期刊文献+
共找到14,014篇文章
< 1 2 250 >
每页显示 20 50 100
Vascular Ossification in the Developing Brain:A Case Study of Pediatric Sturge Weber Syndrome
1
作者 Ranxi Chen Shuhui Xie +7 位作者 Jin Gao Shuli Zhang Xiaobin Zhang Yi Yao Gengxiu Zheng Fengpeng Wang Zili Liu Xuefeng Shen 《Neuroscience Bulletin》 2025年第3期520-524,共5页
Dear Editor,Sturge-Weber Syndrome(SWS)is a rare congenital neurocutaneous syndrome[1,2],with an estimated prevalence of 0.19 in 100,000 annually[3].It is a non-hereditary disease linked to a somatic mutation in the GN... Dear Editor,Sturge-Weber Syndrome(SWS)is a rare congenital neurocutaneous syndrome[1,2],with an estimated prevalence of 0.19 in 100,000 annually[3].It is a non-hereditary disease linked to a somatic mutation in the GNAQ,GNA11,or GNB2 gene[1],leading to vascular malformations in the cutaneous forehead,cerebral cortex,and eye[1,2].Notably,~70%of pediatric patients diagnosed with SWS exhibit brain calcification(BC)[4],though the prevalence of BC ranges from only 1%in young individuals to>20%in the senior population(>60 years old)[5].Similar to the elderly,BC in pediatric SWS patients is identified as vascular calcification[6,7],whereas BC in pediatric patients with tuberous sclerosis and tumors has been previously described as dystrophic calcification[6]. 展开更多
关键词 vascular calcification vascular malformations brain calcification bc brain calcification congenital neurocutaneous syndrome somatic mutation vascular ossification Sturge Weber syndrome
原文传递
IsoVISoR: Towards 3D Mesoscale Brain Mapping of Large Mammals at Isotropic Sub-micron Resolution
2
作者 Chao-Yu Yang Yan Shen +9 位作者 Xiaoyang Qi Lufeng Ding Yanyang Xiao Qingyuan Zhu Hao Wang Cheng Xu Pak-Ming Lau Pengcheng Zhou Fang Xu Guo-Qiang Bi 《Neuroscience Bulletin》 2025年第2期344-348,共5页
Dear Editor,The mammalian brain exhibits cross-scale complexity in neuronal morphology and connectivity,the study of which demands high-resolution morphological reconstruction of individual neurons across the entire b... Dear Editor,The mammalian brain exhibits cross-scale complexity in neuronal morphology and connectivity,the study of which demands high-resolution morphological reconstruction of individual neurons across the entire brain[1-4].Current commonly used approaches for such mesoscale brain mapping include two main types of three-dimensional fluorescence microscopy:the block-face methods,and the lightsheet-based methods[5,6].In general,the high imaging speed and light efficiency of light-sheet microscopy make it a suitable tool for high-throughput volumetric imaging,especially when combined with tissue-clearing techniques.However,large brain samples pose major challenges to this approach. 展开更多
关键词 brain mapping three dimensional fluorescence microscopy mesoscale brain mapping lightsheet based methods block face methods high throughput volumetric imaging tissue clearing techniques
原文传递
Recent applications of EEG-based brain-computer-interface in the medical field 被引量:1
3
作者 Xiu-Yun Liu Wen-Long Wang +39 位作者 Miao Liu Ming-Yi Chen Tânia Pereira Desta Yakob Doda Yu-Feng Ke Shou-Yan Wang Dong Wen Xiao-Guang Tong Wei-Guang Li Yi Yang Xiao-Di Han Yu-Lin Sun Xin Song Cong-Ying Hao Zi-Hua Zhang Xin-Yang Liu Chun-Yang Li Rui Peng Xiao-Xin Song Abi Yasi Mei-Jun Pang Kuo Zhang Run-Nan He Le Wu Shu-Geng Chen Wen-Jin Chen Yan-Gong Chao Cheng-Gong Hu Heng Zhang Min Zhou Kun Wang Peng-Fei Liu Chen Chen Xin-Yi Geng Yun Qin Dong-Rui Gao En-Ming Song Long-Long Cheng Xun Chen Dong Ming 《Military Medical Research》 2025年第8期1283-1322,共40页
Brain-computer interfaces(BCIs)represent an emerging technology that facilitates direct communication between the brain and external devices.In recent years,numerous review articles have explored various aspects of BC... Brain-computer interfaces(BCIs)represent an emerging technology that facilitates direct communication between the brain and external devices.In recent years,numerous review articles have explored various aspects of BCIs,including their fundamental principles,technical advancements,and applications in specific domains.However,these reviews often focus on signal processing,hardware development,or limited applications such as motor rehabilitation or communication.This paper aims to offer a comprehensive review of recent electroencephalogram(EEG)-based BCI applications in the medical field across 8 critical areas,encompassing rehabilitation,daily communication,epilepsy,cerebral resuscitation,sleep,neurodegenerative diseases,anesthesiology,and emotion recognition.Moreover,the current challenges and future trends of BCIs were also discussed,including personal privacy and ethical concerns,network security vulnerabilities,safety issues,and biocompatibility. 展开更多
