Blockchain technologies have been used to facilitate Web 3.0 and FinTech applications.However,conventional blockchain technologies suffer from long transaction delays and low transaction success rates in some Web 3.0 ...Blockchain technologies have been used to facilitate Web 3.0 and FinTech applications.However,conventional blockchain technologies suffer from long transaction delays and low transaction success rates in some Web 3.0 and FinTech applications such as Supply Chain Finance(SCF).Blockchain sharding has been proposed to improve blockchain performance.However,the existing sharding methods either use a static sharding strategy,which lacks the adaptability for the dynamic SCF environment,or are designed for public chains,which are not applicable to consortium blockchain-based SCF.To address these issues,we propose an adaptive consortium blockchain sharding framework named ACSarF,which is based on the deep reinforcement learning algorithm.The proposed framework can improve consortium blockchain sharding to effectively reduce transaction delay and adaptively adjust the sharding and blockout strategies to increase the transaction success rate in a dynamic SCF environment.Furthermore,we propose to use a consistent hash algorithm in the ACSarF framework to ensure transaction load balancing in the adaptive sharding system to further improve the performance of blockchain sharding in dynamic SCF scenarios.To evaluate the proposed framework,we conducted extensive experiments in a typical SCF scenario.The obtained experimental results show that the ACSarF framework achieves a more than 60%improvement in user experience compared to other state-of-the-art blockchain systems.展开更多
To facilitate cross-domain data interaction in the Industrial Internet of Things(IIoT),establishing trust between multiple administrative domains is essential.Although blockchain technology has been proposed as a solu...To facilitate cross-domain data interaction in the Industrial Internet of Things(IIoT),establishing trust between multiple administrative domains is essential.Although blockchain technology has been proposed as a solution,current techniques still suffer from issues related to efficiency,security,and privacy.Our research aims to address these challenges by proposing a lightweight,trusted data interaction scheme based on blockchain,which reduces redundant interactions among entities.We enhance the traditional Practical Byzantine Fault Tolerance(PBFT)algorithm to support lightweight distributed consensus in large-scale IIoT scenarios.Introducing a composite digital signature algorithm and incorporating veto power minimizes resource consumption and eliminates ineffective consensus operations.The experimental results show that,compared with PBFT,our scheme reduces latency by 27.2%,thereby improving communication efficiency and resource utilization.Furthermore,we develop a lightweight authentication technique specifically for cross-domain IIoT,leveraging blockchain technology to achieve distributed collaborative authentication.The performance comparisons indicate that our method significantly outperforms traditional schemes,with an average authentication latency of approximately 151 milliseconds.Additionally,we introduce a trusted federated learning(FL)algorithm that ensures comprehensive trust assessments for devices across different domains while protecting data privacy.Extensive simulations and experiments validate the reliability of our approach.展开更多
The immutability is a crucial property for blockchain applications,however,it also leads to problems such as the inability to revise illegal data on the blockchain and delete private data.Although redactable blockchai...The immutability is a crucial property for blockchain applications,however,it also leads to problems such as the inability to revise illegal data on the blockchain and delete private data.Although redactable blockchains enable on-chain modification,they suffer from inefficiency and excessive centralization,the majority of redactable blockchain schemes ignore the difficult problems of traceability and consistency check.In this paper,we present a Dynamically Redactable Blockchain based on decentralized Chameleon hash(DRBC).Specifically,we propose an Identity-Based Decentralized Chameleon Hash(IDCH)and a Version-Based Transaction structure(VT)to realize the traceability of transaction modifications in a decentralized environment.Then,we propose an efficient block consistency check protocol based on the Bloom filter tree,which can realize the consistency check of transactions with extremely low time and space cost.Security analysis and experiment results demonstrate the reliability of DRBC and its significant advantages in a decentralized environment.展开更多
Blockchain-enabled Internet of Medical Things (BIoMT) has attracted significant attention from academia and healthcare organizations. However, the large amount of medical data involved in BIoMT has also raised concern...Blockchain-enabled Internet of Medical Things (BIoMT) has attracted significant attention from academia and healthcare organizations. However, the large amount of medical data involved in BIoMT has also raised concerns about data security and personal privacy protection. To alleviate these concerns, blind signature technology has emerged as an effective method to solve blindness and unforgeability. Unfortunately, most existing blind signature schemes suffer from the security risk of key leakage. In addition, traditional blind signature schemes are also vulnerable to quantum computing attacks. Therefore, it remains a crucial and ongoing challenge to explore the construction of key-secure, quantum-resistant blind signatures. In this paper, we introduce lattice-based forward-secure blind signature (LFSBS), a lattice-based forward-secure blind signature scheme for medical privacy preservation in BIoMT. LFSBS achieves forward security by constructing a key evolution mechanism using a binary tree structure. This mechanism ensures that even if future encryption keys are leaked, past data can still remain secure. Meanwhile, LFSBS realizes post-quantum security based on the hardness assumption of small integer solution (SIS), making it resistant to potential quantum computing attacks. In addition, we formally define and prove the security of LFSBS in a random oracle model, including blindness and forward-secure unforgeability. Comprehensive performance evaluation shows that LFSBS performs well in terms of computational overhead, with a reduction of 22%–73% compared to previous schemes.展开更多
Digital Twin(DT)supports real time analysis and provides a reliable simulation platform in the Internet of Things(IoT).The creation and application of DT hinges on amounts of data,which poses pressure on the applicati...Digital Twin(DT)supports real time analysis and provides a reliable simulation platform in the Internet of Things(IoT).The creation and application of DT hinges on amounts of data,which poses pressure on the application of Artificial Intelligence(AI)for DT descriptions and intelligent decision-making.Federated Learning(FL)is a cutting-edge technology that enables geographically dispersed devices to collaboratively train a shared global model locally rather than relying on a data center to perform model training.Therefore,DT can benefit by combining with FL,successfully solving the"data island"problem in traditional AI.However,FL still faces serious challenges,such as enduring single-point failures,suffering from poison attacks,lacking effective incentive mechanisms.Before the successful deployment of DT,we should tackle the issues caused by FL.Researchers from industry and academia have recognized the potential of introducing Blockchain Technology(BT)into FL to overcome the challenges faced by FL,where BT acting as a distributed and immutable ledger,can store data in a secure,traceable,and trusted manner.However,to the best of our knowledge,a comprehensive literature review on this topic is still missing.In this paper,we review existing works about blockchain-enabled FL and visualize their prospects with DT.To this end,we first propose evaluation requirements with respect to security,faulttolerance,fairness,efficiency,cost-saving,profitability,and support for heterogeneity.Then,we classify existing literature according to the functionalities of BT in FL and analyze their advantages and disadvantages based on the proposed evaluation requirements.Finally,we discuss open problems in the existing literature and the future of DT supported by blockchain-enabled FL,based on which we further propose some directions for future research.展开更多
