The tensile strength at the rock-concrete interface is one of the crucial factors controlling the failure mechanisms of structures,such as concrete gravity dams.Despite the critical importance of the failure mechanism...The tensile strength at the rock-concrete interface is one of the crucial factors controlling the failure mechanisms of structures,such as concrete gravity dams.Despite the critical importance of the failure mechanism and tensile strength of rock-concrete interfaces,understanding of these factors remains very limited.This study investigated the tensile strength and fracturing processes at rock-mortar interfaces subjected to direct and indirect tensile loadings.Digital image correlation(DIC)and acoustic emission(AE)techniques were used to monitor the failure mechanisms of specimens subjected to direct tension and indirect loading(Brazilian tests).The results indicated that the direct tensile strength of the rock-mortar specimens was lower than their indirect tensile strength,with a direct/indirect tensile strength ratio of 65%.DIC strain field data and moment tensor inversions(MTI)of AE events indicated that a significant number of shear microcracks occurred in the specimens subjected to the Brazilian test.The presence of these shear microcracks,which require more energy to break,resulted in a higher tensile strength during the Brazilian tests.In contrast,microcracks were predominantly tensile in specimens subjected to direct tension,leading to a lower tensile strength.Spatiotemporal monitoring of the cracking processes in the rock-mortar interfaces revealed that they show AE precursors before failure under the Brazilian test,whereas they show a minimal number of AE events before failure under direct tension.Due to different microcracking mechanisms,specimens tested under Brazilian tests showed lower roughness with flatter fracture surfaces than those tested under direct tension with jagged and rough fracture surfaces.The results of this study shed light on better understanding the micromechanics of damage in the rock-concrete interfaces for a safer design of engineering structures.展开更多
This paper evaluates different characteristics for earthquake early warning. The scaling relationships between magnitude, epicenter distance and calculated parameters are derived from earthquake event data fi'om USGS...This paper evaluates different characteristics for earthquake early warning. The scaling relationships between magnitude, epicenter distance and calculated parameters are derived from earthquake event data fi'om USGS. The standard STA/LTA method is modified by adding two new parameters to eliminate the effects of the spike-type noise and small pulsetype noise ahead of the onset of the P-wave. After the detection of the P-wave, the algorithm extracts 12 kinds of parameters from the first 3 seconds of the P-wave. Then stepwise regression analysis of these parameters is performed to estimate the epicentral distance and magnitude. Six different parameters are selected to estimate the epicentral distance, and the median error for all 419 estimates is 16.5 krn. Four parameters are optimally combined to estimate the magnitude, and the mean error for all events is 0.0 magnitude units, with a standard deviation of 0.5. Finally, based on the estimation results, additional work is proposed to improve the accuracy of the results.展开更多
In this paper, a new probabilistic analytical approach, the minimal cut-based recursive decomposition algorithm (MCRDA), is presented to evaluate the seismic reliability of large-scale lifeline systems. Based on the...In this paper, a new probabilistic analytical approach, the minimal cut-based recursive decomposition algorithm (MCRDA), is presented to evaluate the seismic reliability of large-scale lifeline systems. Based on the minimal cut searching algorithm, the approach calculates the disjoint minimal cuts one by one using the basic procedure of the recursive decomposition method. At the same time, the process obtains the disjoint minimal paths of the system. In order to improve the computation efficiency, probabilistic inequality is used to calculate a solution that satisfies the prescribed error bound. A series of case studies show that MCRDA converges rapidly when the edges of the systems have low reliabilities. Therefore, the approach can be used to evaluate large-scale lifeline systems subjected to strong seismic wave excitation.展开更多
An approach to analyze the seismic reliability of water distribution networks by combining a hydraulic analysis with a first-order reliability method (FORM), is proposed in this paper. The hydraulic analysis method ...An approach to analyze the seismic reliability of water distribution networks by combining a hydraulic analysis with a first-order reliability method (FORM), is proposed in this paper. The hydraulic analysis method for normal conditions is modified to accommodate the special conditions necessary to perform a seismic hydraulic analysis. In order to calculate the leakage area and leaking flow of the pipelines in the hydraulic analysis method, a new leakage model established from the seismic response analysis of buried pipelines is presented. To validate the proposed approach, a network with 17 nodes and 24 pipelines is investigated in detail. The approach is also applied to an actual project consisting of 463 nodes and 767 pipelines. The results show that the proposed approach achieves satisfactory results in analyzing the seismic reliability of large-scale water distribution networks.展开更多
