enzymes)were explored under different simulative CO_(2)leakage conditions.Further,the relationship between maize physiological indexes and soil CO_(2)concentration was analyzed,showing that soil CO_(2)stress inhibited maize growth to a certain extent,resulting in shorter plants,thinner stems and lower kernel yield.With an increase in soil CO_(2)concentration,the contents of malondialdehyde,soluble sugar and soluble protein in maize leaves increased;with continuing stress,the increase rate of malondialdehyde was greatly augmented,whereas the increase rates of soluble sugar and soluble protein decreased.With extended CO_(2)stress,the activity of the enzyme superoxide dismutase(SOD)increased continuously,while the activities of catalase and peroxidase first increased and then decreased.Superoxide dismutase activity was closely correlated with soil CO_(2)concentration(r=0.762),and responded quickly to the change of soil CO_(2)concentration(R~2=0.9951).Therefore,SOD plays an important role in maize resistance to soil CO_(2)stress.This study will help further understanding of the mechanism of maize tolerance to soil CO_(2)stress,providing a theoretical basis for agricultural production in CCS project areas. 展开更多
关键词 CO_(2)capture and storage CO_(2)leakage soil CO_(2)stress antioxidant enzyme system MAIZE
在线阅读 下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部