The Internet of Vehicles(IoV)is extensively deployed in outdoor and open environments to effectively address traffic efficiency and safety issues by connecting vehicles to the network.However,due to the open and varia...The Internet of Vehicles(IoV)is extensively deployed in outdoor and open environments to effectively address traffic efficiency and safety issues by connecting vehicles to the network.However,due to the open and variable nature of its network topology,vehicles frequently engage in cross-domain interactions.During such processes,directly uploading sensitive information to roadside units for interaction may expose it to malicious tampering or interception by attackers,thus compromising the security of the cross-domain authentication process.Additionally,IoV imposes high real-time requirements,and existing cross-domain authentication schemes for IoV often encounter efficiency issues.To mitigate these challenges,we propose CAIoV,a blockchain-based efficient cross-domain authentication scheme for IoV.This scheme comprehensively integrates technologies such as zero-knowledge proofs,smart contracts,and Merkle hash tree structures.It divides the cross-domain process into anonymous cross-domain authentication and safe cross-domain authentication phases to ensure efficiency while maintaining a balance between efficiency and security.Finally,we evaluate the performance of CAIoV.Experimental results demonstrate that our proposed scheme reduces computational overhead by approximately 20%,communication overhead by around 10%,and storage overhead by nearly 30%.展开更多
The blockchain provides a reliable and scalable method for enabling source-tracing functionality in large-scale Internet of Things(IoT)systems.Traditional blockchain-based source tracing applications are generally bas...The blockchain provides a reliable and scalable method for enabling source-tracing functionality in large-scale Internet of Things(IoT)systems.Traditional blockchain-based source tracing applications are generally based on the hypothesis that the raw data collected by each IoT node are credible and consistent,which however may not always be the truth.As no mechanism ensures the reliability of the original data collected from the IoT devices,these data may be accidently screwed up or maliciously tampered with before they are uploaded on-chain.To address this issue,we propose the Multi-dimensional Certificates of Origin(MCO)method to filter out the potentially incredible data-till all the data uploaded to the chain are credible.To achieve this,we devise the Multidimensional Information Cross-Verification(MICV)and Multi-source Data Matching Calculation(MDMC)methods.MICV verifies whether a to-be-uploaded datum is consistent or credible,and MDMC determines which data should be discarded and which data should be kept to retain the most likely credible/untampered ones in the circumstance when data inconsistency appears.Large-scale experiments show that our scheme ensures on the credibility of data and off the chain with an affordable overhead.展开更多
The research on the governing blockchain by blockchain supervision system is an important development trend of blockchain technology.In this system there is a supervisory blockchain managing and governing the supervis...The research on the governing blockchain by blockchain supervision system is an important development trend of blockchain technology.In this system there is a supervisory blockchain managing and governing the supervised blockchain based on blockchain technology,results in a uniquely cross-blockchain demand to consensus mechanism for solving the trust problem between supervisory blockchain and supervised blockchain.To solve this problem,this paper proposes a cross-blockchain consensus mechanism based on smart contract and a set of smart contracts endorse the crossblockchain consensus.New consensus mechanism called Proof-of-EndorseContracts(PoEC)consensus,which firstly transfers the consensus reached in supervisory blockchain to supervised blockchain by supervisory nodes,then packages the supervisory block in supervisory blockchain and transmits it to the smart contract deployed in the supervised blockchain,finally miners in supervised blockchain will execute and package the new block according to the status of the smart contract.The core part of the consensus mechanism is Endorse Contracts which designed and implemented by us and verified the effectiveness through experiments.PoEC consensus mechanism and Endorse Contracts support the supervised blockchain to join the governing blockchain by blockchain system without changing the original consensus mechanism,which has the advantages of low cost,high scalability and being able to crossblockchain.This paper proves that our method can provide a feasible crossblockchain governance scheme for the field of blockchain governance.展开更多
Traditional Chinese Medicine(TCM)is one of the most promising programs for disease prevention and treatment.Meanwhile,the quality of TCM has garnered much attention.To ensure the quality of TCM,many works are based on...Traditional Chinese Medicine(TCM)is one of the most promising programs for disease prevention and treatment.Meanwhile,the quality of TCM has garnered much attention.To ensure the quality of TCM,many works are based on the blockchain scheme to design the traceability scheme of TCM to trace its origin.Although these schemes can ensure the integrity,sharability,credibility,and immutability of TCM more effectively,many problems are exposed with the rapid growth of TCM data in blockchains,such as expensive overhead,performance bottlenecks,and the traditional blockchain architecture is unsuitable for TCM data with dynamic growth.Motivated by the aforementioned problems,we propose a novel and lightweight TCM traceability architecture based on the blockchain using sharding(LBS-TCM).Compared to the existing blockchain-based TCM traceability system,our architecture utilizes sharding to develop a novel traceability mechanism that supports more convenient traceability operations for TCM requirements such as uploading,querying,and downloading.Specifically,our architecture consists of a leader shard blockchain layer as its main component,which employs a sharding mechanism to conveniently TCM tracing.Empirical evaluations demonstrated that our architecture showed better performance in many aspects compared to traditional blockchain architectures,such as TCM transaction processing,TCM transaction querying,TCM uploading,etc.In our architecture,tracing TCM has become a very efficient operation,which ensures the quality of TCM and provides great convenience for subsequent TCM analysis and retrospective research.展开更多
Blockchain is a technology that uses community validation to synchronize the content of ledgers replicated by multiple users.Although Blockchain derives its origins from technologies introduced decades ago,recently it...Blockchain is a technology that uses community validation to synchronize the content of ledgers replicated by multiple users.Although Blockchain derives its origins from technologies introduced decades ago,recently it has received an astonishing amount of attention in both academic and industry due to its charac-teristics of decentralization,point-to-point transmission,transparency,traceability,non-tampering,and data security.Both researchers and practitioners have recognized that Blockchain can be used to solve complex technical or socio-economic problems.展开更多
Recently,Internet of Things(IoT)have been applied widely and improved the quality of the daily life.However,the lightweight IoT devices can hardly implement complicated applications since they usually have limited com...Recently,Internet of Things(IoT)have been applied widely and improved the quality of the daily life.However,the lightweight IoT devices can hardly implement complicated applications since they usually have limited computing resource and just can execute some simple computation tasks.Moreover,data transmission and interaction in IoT is another crucial issue when the IoT devices are deployed at remote areas without manual operation.Mobile edge computing(MEC)and unmanned aerial vehicle(UAV)provide significant solutions to these problems.In addition,in order to ensure the security and privacy of data,blockchain has been attracted great attention from both academia and industry.Therefore,an UAV-assisted IoT system integrated with MEC and blockchain is pro-posed.The optimization problem in the proposed architecture is formulated to achieve the optimal trade-off between energy consumption and computation latency through jointly considering computa-tion offloading decision,spectrum resource allocation and computing resource allocation.Consider-ing this complicated optimization problem,the non-convex mixed integer problem can be transformed into a convex problem,and a distributed algorithm based on alternating direction multiplier method(ADMM)is proposed.Simulation results demonstrate the validity of this scheme.展开更多