An online hybrid test was carried out on a 40-story 120-m high concrete shear wall structure. The structure was divided into two substructures whereby a physical model of the bottom three stories was tested in the lab...An online hybrid test was carried out on a 40-story 120-m high concrete shear wall structure. The structure was divided into two substructures whereby a physical model of the bottom three stories was tested in the laboratory and the upper 37 stories were simulated numerically using ABAQUS. An overlapping domain method was employed for the bottom three stories to ensure the validity of the boundary conditions of the superstructure. Mixed control was adopted in the test. Displacement control was used to apply the horizontal displacement, while two controlled force actuators were applied to simulate the overturning moment, which is very large and cannot be ignored in the substructure hybrid test of high-rise buildings. A series of tests with earthquake sources of sequentially increasing intensities were carried out. The test results indicate that the proposed hybrid test method is a solution to reproduce the seismic response of high-rise concrete shear wall buildings. The seismic performance of the tested precast high-rise building satisfies the requirements of the Chinese seismic design code.展开更多
The hydrochloric acid recovery from rare earth chloride solutions by continuous vacuum membrane distillation was first experimentally studied, then material balance of the process was calculated, and the equations whi...The hydrochloric acid recovery from rare earth chloride solutions by continuous vacuum membrane distillation was first experimentally studied, then material balance of the process was calculated, and the equations which mathematically stimulate the process were lastly achieved. The results indicate a given RE concentration in circular solutions means its constant HCl concentration during the continuous VMD process, furthermore, increasing RE concentration in feed solutions increases the processing capacity per membrane of the experimental set-up. When keeping constant RE concentration in feed solutions, increasing RE concentration in circular solutions decreases its HCl concentration, and HCl recovery ratio increases accordingly, however, processing capacity per membrane of the experimental set-up decreases at the same time. The mathematical results are in accordance with experimental results.展开更多
Modelling is a tool used to simulate the performance of any type of WWTP(wastewater treatment plant)which empowers the user to optimize the response of works by changing influent loads and operational conditions with ...Modelling is a tool used to simulate the performance of any type of WWTP(wastewater treatment plant)which empowers the user to optimize the response of works by changing influent loads and operational conditions with minimum effort and low cost.STOAT(sewage treatment operational analysis over time)software is used to simulate the performance of wastewater treatment plants dynamically.In this paper,a model was built by STOAT software for the Hannoville WWTP allowing to analyze and study the enquiries in a shorter period of time associated with laboratory analysis.Additionally,the model can be used to estimate the response of the system to a diversity of problems.The hydraulic shock load was tested for the entire WWTP consequently allowing the application of strategies that guarantee a better performance by presenting the analysis for the entire plant.Through the aid of STOAT software,a model was built for the whole plant with daily sewage volume entering the treatment plant in a year.The study showed whether the plant can accept a higher flow than that it regularly receives or not.This proved to be successful and the plant has the possibility to accept double the hydraulic shock load,meanwhile,the variations of resulting data were acceptable when compared to the Egyptian environmental requirements.展开更多
Filler and binder make up a small proportion of bituminous mixtures, hence they are considered as important ingredients of mixtures. Sometimes due to equipment error during production, some mixtures retain extra or a ...Filler and binder make up a small proportion of bituminous mixtures, hence they are considered as important ingredients of mixtures. Sometimes due to equipment error during production, some mixtures retain extra or a reduced amount of filler or binder as compared to the design mix formula. It is thought that the poor performance of bituminous mixtures is a result of inadequate proportioning of materials and the use of inappropriate compaction tools. This study was intended to appreciate the influence of contents of filler and binder in relation to durability in asphalt mixtures. Filler used was crushed stone passing 0.075 mm sieve, while the binder was 35/50 penetration grade. Several trial mixes were prepared following Ugandan specifications for Road and Bridge Works, and the Asphalt Institute in MS-2. Marshall design method was used, studying volumetric properties with an average stability value of 22.3 kN, average flow value of 3.7 mm, VA of 4.4%, VFB of 69.3%, and VMA of 14.2%. Also, compaction of mixtures to assess its performance at optimum filler and binder contents was done. Compaction was done using an Automatic Impact Hammer, a Vibrating Hammer, and a Superpave Gyratory compactor aimed at simulating secondary compaction by traffic and assessing the retained air voids which was 3.3%, 1.3%, and 0.7% respectively. Generally, in bituminous mixtures when a vibrating hammer or a gyratory compactor is recommended for compaction, coarser mixes would be the best choice.展开更多