关键词 Brain-computer interfaces(BCIs) Medical applications REHABILITATION COMMUNICATION Brain monitoring DIAGNOSIS
原文传递
Biofabrication of brain-like living tissue:structure to intelligence
4
作者 Ling Wang Sen Wang +8 位作者 Yingjie Liu Bowen Zhang Zhaoyu Pan Luge Bai Siqi Yao Chenrui Zhang Huangfan Xie Jiankang He Dichen Li 《International Journal of Extreme Manufacturing》 2025年第3期160-181,共22页
Brain,the material foundation of human intelligence,is the most complex tissue in the human body.Brain diseases are among the leading threats to human life,yet our understanding of their pathogenic mechanisms and drug... Brain,the material foundation of human intelligence,is the most complex tissue in the human body.Brain diseases are among the leading threats to human life,yet our understanding of their pathogenic mechanisms and drug development remains limited,largely due to the lack of accurate brain-like tissue models that replicate its complex structure and functions.Therefore,constructing brain-like models—both in morphology and function—possesses significant scientific value for advancing brain science and pathological pharmacology research,representing the frontiers in the biomanufacturing field.This review outlines the primary requirements and challenges in biomanufacturing brain-like tissue,addressing its complex structures,functions,and environments.Also,the existing biomanufacturing technologies,strategies,and characteristics for brain-like models are depicted,and cutting-edge developments in biomanufacturing central neural repair prosthetics,brain development models,brain disease models,and brain-inspired biocomputing models are systematically reviewed.Finally,the paper concludes with future perspectives on the biomanufacturing of brain-like tissue transitioning from structural manufacturing to intelligent functioning. 展开更多
关键词 BIOFABRICATION brain-like tissue multicellular printing nerve repair prostheses brain-inspired biocomputing pharmacopathological models
暂未订购
Recent advances in near-infrared photobiomodulation for the intervention of acquired brain injury
5
作者 Yujing Huang Yujing Zhang +2 位作者 Chen Yang Mengze Xu Zhen Yuan 《Journal of Innovative Optical Health Sciences》 2025年第1期1-27,共27页
Acquired brain injury(ABI)is an injury that affects the brain structure and function.Traditional ABI treatment strategies,including medications and rehabilitation therapy,exhibit their ability to improve its impairmen... Acquired brain injury(ABI)is an injury that affects the brain structure and function.Traditional ABI treatment strategies,including medications and rehabilitation therapy,exhibit their ability to improve its impairments in cognition,emotion,and physical activity.Recently,near-infrared(NIR)photobiomodulation(PBM)has emerged as a promising physical intervention method for ABI,demonstrating that low-level light therapy can modulate cellular metabolic processes,reduce the in flammation and reactive oxygen species of ABI microenvironments,and promote neural repair and regeneration.Preclinical studies using ABI models have been carried out,revealing the potential of PBM in promoting brain injury recovery although its clinical application is still in its early stages.In this review,we first inspected the possible physical and biological mechanisms of NIR-PBM,and then reported the pathophysiology and physiology of ABI underlying NIR-PBM intervention.Therefore,the potential of NIR-PBM as a therapeutic intervention in ABI was demonstrated and it is also expected that further work can facilitate its clinical applications. 展开更多
关键词 Near-infrared photobiomodulation acquired brain injury traumatic brain injury ischemic stroke
原文传递
Glucocorticoid receptor signaling in the brain and its involvement in cognitive function 被引量:1
6
作者 Chonglin Su Taiqi Huang +3 位作者 Meiyu Zhang Yanyu Zhang Yan Zeng Xingxing Chen 《Neural Regeneration Research》 SCIE CAS 2025年第9期2520-2537,共18页