As one of the most concerned digital technologies in recent years,blockchain and distributed ledger technology are an important driving force for a new round of technological development.It is currently in the process...As one of the most concerned digital technologies in recent years,blockchain and distributed ledger technology are an important driving force for a new round of technological development.It is currently in the process of accelerating its evolution and maturity,and has gradually integrated with other digital technologies.It has been applied in many industries,providing decentralized solutions for various industries,realizing innovative storage models,and building a new trust system.As blockchain technology is officially incorporated into China’s new information infrastructure category,the application fields of blockchain have expanded rapidly,gradually extending from the financial field and government affairs to other fields in the real economy.At the same time,with the continuous development of the globalized economy,blockchain technology will also have a profound impact on international technological and economic development.Therefore,for the healthy and orderly development and real implementation of the blockchain industry,standardize the application of blockchain,effectively break through the cognitive and technical barriers between different countries,industries and systems on a global scale,prevent application risks,the development of the global blockchain industry needs standardization basis,which is particularly important and urgent.A sound standard system is an important key to the successful development of technology,and formulating the right standard at the right time for technology development helps ensure the ease of use and interoperability of the technology.From the perspective of international standardization,this article first introduces the general situation of ISO,ITU-T,IEEE,W3C and other international standardization organizations,and sorts out the status quo of the blockchain standardization working groups of mainstream international standardization organizations.All blockchain-related standards under development have been analyzed for the characteristics of international blockchain technology standards and industry application standards.Through data analysis,the overlaps,differences and conflicts in the field of international blockchain standard formulation are sorted out,and suggestions for blockchain standardization work in the application and development of blockchain technology standardization by international organizations and industries are put forward.The plans and layouts of future international standards are summarized to help the development of the international standardization of blockchain.展开更多
Nowadays,as lightweight mobile clients become more powerful and widely used,more and more information is stored on lightweight mobile clients,user sensitive data privacy protection has become an urgent concern and pro...Nowadays,as lightweight mobile clients become more powerful and widely used,more and more information is stored on lightweight mobile clients,user sensitive data privacy protection has become an urgent concern and problem to be solved.There has been a corresponding rise of security solutions proposed by researchers,however,the current security mechanisms on lightweight mobile clients are proven to be fragile.Due to the fact that this research field is immature and still unexplored in-depth,with this paper,we aim to provide a structured and comprehensive study on privacy protection using trusted execution environment(TEE)for lightweight mobile clients.This paper presents a highly effective and secure lightweight mobile client privacy protection system that utilizes TEE to provide a new method for privacy protection.In particular,the prototype of Lightweight Mobile Clients Privacy Protection Using Trusted Execution Environments(LMCPTEE)is built using Intel software guard extensions(SGX)because SGX can guarantee the integrity,confidentiality,and authenticity of private data.By putting lightweight mobile client critical data on SGX,the security and privacy of client data can be greatly improved.We design the authentication mechanism and privacy protection strategy based on SGX to achieve hardware-enhanced data protection and make a trusted connection with the lightweight mobile clients,thus build the distributed trusted system architecture.The experiment demonstrates that without relying on the performance of the blockchain,the LMCPTEE is practical,feasible,low-performance overhead.It can guarantee the privacy and security of lightweight mobile client private data.展开更多
A Large-Scale Heterogeneous Network(LS-HetNet)integrates different networks into one uniform network system to provide seamless one-world network coverage.In LS-HetNet,various devices use different technologies to acc...A Large-Scale Heterogeneous Network(LS-HetNet)integrates different networks into one uniform network system to provide seamless one-world network coverage.In LS-HetNet,various devices use different technologies to access heterogeneous networks and generate a large amount of data.For dealing with a large number of access requirements,these data are usually stored in the HetNet Domain Management Server(HDMS)of the current domain,and HDMS uses a centralized Authentication/Authorization/Auditing(AAA)scheme to protect the data.However,this centralized method easily causes the data to be modified or disclosed.To address this issue,we propose a blockchain-empowered AAA scheme for accessing data of LS-HetNet.Firstly,the account address of the blockchain is used as the identity authentication,and the access control permission of data is redesigned and stored on the blockchain,then processes of AAA are redefined.Finally,the experimental model on Ethereum private chain is built,and the results show that the scheme is not only secure but also decentral,without tampering and trustworthiness.展开更多
With the rising adoption of blockchain technology due to its decentralized,secure,and transparent features,ensuring its resilience against network threats,especially Distributed Denial of Service(DDoS)attacks,is cruci...With the rising adoption of blockchain technology due to its decentralized,secure,and transparent features,ensuring its resilience against network threats,especially Distributed Denial of Service(DDoS)attacks,is crucial.This research addresses the vulnerability of blockchain systems to DDoS assaults,which undermine their core decentralized characteristics,posing threats to their security and reliability.We have devised a novel adaptive integration technique for the detection and identification of varied DDoS attacks.To ensure the robustness and validity of our approach,a dataset amalgamating multiple DDoS attacks was derived from the CIC-DDoS2019 dataset.Using this,our methodology was applied to detect DDoS threats and further classify them into seven unique attack subcategories.To cope with the broad spectrum of DDoS attack variations,a holistic framework has been pro-posed that seamlessly integrates five machine learning models:Gate Recurrent Unit(GRU),Convolutional Neural Networks(CNN),Long-Short Term Memory(LSTM),Deep Neural Networks(DNN),and Support Vector Machine(SVM).The innovative aspect of our framework is the introduction of a dynamic weight adjustment mechanism,enhancing the system’s adaptability.Experimental results substantiate the superiority of our ensemble method in comparison to singular models across various evaluation metrics.The framework displayed remarkable accuracy,with rates reaching 99.71%for detection and 87.62%for classification tasks.By developing a comprehensive and adaptive methodology,this study paves the way for strengthening the defense mechanisms of blockchain systems against DDoS attacks.The ensemble approach,combined with the dynamic weight adjustment,offers promise in ensuring blockchain’s enduring security and trustworthiness.展开更多
As a distributed database,the system security of the blockchain is of great significance to prevent tampering,protect privacy,prevent double spending,and improve credibility.Due to the decentralized and trustless natu...As a distributed database,the system security of the blockchain is of great significance to prevent tampering,protect privacy,prevent double spending,and improve credibility.Due to the decentralized and trustless nature of blockchain,the security defense of the blockchain system has become one of the most important measures.This paper comprehensively reviews the research progress of blockchain security threats and collaborative defense,and we first introduce the overview,classification,and threat assessment process of blockchain security threats.Then,we investigate the research status of single-node defense technology and multi-node collaborative defense technology and summarize the blockchain security evaluation indicators and evaluation methods.Finally,we discuss the challenges of blockchain security and future research directions,such as parallel detection and federated learning.This paper aims to stimulate further research and discussion on blockchain security,providing more reliable security guarantees for the use and development of blockchain technology to face changing threats and challenges through continuous updating and improvement of defense technologies.展开更多