Nuclear power plants (NPPs) are considered as the main source for generating electricity nowadays in some countries. The effect of impact of heavy fully loaded aeroplane such as (Boeing 747-200c) causes leakage of the...Nuclear power plants (NPPs) are considered as the main source for generating electricity nowadays in some countries. The effect of impact of heavy fully loaded aeroplane such as (Boeing 747-200c) causes leakage of the radiation through the cracks generated on the external RC containment of NPPs, and this leads to severe damage for humans and cities. In this research paper, external RC containment </span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">is</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> modeled using ANSYS and hit by Boeing 747-200c which is the heavier aeroplane compared to other jets and causes severe damage for external RC containment. In addition, the impact location for Boeing 747-200c is considered at 30</span></span></span><span><span><span style="font-family:""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">m vertical height. RC containment response was studied after the impact of an aeroplane and a proposed structural health monitoring technique is applied using embedded sensors in order to detect and locate the embedded cracks that is generated due to the effect of impact of heavy aeroplane. It was concluded that RC containment is intact except for the impact region which is damaged. An experimental program was applied on a part of the element in ANSYS which is away from the impact region. Four specimens were cast using heavy weight concrete in laboratory. Three cracked specimens consist of different lengths of vertical cracks which represent different times of impact in order to replicate crack propagation as in ANSYS. The cracks are simulated inside laboratory specimens using failure criteria. The parameters used in detecting the cracks for specimens are the percentage change in electrical resistivity and Decimal Logarithm Resistivity Anisotropy (DLRA) at which they give a good indication for the presence of the crack.展开更多
In the present paper,a homogenization-based two-scale FEM-FEM model is developed to simulate compactions of visco-plastic granular assemblies.The granular structure consisting of two-dimensional grains is modeled by t...In the present paper,a homogenization-based two-scale FEM-FEM model is developed to simulate compactions of visco-plastic granular assemblies.The granular structure consisting of two-dimensional grains is modeled by the microscopic finite element method at the small-scale level,and the homogenized viscous assembly is analyzed by the macroscopic finite element method at large-scale level.The link between scales is made using a computational homogenization method.The two-scale FEM-FEM model is developed in which each particle is treated individually with the appropriate constitutive relations obtained from a representative volume element,kinematic conditions,contact constraints,and elimination of overlap satisfied for every particle.The method could be used in a variety of problems that can be represented using granular media.展开更多
文摘The tensile strength at the rock-concrete interface is one of the crucial factors controlling the failure mechanisms of structures,such as concrete gravity dams.Despite the critical importance of the failure mechanism and tensile strength of rock-concrete interfaces,understanding of these factors remains very limited.This study investigated the tensile strength and fracturing processes at rock-mortar interfaces subjected to direct and indirect tensile loadings.Digital image correlation(DIC)and acoustic emission(AE)techniques were used to monitor the failure mechanisms of specimens subjected to direct tension and indirect loading(Brazilian tests).The results indicated that the direct tensile strength of the rock-mortar specimens was lower than their indirect tensile strength,with a direct/indirect tensile strength ratio of 65%.DIC strain field data and moment tensor inversions(MTI)of AE events indicated that a significant number of shear microcracks occurred in the specimens subjected to the Brazilian test.The presence of these shear microcracks,which require more energy to break,resulted in a higher tensile strength during the Brazilian tests.In contrast,microcracks were predominantly tensile in specimens subjected to direct tension,leading to a lower tensile strength.Spatiotemporal monitoring of the cracking processes in the rock-mortar interfaces revealed that they show AE precursors before failure under the Brazilian test,whereas they show a minimal number of AE events before failure under direct tension.Due to different microcracking mechanisms,specimens tested under Brazilian tests showed lower roughness with flatter fracture surfaces than those tested under direct tension with jagged and rough fracture surfaces.The results of this study shed light on better understanding the micromechanics of damage in the rock-concrete interfaces for a safer design of engineering structures.