The hypothalamic-pituitary-adrenal axis regulates the secretion of glucoco rticoids in response to environmental challenges.In the brain,a nuclear receptor transcription fa ctor,the glucocorticoid recepto r,is an impo... The hypothalamic-pituitary-adrenal axis regulates the secretion of glucoco rticoids in response to environmental challenges.In the brain,a nuclear receptor transcription fa ctor,the glucocorticoid recepto r,is an important component of the hypothalamicpituitary-a d renal axis's negative feedback loop and plays a key role in regulating cognitive equilibrium and neuroplasticity.The glucoco rticoid receptor influences cognitive processes,including glutamate neurotransmission,calcium signaling,and the activation of brain-derived neurotrophic factor-mediated pathways,through a combination of genomic and non-genomic mechanisms.Protein interactions within the central nervous system can alter the expression and activity of the glucocorticoid receptor,there by affecting the hypothalamic-pituitary-a d renal axis and stress-related cognitive functions.An appropriate level of glucocorticoid receptor expression can improve cognitive function,while excessive glucocorticoid receptors or long-term exposure to glucoco rticoids may lead to cognitive impairment.Patients with cognitive impairment-associated diseases,such as Alzheimer's disease,aging,depression,Parkinson's disease,Huntington's disease,stroke,and addiction,often present with dysregulation of the hypothalamic-pituitary-adrenal axis and glucocorticoid receptor expression.This review provides a comprehensive overview of the functions of the glucoco rticoid receptor in the hypothalamic-pituitary-a d renal axis and cognitive activities.It emphasizes that appropriate glucocorticoid receptor signaling fa cilitates learning and memory,while its dysregulation can lead to cognitive impairment.This provides clues about how glucocorticoid receptor signaling can be targeted to ove rcome cognitive disability-related disorders. 展开更多
关键词 brain-derived neurotrophic factor calcium signaling glucocorticoid receptor GLUCOCORTICOID glutamate transmission hypothalamic-pituitary-adrenal axis long-term potentiation neurocognitive disorders NEUROPLASTICITY stress
暂未订购
Repetitive traumatic brain injury–induced complement C1–related inflammation impairs long-term hippocampal neurogenesis 被引量:1
7
作者 Jing Wang Bing Zhang +9 位作者 Lanfang Li Xiaomei Tang Jinyu Zeng Yige Song Chao Xu Kai Zhao Guoqiang Liu Youming Lu Xinyan Li Kai Shu 《Neural Regeneration Research》 SCIE CAS 2025年第3期821-835,共15页
Repetitive traumatic brain injury impacts adult neurogenesis in the hippocampal dentate gyrus,leading to long-term cognitive impairment.However,the mechanism underlying this neurogenesis impairment remains unknown.In ... Repetitive traumatic brain injury impacts adult neurogenesis in the hippocampal dentate gyrus,leading to long-term cognitive impairment.However,the mechanism underlying this neurogenesis impairment remains unknown.In this study,we established a male mouse model of repetitive traumatic brain injury and performed long-term evaluation of neurogenesis of the hippocampal dentate gyrus after repetitive traumatic brain injury.Our results showed that repetitive traumatic brain injury inhibited neural stem cell proliferation and development,delayed neuronal maturation,and reduced the complexity of neuronal dendrites and spines.Mice with repetitive traumatic brain injuryalso showed deficits in spatial memory retrieval.Moreover,following repetitive traumatic brain injury,neuroinflammation was enhanced in the neurogenesis microenvironment where C1q levels were increased,C1q binding protein levels were decreased,and canonical Wnt/β-catenin signaling was downregulated.An inhibitor of C1 reversed the long-term impairment of neurogenesis induced by repetitive traumatic brain injury and improved neurological function.These findings suggest that repetitive traumatic brain injury–induced C1-related inflammation impairs long-term neurogenesis in the dentate gyrus and contributes to spatial memory retrieval dysfunction. 展开更多
关键词 complement C1 DENDRITE dentate gyrus hippocampus neural stem cell NEUROGENESIS neuroinflammation neurological function neuron traumatic brain injury
暂未订购
Microglia overexpressing brain-derived neurotrophic factor promote vascular repair and functional recovery in mice after spinal cord injury 被引量:1
8
作者 Fanzhuo Zeng Yuxin Li +6 位作者 Xiaoyu Li Xinyang Gu Yue Cao Shuai Cheng He Tian Rongcheng Mei Xifan Mei 《Neural Regeneration Research》 2026年第1期365-376,共12页
Spinal cord injury represents a severe form of central nervous system trauma for which effective treatments remain limited.Microglia is the resident immune cells of the central nervous system,play a critical role in s... Spinal cord injury represents a severe form of central nervous system trauma for which effective treatments remain limited.Microglia is the resident immune cells of the central nervous system,play a critical role in spinal cord injury.Previous studies have shown that microglia can promote neuronal survival by phagocytosing dead cells and debris and by releasing neuroprotective and anti-inflammatory factors.However,excessive activation of microglia can lead to persistent inflammation and contribute to the formation of glial scars,which