Distributed Denial of Service(DDoS)attacks is always one of the major problems for service providers.Using blockchain to detect DDoS attacks is one of the current popular methods.However,the problems of high time over...Distributed Denial of Service(DDoS)attacks is always one of the major problems for service providers.Using blockchain to detect DDoS attacks is one of the current popular methods.However,the problems of high time overhead and cost exist in the most of the blockchain methods for detecting DDoS attacks.This paper proposes a blockchain-based collaborative detection method for DDoS attacks.First,the trained DDoS attack detection model is encrypted by the Intel Software Guard Extensions(SGX),which provides high security for uploading the DDoS attack detection model to the blockchain.Secondly,the service provider uploads the encrypted model to Inter Planetary File System(IPFS)and then a corresponding Content-ID(CID)is generated by IPFS which greatly saves the cost of uploading encrypted models to the blockchain.In addition,due to the small amount of model data,the time cost of uploading the DDoS attack detection model is greatly reduced.Finally,through the blockchain and smart contracts,the CID is distributed to other service providers,who can use the CID to download the corresponding DDoS attack detection model from IPFS.Blockchain provides a decentralized,trusted and tamper-proof environment for service providers.Besides,smart contracts and IPFS greatly improve the distribution efficiency of the model,while the distribution of CID greatly improves the efficiency of the transmission on the blockchain.In this way,the purpose of collaborative detection can be achieved,and the time cost of transmission on blockchain and IPFS can be considerably saved.We designed a blockchain-based DDoS attack collaborative detection framework to improve the data transmission efficiency on the blockchain,and use IPFS to greatly reduce the cost of the distribution model.In the experiment,compared with most blockchain-based method for DDoS attack detection,the proposed model using blockchain distribution shows the advantages of low cost and latency.The remote authentication mechanism of Intel SGX provides high security and integrity,and ensures the availability of distributed models.展开更多
With the rapid development of blockchain technology,the number of distributed applications continues to increase,so ensuring the security of the network has become particularly important.However,due to its decentraliz...With the rapid development of blockchain technology,the number of distributed applications continues to increase,so ensuring the security of the network has become particularly important.However,due to its decentralized,decentralized nature,blockchain networks are vulnerable to distributed denial-of-service(DDoS)attacks,which can lead to service stops,causing serious economic losses and social impacts.The research questions in this paper mainly include two aspects:first,the classification of DDoS,which refers to detecting whether blockchain nodes are suffering DDoS attacks,that is,detecting the data of nodes in parallel;The second is the problem of DDoS segmentation,that is,multiple pieces of data that appear at the same time are determined which type of DDoS attack they belong to.In order to solve these problems,this paper proposes a modified PointNet(MPointNet)for the classification and type segmentation of DDoS attacks.A dataset containing multiple DDoS attack types was constructed using the CIC-DDoS2019 dataset,and trained,validated,and tested accordingly.The results show that the proposed DDoS attack classification method has high performance and can be used for the actual blockchain security maintenance process.The accuracy rate of classification tasks reached 99.65%,and the accuracy of type segmentation tasks reached 85.47%.Therefore,the method proposed in this paper has high application value in detecting the classification and segmentation of DDoS attacks.展开更多
Peer-to-peer(P2P)spectrum sharing and energy trading are promising solutions to locally satisfy spectrum and energy demands in power Internet of Things(IoT).However,implementation of largescale P2P spectrum sharing an...Peer-to-peer(P2P)spectrum sharing and energy trading are promising solutions to locally satisfy spectrum and energy demands in power Internet of Things(IoT).However,implementation of largescale P2P spectrum sharing and energy trading confronts security and privacy challenges.In this paper,we exploit consortium blockchain and Directed Acyclic Graph(DAG)to propose a new secure and distributed spectrum sharing and energy trading framework in power IoT,named spectrum-energy chain,where a set of local aggregators(LAGs)cooperatively confirm the identity of the power devices by utilizing consortium blockchain,so as to form a main chain.Then,the local power devices verify spectrum and energy micro-transactions simultaneously but asynchronously to form local spectrum tangle and local energy tangle,respectively.Moreover,an iterative double auction based micro transactions scheme is designed to solve the spectrum and energy pricing and the amount of shared spectrum and energy among power devices.Security analysis and numerical results illustrate that the developed spectrum-energy chain and the designed iterative double auction based microtransactions scheme are secure and efficient for spectrum sharing and energy trading in power IoT.展开更多
The data in Mobile Edge Computing(MEC)contains tremendousmarket value,and data sharing canmaximize the usefulness of the data.However,certain data is quite sensitive,and sharing it directly may violate privacy.Vertica...The data in Mobile Edge Computing(MEC)contains tremendousmarket value,and data sharing canmaximize the usefulness of the data.However,certain data is quite sensitive,and sharing it directly may violate privacy.Vertical Federated Learning(VFL)is a secure distributed machine learning framework that completes joint model training by passing encryptedmodel parameters rather than raw data,so there is no data privacy leakage during the training process.Therefore,the VFL can build a bridge between data demander and owner to realize data sharing while protecting data privacy.Typically,the VFL requires a third party for key distribution and decryption of training results.In this article,we employ the consortium blockchain instead of the traditional third party and design a VFL architecture based on the consortium blockchain for data sharing in MEC.More specifically,we propose a V-Raft consensus algorithm based on Verifiable Random Functions(VRFs),which is a variant of the Raft.The VRaft is able to elect leader quickly and stably to assist data demander and owner to complete data sharing by VFL.Moreover,we apply secret sharing todistribute the private key to avoid the situationwhere the training result cannot be decrypted if the leader crashes.Finally,we analyzed the performance of the V-Raft and carried out simulation experiments,and the results show that compared with Raft,the V-Raft has higher efficiency and better scalability.展开更多
基金supported by the National Key Research and Development Program of China (2022YFC3302300)National Natural Science Foundation of China under Grant (No.61873309,No.92046024,No.92146002)Shanghai Science and Technology Project under Grant (No.22510761000)。
文摘Blockchain technologies have been used to facilitate Web 3.0 and FinTech applications.However,conventional blockchain technologies suffer from long transaction delays and low transaction success rates in some Web 3.0 and FinTech applications such as Supply Chain Finance(SCF).Blockchain sharding has been proposed to improve blockchain performance.However,the existing sharding methods either use a static sharding strategy,which lacks the adaptability for the dynamic SCF environment,or are designed for public chains,which are not applicable to consortium blockchain-based SCF.To address these issues,we propose an adaptive consortium blockchain sharding framework named ACSarF,which is based on the deep reinforcement learning algorithm.The proposed framework can improve consortium blockchain sharding to effectively reduce transaction delay and adaptively adjust the sharding and blockout strategies to increase the transaction success rate in a dynamic SCF environment.Furthermore,we propose to use a consistent hash algorithm in the ACSarF framework to ensure transaction load balancing in the adaptive sharding system to further improve the performance of blockchain sharding in dynamic SCF scenarios.To evaluate the proposed framework,we conducted extensive experiments in a typical SCF scenario.The obtained experimental results show that the ACSarF framework achieves a more than 60%improvement in user experience compared to other state-of-the-art blockchain systems.
基金supported in part by the International Science and Technology Cooperation Program of Liaoning Province(Grant No.2022JH2/10700012)the Applied Basic Research Program of Liaoning Province(Grant No.2023JH2/101300188,2022JH2/101300269)+2 种基金the Foundation of Yunnan Key Laboratory of Service Computing(Grant No.YNSC23118)the Basic Research Project of Liaoning Educational Department(Grant No.JYTMS20230011)supported by the Fundamental Research Funds for the Provincial Universities of Liaoning(No.LJ212410150030).