文摘This paper evaluates different characteristics for earthquake early warning. The scaling relationships between magnitude, epicenter distance and calculated parameters are derived from earthquake event data fi'om USGS. The standard STA/LTA method is modified by adding two new parameters to eliminate the effects of the spike-type noise and small pulsetype noise ahead of the onset of the P-wave. After the detection of the P-wave, the algorithm extracts 12 kinds of parameters from the first 3 seconds of the P-wave. Then stepwise regression analysis of these parameters is performed to estimate the epicentral distance and magnitude. Six different parameters are selected to estimate the epicentral distance, and the median error for all 419 estimates is 16.5 krn. Four parameters are optimally combined to estimate the magnitude, and the mean error for all events is 0.0 magnitude units, with a standard deviation of 0.5. Finally, based on the estimation results, additional work is proposed to improve the accuracy of the results.
基金the Natural Science Fundation of China for the Innovative Research Group of China Under Grant No. 50621062
文摘In this paper, a new probabilistic analytical approach, the minimal cut-based recursive decomposition algorithm (MCRDA), is presented to evaluate the seismic reliability of large-scale lifeline systems. Based on the minimal cut searching algorithm, the approach calculates the disjoint minimal cuts one by one using the basic procedure of the recursive decomposition method. At the same time, the process obtains the disjoint minimal paths of the system. In order to improve the computation efficiency, probabilistic inequality is used to calculate a solution that satisfies the prescribed error bound. A series of case studies show that MCRDA converges rapidly when the edges of the systems have low reliabilities. Therefore, the approach can be used to evaluate large-scale lifeline systems subjected to strong seismic wave excitation.
基金Natural Science Funds for the Innovative ResearchGroup of China Under Grant No.50321803
文摘An approach to analyze the seismic reliability of water distribution networks by combining a hydraulic analysis with a first-order reliability method (FORM), is proposed in this paper. The hydraulic analysis method for normal conditions is modified to accommodate the special conditions necessary to perform a seismic hydraulic analysis. In order to calculate the leakage area and leaking flow of the pipelines in the hydraulic analysis method, a new leakage model established from the seismic response analysis of buried pipelines is presented. To validate the proposed approach, a network with 17 nodes and 24 pipelines is investigated in detail. The approach is also applied to an actual project consisting of 463 nodes and 767 pipelines. The results show that the proposed approach achieves satisfactory results in analyzing the seismic reliability of large-scale water distribution networks.
基金State Key Research Project in 13th Five-Year under Grant No.2016YFC0701901the Beijing Science and Technology Program under Grant No.Z161100001216015the Natural Science Foundation of China under Grants Nos.51422809 and 51778342
文摘An online hybrid test was carried out on a 40-story 120-m high concrete shear wall structure. The structure was divided into two substructures whereby a physical model of the bottom three stories was tested in the laboratory and the upper 37 stories were simulated numerically using ABAQUS. An overlapping domain method was employed for the bottom three stories to ensure the validity of the boundary conditions of the superstructure. Mixed control was adopted in the test. Displacement control was used to apply the horizontal displacement, while two controlled force actuators were applied to simulate the overturning moment, which is very large and cannot be ignored in the substructure hybrid test of high-rise buildings. A series of tests with earthquake sources of sequentially increasing intensities were carried out. The test results indicate that the proposed hybrid test method is a solution to reproduce the seismic response of high-rise concrete shear wall buildings. The seismic performance of the tested precast high-rise building satisfies the requirements of the Chinese seismic design code.
文摘The hydrochloric acid recovery from rare earth chloride solutions by continuous vacuum membrane distillation was first experimentally studied, then material balance of the process was calculated, and the equations which mathematically stimulate the process were lastly achieved. The results indicate a given RE concentration in circular solutions means its constant HCl concentration during the continuous VMD process, furthermore, increasing RE concentration in feed solutions increases the processing capacity per membrane of the experimental set-up. When keeping constant RE concentration in feed solutions, increasing RE concentration in circular solutions decreases its HCl concentration, and HCl recovery ratio increases accordingly, however, processing capacity per membrane of the experimental set-up decreases at the same time. The mathematical results are in accordance with experimental results.