hinder axonal regeneration.Despite this,the precise role and mechanisms of microglia during the acute phase of spinal cord injury remain controversial and poorly understood.To elucidate the role of microglia in spinal cord injury,we employed the colony-stimulating factor 1 receptor inhibitor PLX5622 to deplete microglia.We observed that sustained depletion of microglia resulted in an expansion of the lesion area,downregulation of brain-derived neurotrophic factor,and impaired functional recovery after spinal cord injury.Next,we generated a transgenic mouse line with conditional overexpression of brain-derived neurotrophic factor specifically in microglia.We found that brain-derived neurotrophic factor overexpression in microglia increased angiogenesis and blood flow following spinal cord injury and facilitated the recovery of hindlimb motor function.Additionally,brain-derived neurotrophic factor overexpression in microglia reduced inflammation and neuronal apoptosis during the acute phase of spinal cord injury.Furthermore,through using specific transgenic mouse lines,TMEM119,and the colony-stimulating factor 1 receptor inhibitor PLX73086,we demonstrated that the neuroprotective effects were predominantly due to brain-derived neurotrophic factor overexpression in microglia rather than macrophages.In conclusion,our findings suggest the critical role of microglia in the formation of protective glial scars.Depleting microglia is detrimental to recovery of spinal cord injury,whereas targeting brain-derived neurotrophic factor overexpression in microglia represents a promising and novel therapeutic strategy to enhance motor function recovery in patients with spinal cord injury. 展开更多
关键词 ANGIOGENESIS apoptosis brain-derived neurotrophic factor colony stimulating factor 1 receptor inflammation MICROGLIA motor function spinal cord injury vascular endothelial growth factor
暂未订购
NLRP3 inflammasome and gut microbiota–brain axis:A new perspective on white matter injury after intracerebral hemorrhage 被引量:1
9
作者 Xiaoxi Cai Xinhong Cai +4 位作者 Quanhua Xie Xueqi Xiao Tong Li Tian Zhou Haitao Sun 《Neural Regeneration Research》 2026年第1期62-80,共19页
Intracerebral hemorrhage is the most dangerous subtype of stroke,characterized by high mortality and morbidity rates,and frequently leads to significant secondary white matter injury.In recent decades,studies have rev... Intracerebral hemorrhage is the most dangerous subtype of stroke,characterized by high mortality and morbidity rates,and frequently leads to significant secondary white matter injury.In recent decades,studies have revealed that gut microbiota can communicate bidirectionally with the brain through the gut microbiota–brain axis.This axis indicates that gut microbiota is closely related to the development and prognosis of intracerebral hemorrhage and its associated secondary white matter injury.The NACHT,LRR,and pyrin domain-containing protein 3(NLRP3)inflammasome plays a crucial role in this context.This review summarizes the dysbiosis of gut microbiota following intracerebral hemorrhage and explores the mechanisms by which this imbalance may promote the activation of the NLRP3 inflammasome.These mechanisms include metabolic pathways(involving short-chain fatty acids,lipopolysaccharides,lactic acid,bile acids,trimethylamine-N-oxide,and tryptophan),neural pathways(such as the vagus nerve and sympathetic nerve),and immune pathways(involving microglia and T cells).We then discuss the relationship between the activated NLRP3 inflammasome and secondary white matter injury after intracerebral hemorrhage.The activation of the NLRP3 inflammasome can exacerbate secondary white matter injury by disrupting the blood–brain barrier,inducing neuroinflammation,and interfering with nerve regeneration.Finally,we outline potential treatment strategies for intracerebral hemorrhage and its secondary white matter injury.Our review highlights the critical role of the gut microbiota–brain axis and the NLRP3 inflammasome in white matter injury following intracerebral hemorrhage,paving the way for exploring potential therapeutic approaches. 展开更多
关键词 gut microbiota gut microbiota–brain axis immune intracerebral hemorrhage NEUROINFLAMMATION NLRP3 protein stroke THERAPEUTICS white matter injury
暂未订购
Neuronal Regulation of Feeding and Energy Metabolism: A Focus on the Hypothalamus and Brainstem 被引量:1
10
作者 Jing Chen Meiting Cai Cheng Zhan 《Neuroscience Bulletin》 2025年第4期665-675,共11页