文摘To facilitate cross-domain data interaction in the Industrial Internet of Things(IIoT),establishing trust between multiple administrative domains is essential.Although blockchain technology has been proposed as a solution,current techniques still suffer from issues related to efficiency,security,and privacy.Our research aims to address these challenges by proposing a lightweight,trusted data interaction scheme based on blockchain,which reduces redundant interactions among entities.We enhance the traditional Practical Byzantine Fault Tolerance(PBFT)algorithm to support lightweight distributed consensus in large-scale IIoT scenarios.Introducing a composite digital signature algorithm and incorporating veto power minimizes resource consumption and eliminates ineffective consensus operations.The experimental results show that,compared with PBFT,our scheme reduces latency by 27.2%,thereby improving communication efficiency and resource utilization.Furthermore,we develop a lightweight authentication technique specifically for cross-domain IIoT,leveraging blockchain technology to achieve distributed collaborative authentication.The performance comparisons indicate that our method significantly outperforms traditional schemes,with an average authentication latency of approximately 151 milliseconds.Additionally,we introduce a trusted federated learning(FL)algorithm that ensures comprehensive trust assessments for devices across different domains while protecting data privacy.Extensive simulations and experiments validate the reliability of our approach.
基金supported in part by the National Key R&D Program of China under project 2022YFB2702901the Guangxi Natural Science Foundation under grants 2024GXNSFDA010064 and 2024GXNSFAA010453+5 种基金the National Natural Science Foundation of China under projects 62172119,62362013,U21A20467 and 72192801Zhejiang Provincial Natural Science Foundation of China under grant LZ23F020012Innovation Project of GUET Graduate Education under grants 2023YCXS070the Guangxi Young Teachers'Basic Ability Improvement Program under grant 2024KY0224Lion Rock Labs of Cyberspace Security under grant LRL24-1-C003one of the research outcomes of the Xiong'an Autonomous and Controllable Blockchain Underlying Technology Platform Project(2020).
文摘The immutability is a crucial property for blockchain applications,however,it also leads to problems such as the inability to revise illegal data on the blockchain and delete private data.Although redactable blockchains enable on-chain modification,they suffer from inefficiency and excessive centralization,the majority of redactable blockchain schemes ignore the difficult problems of traceability and consistency check.In this paper,we present a Dynamically Redactable Blockchain based on decentralized Chameleon hash(DRBC).Specifically,we propose an Identity-Based Decentralized Chameleon Hash(IDCH)and a Version-Based Transaction structure(VT)to realize the traceability of transaction modifications in a decentralized environment.Then,we propose an efficient block consistency check protocol based on the Bloom filter tree,which can realize the consistency check of transactions with extremely low time and space cost.Security analysis and experiment results demonstrate the reliability of DRBC and its significant advantages in a decentralized environment.
基金funded by the Yunnan Key Laboratory of Blockchain Application Technology(202105AG070005,202305AG340008)&YNB202301,NSFC(Grant Nos.72293583,72293580,62476007,62176273,62271234)the Open Foundation of State Key Laboratory of Networking and Switching Technology(Beijing University of Posts and Telecommunications)(SKLNST-2024-1-06)+2 种基金the Project of Science and Technology Major Project of Yunnan Province(202302AF080006)Open Foundation of State Key Laboratory of Public Big Data(Guizhou University)under Grant No.PBD2022-16Double First-Class Project for Collaborative Innovation Achievements inDisciplines Construction in Heilongjiang Province under Grant No.GXCG2022-054.
文摘Blockchain-enabled Internet of Medical Things (BIoMT) has attracted significant attention from academia and healthcare organizations. However, the large amount of medical data involved in BIoMT has also raised concerns about data security and personal privacy protection. To alleviate these concerns, blind signature technology has emerged as an effective method to solve blindness and unforgeability. Unfortunately, most existing blind signature schemes suffer from the security risk of key leakage. In addition, traditional blind signature schemes are also vulnerable to quantum computing attacks. Therefore, it remains a crucial and ongoing challenge to explore the construction of key-secure, quantum-resistant blind signatures. In this paper, we introduce lattice-based forward-secure blind signature (LFSBS), a lattice-based forward-secure blind signature scheme for medical privacy preservation in BIoMT. LFSBS achieves forward security by constructing a key evolution mechanism using a binary tree structure. This mechanism ensures that even if future encryption keys are leaked, past data can still remain secure. Meanwhile, LFSBS realizes post-quantum security based on the hardness assumption of small integer solution (SIS), making it resistant to potential quantum computing attacks. In addition, we formally define and prove the security of LFSBS in a random oracle model, including blindness and forward-secure unforgeability. Comprehensive performance evaluation shows that LFSBS performs well in terms of computational overhead, with a reduction of 22%–73% compared to previous schemes.
基金supported in part by the National Natural Science Foundation of China under Grant 62072351in part by the Academy of Finland under Grant 308087,Grant 335262,Grant 345072,and Grant 350464+1 种基金in part by the Open Project of Zhejiang Lab under Grant 2021PD0AB01in part by the 111 Project under Grant B16037.
文摘Digital Twin(DT)supports real time analysis and provides a reliable simulation platform in the Internet of Things(IoT).The creation and application of DT hinges on amounts of data,which poses pressure on the application of Artificial Intelligence(AI)for DT descriptions and intelligent decision-making.Federated Learning(FL)is a cutting-edge technology that enables geographically dispersed devices to collaboratively train a shared global model locally rather than relying on a data center to perform model training.Therefore,DT can benefit by combining with FL,successfully solving the"data island"problem in traditional AI.However,FL still faces serious challenges,such as enduring single-point failures,suffering from poison attacks,lacking effective incentive mechanisms.Before the successful deployment of DT,we should tackle the issues caused by FL.Researchers from industry and academia have recognized the potential of introducing Blockchain Technology(BT)into FL to overcome the challenges faced by FL,where BT acting as a distributed and immutable ledger,can store data in a secure,traceable,and trusted manner.However,to the best of our knowledge,a comprehensive literature review on this topic is still missing.In this paper,we review existing works about blockchain-enabled FL and visualize their prospects with DT.To this end,we first propose evaluation requirements with respect to security,faulttolerance,fairness,efficiency,cost-saving,profitability,and support for heterogeneity.Then,we classify existing literature according to the functionalities of BT in FL and analyze their advantages and disadvantages based on the proposed evaluation requirements.Finally,we discuss open problems in the existing literature and the future of DT supported by blockchain-enabled FL,based on which we further propose some directions for future research.
基金supported by the National Natural Science Foundation of China(62362013)the Guangxi Natural Science Foundation(2023GXNSFAA026294).
文摘The Internet of Vehicles(IoV)is extensively deployed in outdoor and open environments to effectively address traffic efficiency and safety issues by connecting vehicles to the network.However,due to the open and variable nature of its network topology,vehicles frequently engage in cross-domain interactions.During such processes,directly uploading sensitive information to roadside units for interaction may expose it to malicious tampering or interception by attackers,thus compromising the security of the cross-domain authentication process.Additionally,IoV imposes high real-time requirements,and existing cross-domain authentication schemes for IoV often encounter efficiency issues.To mitigate these challenges,we propose CAIoV,a blockchain-based efficient cross-domain authentication scheme for IoV.This scheme comprehensively integrates technologies such as zero-knowledge proofs,smart contracts,and Merkle hash tree structures.It divides the cross-domain process into anonymous cross-domain authentication and safe cross-domain authentication phases to ensure efficiency while maintaining a balance between efficiency and security.Finally,we evaluate the performance of CAIoV.Experimental results demonstrate that our proposed scheme reduces computational overhead by approximately 20%,communication overhead by around 10%,and storage overhead by nearly 30%.