文摘Modelling is a tool used to simulate the performance of any type of WWTP(wastewater treatment plant)which empowers the user to optimize the response of works by changing influent loads and operational conditions with minimum effort and low cost.STOAT(sewage treatment operational analysis over time)software is used to simulate the performance of wastewater treatment plants dynamically.In this paper,a model was built by STOAT software for the Hannoville WWTP allowing to analyze and study the enquiries in a shorter period of time associated with laboratory analysis.Additionally,the model can be used to estimate the response of the system to a diversity of problems.The hydraulic shock load was tested for the entire WWTP consequently allowing the application of strategies that guarantee a better performance by presenting the analysis for the entire plant.Through the aid of STOAT software,a model was built for the whole plant with daily sewage volume entering the treatment plant in a year.The study showed whether the plant can accept a higher flow than that it regularly receives or not.This proved to be successful and the plant has the possibility to accept double the hydraulic shock load,meanwhile,the variations of resulting data were acceptable when compared to the Egyptian environmental requirements.
文摘Filler and binder make up a small proportion of bituminous mixtures, hence they are considered as important ingredients of mixtures. Sometimes due to equipment error during production, some mixtures retain extra or a reduced amount of filler or binder as compared to the design mix formula. It is thought that the poor performance of bituminous mixtures is a result of inadequate proportioning of materials and the use of inappropriate compaction tools. This study was intended to appreciate the influence of contents of filler and binder in relation to durability in asphalt mixtures. Filler used was crushed stone passing 0.075 mm sieve, while the binder was 35/50 penetration grade. Several trial mixes were prepared following Ugandan specifications for Road and Bridge Works, and the Asphalt Institute in MS-2. Marshall design method was used, studying volumetric properties with an average stability value of 22.3 kN, average flow value of 3.7 mm, VA of 4.4%, VFB of 69.3%, and VMA of 14.2%. Also, compaction of mixtures to assess its performance at optimum filler and binder contents was done. Compaction was done using an Automatic Impact Hammer, a Vibrating Hammer, and a Superpave Gyratory compactor aimed at simulating secondary compaction by traffic and assessing the retained air voids which was 3.3%, 1.3%, and 0.7% respectively. Generally, in bituminous mixtures when a vibrating hammer or a gyratory compactor is recommended for compaction, coarser mixes would be the best choice.
文摘Nuclear power plants (NPPs) are considered as the main source for generating electricity nowadays in some countries. The effect of impact of heavy fully loaded aeroplane such as (Boeing 747-200c) causes leakage of the radiation through the cracks generated on the external RC containment of NPPs, and this leads to severe damage for humans and cities. In this research paper, external RC containment </span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">is</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> modeled using ANSYS and hit by Boeing 747-200c which is the heavier aeroplane compared to other jets and causes severe damage for external RC containment. In addition, the impact location for Boeing 747-200c is considered at 30</span></span></span><span><span><span style="font-family:""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">m vertical height. RC containment response was studied after the impact of an aeroplane and a proposed structural health monitoring technique is applied using embedded sensors in order to detect and locate the embedded cracks that is generated due to the effect of impact of heavy aeroplane. It was concluded that RC containment is intact except for the impact region which is damaged. An experimental program was applied on a part of the element in ANSYS which is away from the impact region. Four specimens were cast using heavy weight concrete in laboratory. Three cracked specimens consist of different lengths of vertical cracks which represent different times of impact in order to replicate crack propagation as in ANSYS. The cracks are simulated inside laboratory specimens using failure criteria. The parameters used in detecting the cracks for specimens are the percentage change in electrical resistivity and Decimal Logarithm Resistivity Anisotropy (DLRA) at which they give a good indication for the presence of the crack.
基金This work was supported by National Natural Science Foundation of China(Grant No.10972162).
文摘In the present paper,a homogenization-based two-scale FEM-FEM model is developed to simulate compactions of visco-plastic granular assemblies.The granular structure consisting of two-dimensional grains is modeled by the microscopic finite element method at the small-scale level,and the homogenized viscous assembly is analyzed by the macroscopic finite element method at large-scale level.The link between scales is made using a computational homogenization method.The two-scale FEM-FEM model is developed in which each particle is treated individually with the appropriate constitutive relations obtained from a representative volume element,kinematic conditions,contact constraints,and elimination of overlap satisfied for every particle.The method could be used in a variety of problems that can be represented using granular media.