In the face of constantly changing environments,the central nervous system(CNS)rapidly and accurately calculates the body's needs,regulates feeding behavior,and maintains energy homeostasis.The arcuate nucleus of ... In the face of constantly changing environments,the central nervous system(CNS)rapidly and accurately calculates the body's needs,regulates feeding behavior,and maintains energy homeostasis.The arcuate nucleus of the hypothalamus(ARC)plays a key role in this process,serv-ing as a critical brain region for detecting nutrition-related hormones and regulating appetite and energy homeostasis.Agouti-related protein(AgRP)/neuropeptide Y(NPY)neu-rons in the ARC are core elements that interact with other brain regions through a complex appetite-regulating network to comprehensively control energy homeostasis.In this review,we explore the discovery and research progress of AgRP neurons in regulating feeding and energy metabolism.In addition,recent advances in terms of feeding behavior and energy homeostasis,along with the redundant neural mecha-nisms involved in energy metabolism,are discussed.Finally,the challenges and opportunities in the field of neural regula-tion of feeding and energy metabolism are briefly discussed. 展开更多
关键词 HYPOTHALAMUS AgRP neurons Feeding behavior Energy homeostasis BRAINSTEM NTS VLM Catecholaminergic neurons NPY neurons
原文传递
The Citron homology domain of MAP4Ks improves outcomes of traumatic brain injury
11
作者 Xiaoling Zhong Wenjiao Tai +4 位作者 Meng-Lu Liu Shuaipeng Ma Tianjin Shen Yuhua Zou Chun-Li Zhang 《Neural Regeneration Research》 SCIE CAS 2025年第11期3233-3244,共12页
The mitogen-activated protein kinase kinase kinase kinases(MAP4Ks)signaling pathway plays a pivotal role in axonal regrowth and neuronal degeneration following insults.Whether targeting this pathway is beneficial to b... The mitogen-activated protein kinase kinase kinase kinases(MAP4Ks)signaling pathway plays a pivotal role in axonal regrowth and neuronal degeneration following insults.Whether targeting this pathway is beneficial to brain injury remains unclear.In this study,we showed that adeno-associated virus-delivery of the Citron homology domain of MAP4Ks effectively reduces traumatic brain injury-induced reactive gliosis,tauopathy,lesion size,and behavioral deficits.Pharmacological inhibition of MAP4Ks replicated the ameliorative effects observed with expression of the Citron homology domain.Mechanistically,the Citron homology domain acted as a dominant-negative mutant,impeding MAP4K-mediated phosphorylation of the dishevelled proteins and thereby controlling the Wnt/β-catenin pathway.These findings implicate a therapeutic potential of targeting MAP4Ks to alleviate the detrimental effects of traumatic brain injury. 展开更多
关键词 adeno-associated virus Citron homology Citron homology domain gene therapy mitogen-activated protein kinase kinase kinase kinases traumatic brain injury
暂未订购
Complexity of the Hypothalamic Oxytocin System and its Involvement in Brain Functions and Diseases
12
作者 Xiao Cui Lei Xiao 《Neuroscience Bulletin》 2025年第7期1267-1288,共22页
Oxytocin is classically termed a‘prosocial neuropeptide’because of its evolutionarily conserved role in promoting affiliative behaviors.Endogenous oxytocin is mainly synthesized by hypothalamic oxytocin neurons and ... Oxytocin is classically termed a‘prosocial neuropeptide’because of its evolutionarily conserved role in promoting affiliative behaviors.Endogenous oxytocin is mainly synthesized by hypothalamic oxytocin neurons and signals through oxytocin receptors(OxtRs).Recent studies with cell type-specific and circuit-specific interrogation have uncovered that oxytocin signals exert pleiotropic neuromodulatory effects through anatomically widespread axonal projections and ubiquitously distributed OxtRs.Dysfunctions of oxytocin signals are closely relevant to brain disorders/diseases.While intranasal oxytocin administration has been demonstrated to be one potential strategy to alleviate some brain disorders/diseases,such as autism,obesity,and anxiety,conflicting clinical outcomes highlight the imperative for precision-targeted neuromodulation strategies.Dissecting the molecular,cellular,and neural circuitry mechanisms underlying oxytocinergic modulation is a prerequisite to achieving this goal.This review provides an overview of the current understanding of the oxytocin system in terms of anatomical structure,neuronal modulation,and signal pathways,and discusses the modulatory roles of oxytocin in social,feeding,emotional,and sensory-related brain functions and brain diseases. 展开更多
关键词 OXYTOCIN Oxytocin neuron Oxytocin receptor Neural circuit Brain disease Diversity
原文传递
High-dose dexamethasone regulates microglial polarization via the GR/JAK1/STAT3 signaling pathway after traumatic brain injury
13