基金This study is supported by Foundation of National Natural Science Foundation of China(Grant Number:62072273,72111530206,61962009,61873117,61832012,61771231,61771289)Natural Science Foundation of Shandong Province(ZR2019MF062)+3 种基金Shandong University Science and Technology Program Project(J18A326)Guangxi Key Laboratory of Cryptography and Information Security(No:GCIS202112)The Major Basic Research Project of Natural Science Foundation of Shandong Province of China(ZR2018ZC0438)Major Scientific and Technological Special Project of Guizhou Province(20183001),Foundation of Guizhou Provincial Key Laboratory of Public Big Data(No.2019BDKFJJ009),Talent project of Guizhou Big Data Academy.Guizhou Provincial Key Laboratory of Public Big Data.([2018]01).
文摘The blockchain provides a reliable and scalable method for enabling source-tracing functionality in large-scale Internet of Things(IoT)systems.Traditional blockchain-based source tracing applications are generally based on the hypothesis that the raw data collected by each IoT node are credible and consistent,which however may not always be the truth.As no mechanism ensures the reliability of the original data collected from the IoT devices,these data may be accidently screwed up or maliciously tampered with before they are uploaded on-chain.To address this issue,we propose the Multi-dimensional Certificates of Origin(MCO)method to filter out the potentially incredible data-till all the data uploaded to the chain are credible.To achieve this,we devise the Multidimensional Information Cross-Verification(MICV)and Multi-source Data Matching Calculation(MDMC)methods.MICV verifies whether a to-be-uploaded datum is consistent or credible,and MDMC determines which data should be discarded and which data should be kept to retain the most likely credible/untampered ones in the circumstance when data inconsistency appears.Large-scale experiments show that our scheme ensures on the credibility of data and off the chain with an affordable overhead.
基金This work was supported by National Natural Science Foundation of China(Grant No.62162022 and 62162024)Key Projects in Hainan Province(Grant ZDYF2021GXJS003 and Grant ZDYF2020040)the Major science and technology project of Hainan Province(Grant No.ZDKJ2020012).
文摘The research on the governing blockchain by blockchain supervision system is an important development trend of blockchain technology.In this system there is a supervisory blockchain managing and governing the supervised blockchain based on blockchain technology,results in a uniquely cross-blockchain demand to consensus mechanism for solving the trust problem between supervisory blockchain and supervised blockchain.To solve this problem,this paper proposes a cross-blockchain consensus mechanism based on smart contract and a set of smart contracts endorse the crossblockchain consensus.New consensus mechanism called Proof-of-EndorseContracts(PoEC)consensus,which firstly transfers the consensus reached in supervisory blockchain to supervised blockchain by supervisory nodes,then packages the supervisory block in supervisory blockchain and transmits it to the smart contract deployed in the supervised blockchain,finally miners in supervised blockchain will execute and package the new block according to the status of the smart contract.The core part of the consensus mechanism is Endorse Contracts which designed and implemented by us and verified the effectiveness through experiments.PoEC consensus mechanism and Endorse Contracts support the supervised blockchain to join the governing blockchain by blockchain system without changing the original consensus mechanism,which has the advantages of low cost,high scalability and being able to crossblockchain.This paper proves that our method can provide a feasible crossblockchain governance scheme for the field of blockchain governance.
基金supported by the research and innovation program for graduate students of the Guangzhou University of Traditional Chinese MedicineThis work is also partially supported by the National Key Research and Development Program of China(2019YFC1710402)the research on tracing TCM Electronic Medical Records Based on the Lightweight Blockchain of Guangdong Provincial Bureau of Traditional Chinese Medicine(20222045).
文摘Traditional Chinese Medicine(TCM)is one of the most promising programs for disease prevention and treatment.Meanwhile,the quality of TCM has garnered much attention.To ensure the quality of TCM,many works are based on the blockchain scheme to design the traceability scheme of TCM to trace its origin.Although these schemes can ensure the integrity,sharability,credibility,and immutability of TCM more effectively,many problems are exposed with the rapid growth of TCM data in blockchains,such as expensive overhead,performance bottlenecks,and the traditional blockchain architecture is unsuitable for TCM data with dynamic growth.Motivated by the aforementioned problems,we propose a novel and lightweight TCM traceability architecture based on the blockchain using sharding(LBS-TCM).Compared to the existing blockchain-based TCM traceability system,our architecture utilizes sharding to develop a novel traceability mechanism that supports more convenient traceability operations for TCM requirements such as uploading,querying,and downloading.Specifically,our architecture consists of a leader shard blockchain layer as its main component,which employs a sharding mechanism to conveniently TCM tracing.Empirical evaluations demonstrated that our architecture showed better performance in many aspects compared to traditional blockchain architectures,such as TCM transaction processing,TCM transaction querying,TCM uploading,etc.In our architecture,tracing TCM has become a very efficient operation,which ensures the quality of TCM and provides great convenience for subsequent TCM analysis and retrospective research.
文摘Blockchain is a technology that uses community validation to synchronize the content of ledgers replicated by multiple users.Although Blockchain derives its origins from technologies introduced decades ago,recently it has received an astonishing amount of attention in both academic and industry due to its charac-teristics of decentralization,point-to-point transmission,transparency,traceability,non-tampering,and data security.Both researchers and practitioners have recognized that Blockchain can be used to solve complex technical or socio-economic problems.
基金Supported by the National Natural Science Foundation of China(No.61901011,61901067)the Foundation of Beijing Municipal Commission of Education(No.KM202110005021,KM202010005017)the Beijing Natural Science Foundation(No.L211002).
文摘Recently,Internet of Things(IoT)have been applied widely and improved the quality of the daily life.However,the lightweight IoT devices can hardly implement complicated applications since they usually have limited computing resource and just can execute some simple computation tasks.Moreover,data transmission and interaction in IoT is another crucial issue when the IoT devices are deployed at remote areas without manual operation.Mobile edge computing(MEC)and unmanned aerial vehicle(UAV)provide significant solutions to these problems.In addition,in order to ensure the security and privacy of data,blockchain has been attracted great attention from both academia and industry.Therefore,an UAV-assisted IoT system integrated with MEC and blockchain is pro-posed.The optimization problem in the proposed architecture is formulated to achieve the optimal trade-off between energy consumption and computation latency through jointly considering computa-tion offloading decision,spectrum resource allocation and computing resource allocation.Consider-ing this complicated optimization problem,the non-convex mixed integer problem can be transformed into a convex problem,and a distributed algorithm based on alternating direction multiplier method(ADMM)is proposed.Simulation results demonstrate the validity of this scheme.
基金supported by the Key R&D Program of Zhejiang Province(2021C01105)the Key R&D Program of Guangdong Province(2020B0101090003)+1 种基金the National Key R&D Program of China(2021YFB2701100)These supports are gratefully acknowledged.
文摘As one of the most concerned digital technologies in recent years,blockchain and distributed ledger technology are an important driving force for a new round of technological development.It is currently in the process of accelerating its evolution and maturity,and has gradually integrated with other digital technologies.It has been applied in many industries,providing decentralized solutions for various industries,realizing innovative storage models,and building a new trust system.As blockchain technology is officially incorporated into China’s new information infrastructure category,the application fields of blockchain have expanded rapidly,gradually extending from the financial field and government affairs to other fields in the real economy.At the same time,with the continuous development of the globalized economy,blockchain technology will also have a profound impact on international technological and economic development.Therefore,for the healthy and orderly development and real implementation of the blockchain industry,standardize the application of blockchain,effectively break through the cognitive and technical barriers between different countries,industries and systems on a global scale,prevent application risks,the development of the global blockchain industry needs standardization basis,which is particularly important and urgent.A sound standard system is an important key to the successful development of technology,and formulating the right standard at the right time for technology development helps ensure the ease of use and interoperability of the technology.From the perspective of international standardization,this article first introduces the general situation of ISO,ITU-T,IEEE,W3C and other international standardization organizations,and sorts out the status quo of the blockchain standardization working groups of mainstream international standardization organizations.All blockchain-related standards under development have been analyzed for the characteristics of international blockchain technology standards and industry application standards.Through data analysis,the overlaps,differences and conflicts in the field of international blockchain standard formulation are sorted out,and suggestions for blockchain standardization work in the application and development of blockchain technology standardization by international organizations and industries are put forward.The plans and layouts of future international standards are summarized to help the development of the international standardization of blockchain.
基金supported by the National Natural Science Foundation of China(Grant No.61762033)Hainan Provincial Natural Science Foundation of China(Grant Nos.2019RC041 and 2019RC098)+2 种基金Opening Project of Shanghai Trusted Industrial Control Platform(Grant No.TICPSH202003005-ZC)Ministry of Education Humanities and Social Sciences Research Program Fund Project(Grant No.19YJA710010)Zhejiang Public Welfare Technology Research(Grant No.LGF18F020019).
文摘Nowadays,as lightweight mobile clients become more powerful and widely used,more and more information is stored on lightweight mobile clients,user sensitive data privacy protection has become an urgent concern and problem to be solved.There has been a corresponding rise of security solutions proposed by researchers,however,the current security mechanisms on lightweight mobile clients are proven to be fragile.Due to the fact that this research field is immature and still unexplored in-depth,with this paper,we aim to provide a structured and comprehensive study on privacy protection using trusted execution environment(TEE)for lightweight mobile clients.This paper presents a highly effective and secure lightweight mobile client privacy protection system that utilizes TEE to provide a new method for privacy protection.In particular,the prototype of Lightweight Mobile Clients Privacy Protection Using Trusted Execution Environments(LMCPTEE)is built using Intel software guard extensions(SGX)because SGX can guarantee the integrity,confidentiality,and authenticity of private data.By putting lightweight mobile client critical data on SGX,the security and privacy of client data can be greatly improved.We design the authentication mechanism and privacy protection strategy based on SGX to achieve hardware-enhanced data protection and make a trusted connection with the lightweight mobile clients,thus build the distributed trusted system architecture.The experiment demonstrates that without relying on the performance of the blockchain,the LMCPTEE is practical,feasible,low-performance overhead.It can guarantee the privacy and security of lightweight mobile client private data.
基金This work was supported by National Natural Science Foundation of China(China)under grants 61373162Sichuan Science and Technology Support Project(China)under grants 2019YFG0183+1 种基金Visual Computing and Virtual Reality Sichuan Provincial Key Laboratory Project(China)under grants KJ201402was supported in part by the Japan Society for the Promotion of Science(JSPS)Grants-in-Aid for Scientific Research(KAKENHI)(Japan)under Grant JP18K18044.
文摘A Large-Scale Heterogeneous Network(LS-HetNet)integrates different networks into one uniform network system to provide seamless one-world network coverage.In LS-HetNet,various devices use different technologies to access heterogeneous networks and generate a large amount of data.For dealing with a large number of access requirements,these data are usually stored in the HetNet Domain Management Server(HDMS)of the current domain,and HDMS uses a centralized Authentication/Authorization/Auditing(AAA)scheme to protect the data.However,this centralized method easily causes the data to be modified or disclosed.To address this issue,we propose a blockchain-empowered AAA scheme for accessing data of LS-HetNet.Firstly,the account address of the blockchain is used as the identity authentication,and the access control permission of data is redesigned and stored on the blockchain,then processes of AAA are redefined.Finally,the experimental model on Ethereum private chain is built,and the results show that the scheme is not only secure but also decentral,without tampering and trustworthiness.
基金supported by National Natural Science Foundation of China(Grant Nos.62162022,62162024)Hainan Provincial Natural Science Foundation of China(Grant Nos.723QN238,621RC612).
文摘With the rising adoption of blockchain technology due to its decentralized,secure,and transparent features,ensuring its resilience against network threats,especially Distributed Denial of Service(DDoS)attacks,is crucial.This research addresses the vulnerability of blockchain systems to DDoS assaults,which undermine their core decentralized characteristics,posing threats to their security and reliability.We have devised a novel adaptive integration technique for the detection and identification of varied DDoS attacks.To ensure the robustness and validity of our approach,a dataset amalgamating multiple DDoS attacks was derived from the CIC-DDoS2019 dataset.Using this,our methodology was applied to detect DDoS threats and further classify them into seven unique attack subcategories.To cope with the broad spectrum of DDoS attack variations,a holistic framework has been pro-posed that seamlessly integrates five machine learning models:Gate Recurrent Unit(GRU),Convolutional Neural Networks(CNN),Long-Short Term Memory(LSTM),Deep Neural Networks(DNN),and Support Vector Machine(SVM).The innovative aspect of our framework is the introduction of a dynamic weight adjustment mechanism,enhancing the system’s adaptability.Experimental results substantiate the superiority of our ensemble method in comparison to singular models across various evaluation metrics.The framework displayed remarkable accuracy,with rates reaching 99.71%for detection and 87.62%for classification tasks.By developing a comprehensive and adaptive methodology,this study paves the way for strengthening the defense mechanisms of blockchain systems against DDoS attacks.The ensemble approach,combined with the dynamic weight adjustment,offers promise in ensuring blockchain’s enduring security and trustworthiness.
基金supported by National Natural Science Foundation of China(Grant Nos.62162022 and 62162024)Young Talents’Science and Technology Innovation Project of Hainan Association for Science and Technology(Grant No.QCXM202007)Hainan Provincial Natural Science Foundation of China(Grant Nos.2019RC098 and 621RC612).