作者 Mengshi Yang Miao Bai +10 位作者 Yuan Zhuang Shenghua Lu Qianqian Ge Hao Li Yu Deng Hongbin Wu Xiaojian Xu Fei Niu Xinlong Dong Bin Zhang Baiyun Liu 《Neural Regeneration Research》 SCIE CAS 2025年第9期2611-2623,共13页
Although microglial polarization and neuroinflammation are crucial cellular responses after traumatic brain injury,the fundamental regulatory and functional mechanisms remain insufficiently understood.As potent anti-i... Although microglial polarization and neuroinflammation are crucial cellular responses after traumatic brain injury,the fundamental regulatory and functional mechanisms remain insufficiently understood.As potent anti-inflammato ry agents,the use of glucoco rticoids in traumatic brain injury is still controversial,and their regulatory effects on microglial polarization are not yet known.In the present study,we sought to determine whether exacerbation of traumatic brain injury caused by high-dose dexamethasone is related to its regulatory effects on microglial polarization and its mechanisms of action.In vitro cultured BV2 cells and primary microglia and a controlled cortical impact mouse model were used to investigate the effects of dexamethasone on microglial polarization.Lipopolysaccharide,dexamethasone,RU486(a glucocorticoid receptor antagonist),and ruxolitinib(a Janus kinase 1 antagonist)were administered.RNA-sequencing data obtained from a C57BL/6 mouse model of traumatic brain injury were used to identify potential targets of dexamethasone.The Morris water maze,quantitative reverse transcription-polymerase chain reaction,western blotting,immunofluorescence and confocal microscopy analysis,and TUNEL,Nissl,and Golgi staining were performed to investigate our hypothesis.High-throughput sequencing results showed that arginase 1,a marker of M2 microglia,was significantly downregulated in the dexamethasone group compared with the traumatic brain injury group at3 days post-traumatic brain injury.Thus dexamethasone inhibited M1 and M2 microglia,with a more pronounced inhibitory effect on M2microglia in vitro and in vivo.Glucocorticoid receptor plays an indispensable role in microglial polarization after dexamethasone treatment following traumatic brain injury.Additionally,glucocorticoid receptor activation increased the number of apoptotic cells and neuronal death,and also decreased the density of dendritic spines.A possible downstream receptor signaling mechanism is the GR/JAK1/STAT3 pathway.Overactivation of glucocorticoid receptor by high-dose dexamethasone reduced the expression of M2 microglia,which plays an antiinflammatory role.In contrast,inhibiting the activation of glucocorticoid receptor reduced the number of apoptotic glia and neurons and decreased the loss of dendritic spines after traumatic brain injury.Dexamethasone may exe rt its neurotoxic effects by inhibiting M2 microglia through the GR/JAK1/STAT3 signaling pathway. 展开更多
关键词 apoptosis BV2 microglia DEXAMETHASONE glucocorticoid receptor GLUCOCORTICOIDS innate immune system microglial polarization neuroinflammation primary microglia traumatic brain injury
暂未订购
Gut-skin-brain axis in people suffering from sepsis with acute skin failure
14
作者 Takahiko Nagamine 《World Journal of Psychiatry》 2025年第7期5-10,共6页
Sepsis,a life-threatening condition,can lead to acute skin failure characterized by extensive skin damage.This is often due to decreased blood flow,inflammation,and increased susceptibility to infection.Acute skin fai... Sepsis,a life-threatening condition,can lead to acute skin failure characterized by extensive skin damage.This is often due to decreased blood flow,inflammation,and increased susceptibility to infection.Acute skin failure in people with sepsis is often associated with sleep disturbances,anxiety,and poor mood.Inflammatory markers and lactate levels correlate with these psychiatric symptoms,suggesting a link between skin and brain function.The skin and the central nervous system(CNS)have bidirectional communication.The CNS is also in close contact with the digestive tract.The gut,skin,and brain influence each other’s functions thr-ough nervous,hormonal,and immune pathways,forming a gut-skin-brain axis.Understanding the interaction among the gut,skin,and CNS is critical to the diag-nosis and treatment of various skin and neurological disorders.By recognizing individual variations in gut microbiota,immune responses,and neural pathways,treatments can be tailored to specific patient needs,enhancing efficacy and minimizing side effects.The gut plays a large role in mental health.Under-standing the gut skin brain axis,will lead to improved mental health outcomes. 展开更多
关键词 Acute skin failure Anxiety Gut-skin-brain axis Insomnia SEPSIS
暂未订购
Brain insulin resistance and neuropsychiatric symptoms in Alzheimer's disease:A role for dopamine signaling
15
作者 Anastasia Kontogianni Hongbin Yang Wenqiang Chen 《Neural Regeneration Research》 2026年第5期1995-1996,共2页
Type 2 diabetes mellitus has central complications:Diabetes,a metabolic disorder primarily characterized by hyperglycemia due to insufficient insulin secretion,or impaired insulin signaling,has significant central com... Type 2 diabetes mellitus has central complications:Diabetes,a metabolic disorder primarily characterized by hyperglycemia due to insufficient insulin secretion,or impaired insulin signaling,has significant central complications.Type 2 diabetes mellitus(T2DM),the most prevalent type of diabetes,affects more than 38 million individuals in the United States(approximately 1 in 10)and is defined by chronic hyperglycemia and insulin resistance,which refers to a reduced cellular response to insulin. 展开更多
关键词 reduced cellular response insulin dopamine signaling insulin resistancewhich metabolic disorder type diabetes mellitus brain insulin resistance Alzheimers disease neuropsychiatric symptoms
暂未订购
Unraveling brain aging through the lens of oral microbiota 被引量:1
16
作者 Qinchao Hu Si Wang +2 位作者 Weiqi Zhang Jing Qu Guang-Hui Liu 《Neural Regeneration Research》 SCIE CAS 2025年第7期1930-1943,共14页
The oral cavity is a complex physiological community encompassing a wide range of microorganisms.Dysbiosis of oral microbiota can lead to various oral infectious diseases,such as periodontitis and tooth decay,and even... The oral cavity is a complex physiological community encompassing a wide range of microorganisms.Dysbiosis of oral microbiota can lead to various oral infectious diseases,such as periodontitis and tooth decay,and even affect systemic health,including brain aging and neurodegenerative diseases.Recent studies have highlighted how oral microbes might be involved in brain aging and neurodegeneration,indicating potential avenues for intervention strategies.In this review,we summarize clinical evidence demonstrating a link between oral microbes/oral infectious diseases and brain aging/neurodegenerative diseases,and dissect potential mechanisms by which oral microbes contribute to brain aging and neurodegeneration.We also highlight advances in therapeutic development grounded in the realm of oral microbes,with the goal of advancing brain health and promoting healthy aging. 展开更多
关键词 Alzheimer's disease brain aging multiple sclerosis NEURODEGENERATION neurodegenerative diseases oral microbiota Parkinson's disease PERIODONTITIS BACTERIA Porphyromonas gingivalis
暂未订购
Gut–brain axis and environmental factors in Parkinson's disease:bidirectional link between disease onset and progression
17
作者 Soo Jung Park Kyung Won Kim Eun Jeong Lee 《Neural Regeneration Research》 2025年第12期3416-3429,共14页
Parkinson's disease has long been considered a disorder that primarily affects the brain,as it is defined by the dopaminergic neurodegeneration in the substantia nigra and the brain accumulation of Lewy bodies con... Parkinson's disease has long been considered a disorder that primarily affects the brain,as it is defined by the dopaminergic neurodegeneration in the substantia nigra and the brain accumulation of Lewy bodies containingα-synuclein protein.In recent decades,however,accumulating research has revealed that Parkinson's disease also involves the gut and uncovered an intimate and important bidirectional link between the brain and the gut,called the“gut–brain axis.”Numerous clinical studies demonstrate that gut dysfunction frequently precedes motor symptoms in Parkinson's disease patients,with findings including impaired intestinal permeability,heightened inflammation,and distinct gut microbiome profiles and metabolites.Furthermore,α-synuclein deposition has been consistently observed in the gut of Parkinson's disease patients,suggesting a potential role in disease initiation.Importantly,individuals with vagotomy have a reduced Parkinson's disease risk.From these observations,researchers have hypothesized thatα-synuclein accumulation may initiate in the gut and subsequently propagate to the central dopaminergic neurons through the gut–brain axis,leading to Parkinson's disease.This review comprehensively examines the gut's involvement in Parkinson's disease,focusing on the concept of a gut-origin for the disease.We also examine the interplay between altered gut-related factors and the accumulation of pathologicalα-synuclein in the gut of Parkinson's disease patients.Given the accessibility of the gut to both dietary and pharmacological interventions,targeting gut-localizedα-synuclein represents a promising avenue for developing effective Parkinson's disease therapies. 展开更多