文摘As a distributed database,the system security of the blockchain is of great significance to prevent tampering,protect privacy,prevent double spending,and improve credibility.Due to the decentralized and trustless nature of blockchain,the security defense of the blockchain system has become one of the most important measures.This paper comprehensively reviews the research progress of blockchain security threats and collaborative defense,and we first introduce the overview,classification,and threat assessment process of blockchain security threats.Then,we investigate the research status of single-node defense technology and multi-node collaborative defense technology and summarize the blockchain security evaluation indicators and evaluation methods.Finally,we discuss the challenges of blockchain security and future research directions,such as parallel detection and federated learning.This paper aims to stimulate further research and discussion on blockchain security,providing more reliable security guarantees for the use and development of blockchain technology to face changing threats and challenges through continuous updating and improvement of defense technologies.
基金supported by the Key Research and Development Program of Hainan Province(Grant No.ZDYF2020040,ZDYF2021GXJS003)Major science and technology project of Hainan Province(Grant No.ZDKJ2020012)+2 种基金National Natural Science Foundation of China(NSFC)(Grant No.62162022,62162024 and 61762033)Hainan Provincial Natural Science Foundation of China(Grant No.620MS021)Opening Project of Shanghai Trusted Industrial Control Platform(Grant No.TICPSH202003005-ZC).
文摘Distributed Denial of Service(DDoS)attacks is always one of the major problems for service providers.Using blockchain to detect DDoS attacks is one of the current popular methods.However,the problems of high time overhead and cost exist in the most of the blockchain methods for detecting DDoS attacks.This paper proposes a blockchain-based collaborative detection method for DDoS attacks.First,the trained DDoS attack detection model is encrypted by the Intel Software Guard Extensions(SGX),which provides high security for uploading the DDoS attack detection model to the blockchain.Secondly,the service provider uploads the encrypted model to Inter Planetary File System(IPFS)and then a corresponding Content-ID(CID)is generated by IPFS which greatly saves the cost of uploading encrypted models to the blockchain.In addition,due to the small amount of model data,the time cost of uploading the DDoS attack detection model is greatly reduced.Finally,through the blockchain and smart contracts,the CID is distributed to other service providers,who can use the CID to download the corresponding DDoS attack detection model from IPFS.Blockchain provides a decentralized,trusted and tamper-proof environment for service providers.Besides,smart contracts and IPFS greatly improve the distribution efficiency of the model,while the distribution of CID greatly improves the efficiency of the transmission on the blockchain.In this way,the purpose of collaborative detection can be achieved,and the time cost of transmission on blockchain and IPFS can be considerably saved.We designed a blockchain-based DDoS attack collaborative detection framework to improve the data transmission efficiency on the blockchain,and use IPFS to greatly reduce the cost of the distribution model.In the experiment,compared with most blockchain-based method for DDoS attack detection,the proposed model using blockchain distribution shows the advantages of low cost and latency.The remote authentication mechanism of Intel SGX provides high security and integrity,and ensures the availability of distributed models.
基金This work was supported by Hainan Provincial Natural Science Foundation of China(Grant No.2019RC098,Grant No.723QN238 and Grant No.621RC612)National Natural Science Foundation of China(Grant No.62162022 and 62162024)+1 种基金Key Projects in Hainan Province(GrantZDYF2020040 andGrantZDYF2020033)Young Talents’Science and Technology Innovation Project of Hainan Association for Science and Technology(Grant No.QCXM202007).
文摘With the rapid development of blockchain technology,the number of distributed applications continues to increase,so ensuring the security of the network has become particularly important.However,due to its decentralized,decentralized nature,blockchain networks are vulnerable to distributed denial-of-service(DDoS)attacks,which can lead to service stops,causing serious economic losses and social impacts.The research questions in this paper mainly include two aspects:first,the classification of DDoS,which refers to detecting whether blockchain nodes are suffering DDoS attacks,that is,detecting the data of nodes in parallel;The second is the problem of DDoS segmentation,that is,multiple pieces of data that appear at the same time are determined which type of DDoS attack they belong to.In order to solve these problems,this paper proposes a modified PointNet(MPointNet)for the classification and type segmentation of DDoS attacks.A dataset containing multiple DDoS attack types was constructed using the CIC-DDoS2019 dataset,and trained,validated,and tested accordingly.The results show that the proposed DDoS attack classification method has high performance and can be used for the actual blockchain security maintenance process.The accuracy rate of classification tasks reached 99.65%,and the accuracy of type segmentation tasks reached 85.47%.Therefore,the method proposed in this paper has high application value in detecting the classification and segmentation of DDoS attacks.
基金supported by the National Key R&D Program of China(2020YFB1807801,2020YFB1807800)in part by Project Supported by Engineering Research Center of Mobile Communications,Ministry of Education(cqupt-mct-202003)+2 种基金in part by Key Lab of Information Network Security,Ministry of Public Security under Grant C19603in part by National Natural Science Foundation of China(Grant No.61901067 and 61901013)in part by Chongqing Municipal Natural Science Foundation(Grant No.cstc2020jcyj-msxmX0339).
文摘Peer-to-peer(P2P)spectrum sharing and energy trading are promising solutions to locally satisfy spectrum and energy demands in power Internet of Things(IoT).However,implementation of largescale P2P spectrum sharing and energy trading confronts security and privacy challenges.In this paper,we exploit consortium blockchain and Directed Acyclic Graph(DAG)to propose a new secure and distributed spectrum sharing and energy trading framework in power IoT,named spectrum-energy chain,where a set of local aggregators(LAGs)cooperatively confirm the identity of the power devices by utilizing consortium blockchain,so as to form a main chain.Then,the local power devices verify spectrum and energy micro-transactions simultaneously but asynchronously to form local spectrum tangle and local energy tangle,respectively.Moreover,an iterative double auction based micro transactions scheme is designed to solve the spectrum and energy pricing and the amount of shared spectrum and energy among power devices.Security analysis and numerical results illustrate that the developed spectrum-energy chain and the designed iterative double auction based microtransactions scheme are secure and efficient for spectrum sharing and energy trading in power IoT.
基金funded by the National Natural Science Foundation(61962009)the National Natural Science Foundation(62202118)+1 种基金Top Technology Talent Project from Guizhou Education Department(Qianjiao ji[2022]073)Foundation of Guangxi Key Laboratory of Cryptography and Information Security(GCIS202118).
文摘The data in Mobile Edge Computing(MEC)contains tremendousmarket value,and data sharing canmaximize the usefulness of the data.However,certain data is quite sensitive,and sharing it directly may violate privacy.Vertical Federated Learning(VFL)is a secure distributed machine learning framework that completes joint model training by passing encryptedmodel parameters rather than raw data,so there is no data privacy leakage during the training process.Therefore,the VFL can build a bridge between data demander and owner to realize data sharing while protecting data privacy.Typically,the VFL requires a third party for key distribution and decryption of training results.In this article,we employ the consortium blockchain instead of the traditional third party and design a VFL architecture based on the consortium blockchain for data sharing in MEC.More specifically,we propose a V-Raft consensus algorithm based on Verifiable Random Functions(VRFs),which is a variant of the Raft.The VRaft is able to elect leader quickly and stably to assist data demander and owner to complete data sharing by VFL.Moreover,we apply secret sharing todistribute the private key to avoid the situationwhere the training result cannot be decrypted if the leader crashes.Finally,we analyzed the performance of the V-Raft and carried out simulation experiments,and the results show that compared with Raft,the V-Raft has higher efficiency and better scalability.