关键词 gut inflammation gut microbiome gut-brain axis micro/nano-plastics Parkinson’s disease Α-SYNUCLEIN
暂未订购
Role of the Gut–Brain Axis in Chronotype-Driven Alzheimer's Disease: A Mendelian Randomization Study
18
作者 Jingting Kong Mengxue Wang +2 位作者 Xuezi Zhang Zan Wang Qingguo Ren 《Biomedical and Environmental Sciences》 2025年第4期519-524,共6页
Chronotype is determined by circadian rhythms,influenced by polygenic variations and environmental factors. Typically, chronotypes are categorized into morning-, intermediate-, and evening-types^([1]). Most cognitive ... Chronotype is determined by circadian rhythms,influenced by polygenic variations and environmental factors. Typically, chronotypes are categorized into morning-, intermediate-, and evening-types^([1]). Most cognitive functions follow daily and circadian rhythms, with the “synchronization effect” reflecting performance variations between optimal and non-optimal times based on an individual's chronotype. 展开更多
关键词 cognitive functions CHRONOTYPE circadian rhythmsinfluenced gut brain axis Mendelian randomization circadian rhythms synchronization effect performance variations
暂未订购
Interaction between the brain and multiple organ systems in schizophrenia
19
作者 Jin Lin Si-Tong Feng +5 位作者 Zi-Yao Wu Lin-Rui Dong Dong-Qing Yin Hong Zhu Hong-Xiao Jia Yan-Zhe Ning 《World Journal of Psychiatry》 2025年第8期131-138,共8页
Schizophrenia is characterized by psychotic symptoms,negative symptoms,and cognitive deficits,profoundly affecting individuals and their families.The etiology is multifactorial,involving genetic,endocrine,and immunolo... Schizophrenia is characterized by psychotic symptoms,negative symptoms,and cognitive deficits,profoundly affecting individuals and their families.The etiology is multifactorial,involving genetic,endocrine,and immunological risk factors.It is thought that schizophrenia is exclusively linked to alterations in brain structure and function,while the relationship between the brain and many organs may lack sufficient attention.Increasing evidence indicates abnormalities of the interactions between the brain and many organs in patients with schizophrenia.Inter-organ crosstalk affects the onset,course,and management of schizophrenia.Besides,the complex relationship between autonomic nervous system,endocrine system,and immune system further facilitates the development of schizophrenia.The present review summarizes the relationships between the brain and multiple organ systems in schizophrenia,providing new perspectives on the underlying pathophysiological mechanisms of schizophrenia. 展开更多
关键词 SCHIZOPHRENIA Brain-body interactions Pathophysiological mechanisms Multiple organic systems Systemic integration
暂未订购
A Method for Detecting Depression in Adolescence Based on an Affective Brain‑Computer Interface and Resting‑State Electroencephalogram Signals
20
作者 Zijing Guan Xiaofei Zhang +10 位作者 Weichen Huang Kendi Li Di Chen Weiming Li Jiaqi Sun Lei Chen Yimiao Mao Huijun Sun Xiongzi Tang Liping Cao Yuanqing Li 《Neuroscience Bulletin》 2025年第3期434-448,共15页
Depression is increasingly prevalent among adolescents and can profoundly impact their lives.However,the early detection of depression is often hindered by the timeconsuming diagnostic process and the absence of objec... Depression is increasingly prevalent among adolescents and can profoundly impact their lives.However,the early detection of depression is often hindered by the timeconsuming diagnostic process and the absence of objective biomarkers.In this study,we propose a novel approach for depression detection based on an affective brain-computer interface(aBCI)and the resting-state electroencephalogram(EEG).By fusing EEG features associated with both emotional and resting states,our method captures comprehensive depression-related information.The final depression detection model,derived through decision fusion with multiple independent models,further enhances detection efficacy.Our experiments involved 40 adolescents with depression and 40 matched controls.The proposed model achieved an accuracy of 86.54%on cross-validation and 88.20%on the independent test set,demonstrating the efficiency of multi-modal fusion.In addition,further analysis revealed distinct brain activity patterns between the two groups across different modalities.These findings hold promise for new directions in depression detection and intervention. 展开更多
关键词 Depression detection Brain-computer interface EEG Multimodal
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部