Al-Halabi is an intriguing ophthalmologist who invented numerous surgicalinstruments for treating various eye diseases. The illustrations of such instrumentsin his invaluable book “Kitab Al-Kafi fi Al-Kuhl” reflect ...Al-Halabi is an intriguing ophthalmologist who invented numerous surgicalinstruments for treating various eye diseases. The illustrations of such instrumentsin his invaluable book “Kitab Al-Kafi fi Al-Kuhl” reflect his willingness toteach. Moreover, he included in his book a magnificent illustration of theanatomical structure of the eye. The book reflects Al-Halabi’s medical practice andteaching and shows several advanced medical techniques and tools. Hisinvaluable comments reflect his deep experimental observations in the field ofophthalmology. The current article provides proof that Al-Halabi is one of ourearly biomedical engineers from more than 800 years ago. Al-Halabi represents aring in the chain of biomedical engineering history. His surgical instrumentsrepresent the biomechanics field. Al-Halabi should be acknowledged among thebiomedical engineering students for his various contributions in the field ofsurgical instruments.展开更多
Accurate brain tumour segmentation is critical for diagnosis and treatment planning, yet challenging due to tumour complexity. Manual segmentation is time-consuming and variable, necessitating automated methods. Deep ...Accurate brain tumour segmentation is critical for diagnosis and treatment planning, yet challenging due to tumour complexity. Manual segmentation is time-consuming and variable, necessitating automated methods. Deep learning, particularly 3D U-Net architectures, has revolutionised medical image analysis by leveraging volumetric data to capture spatial context, enhancing segmentation accuracy. This paper reviews brain tumour segmentation methods, emphasising 3D U-Net advancements. We analyse contributions from the Brain Tumour Segmentation (BraTS) challenges (2014-2023), highlighting key improvements and persistent challenges, including tumour heterogeneity, limited annotated data, varied imaging protocols, computational constraints, and model generalisation. Unlike previous reviews, we synthesise these challenges, proposing targeted research directions: enhancing model robustness through domain adaptation and multi-institutional data sharing, developing lightweight architectures for clinical deployment, integrating multi-modal and clinical data, and incorporating explainability techniques to build clinician trust. By addressing these challenges, we aim to guide future research toward developing more robust, generalisable, and clinically applicable segmentation models, ultimately improving patient outcomes in neuro-oncology.展开更多
Objective:Acral melanoma(AM),a unique subtype prevalent in China,develops on the palms,soles,and nail beds.Despite its distinct clinical and pathological features compared to cutaneous melanoma(CM),the molecular basis...Objective:Acral melanoma(AM),a unique subtype prevalent in China,develops on the palms,soles,and nail beds.Despite its distinct clinical and pathological features compared to cutaneous melanoma(CM),the molecular basis underlying these differences remains poorly understood.This study aims to perform a comprehensive comparative transcriptomic analysis of AM and CM at the single-cell level to uncover key molecular distinctions.Methods:We analyzed single-cell RNA sequencing(scRNA-seq)data from 39 AM patients and 18 CM cases.Single-cell transcriptomic profiling was used to compare tumor cell subpopulations and microenvironmental differences.Bioinformatics tools were employed for cell clustering,differential gene expression analysis,cell-cell communication network inferences,and survival analysis.Results:AM exhibited a significantly higher proportion of MPZ^(+)melanoma cells,a subpopulation with Schwann cell-like properties associated with poor prognosis.These MPZ^(+)melanoma cells established extensive communication networks with AM-specific immune and stromal components,prompting an immunosuppressive microenvironment and enhancing angiogenic potential.Survival analysis further indicated that the presence of MPZ^(+)melanoma cells is closely linked to worse clinical outcomes in AM patients.Conclusions:This study provides novel insights into the molecular distinctions between AM and CM,highlighting the critical role of MPZ^(+)melanoma cells in AM progression.These findings enhance our understanding of AM pathophysiology and may contribute to the development of more targeted therapeutic strategies.展开更多
Hemoglobin is a vital protein in red blood cells responsible for transporting oxygen throughout the body.Its accurate measurement is crucial for diagnosing and managing conditions such as anemia and diabetes,where abn...Hemoglobin is a vital protein in red blood cells responsible for transporting oxygen throughout the body.Its accurate measurement is crucial for diagnosing and managing conditions such as anemia and diabetes,where abnormal hemoglobin levels can indicate significant health issues.Traditional methods for hemoglobin measurement are invasive,causing pain,risk of infection,and are less convenient for frequent monitoring.PPG is a transformative technology in wearable healthcare for noninvasive monitoring and widely explored for blood pressure,sleep,blood glucose,and stress analysis.In this work,we propose a hemoglobin estimation method using an adaptive lightweight convolutional neural network(HMALCNN)from PPG.The HMALCNN is designed to capture both fine-grained local waveform characteristics and global contextual patterns,ensuring robust performance across acquisition settings.We validated our approach on two multi-regional datasets containing 152 and 68 subjects,respectively,employing a subjectindependent 5-fold cross-validation strategy.The proposed method achieved root mean square errors(RMSE)of 0.90 and 1.20 g/dL for the two datasets,with strong Pearson correlations of 0.82 and 0.72.We conducted extensive posthoc analyses to assess clinical utility and interpretability.A±1 g/dL clinical error tolerance evaluation revealed that 91.3%and 86.7%of predictions for the two datasets fell within the acceptable clinical range.Hemoglobin range-wise analysis demonstrated consistently high accuracy in the normal and low hemoglobin categories.Statistical significance testing using the Wilcoxon signed-rank test confirmed the stability of performance across validation folds(p>0.05 for both RMSE and correlation).Furthermore,model interpretability was enhanced using Gradient-weighted Class Activation Mapping(Grad-CAM),supporting the model’s clinical trustworthiness.The proposed HMALCNN offers a computationally efficient,clinically interpretable,and generalizable framework for noninvasive hemoglobin monitoring,with strong potential for integration into wearable healthcare systems as a practical alternative to invasive measurement techniques.展开更多
During cellular proliferation DNA undergoes frequent rep-lication cycles in which errors inevitably accumulate.DNA simultaneously faces continuous damage from endogenous sources[e.g.,reactive oxygen species(ROS)]and e...During cellular proliferation DNA undergoes frequent rep-lication cycles in which errors inevitably accumulate.DNA simultaneously faces continuous damage from endogenous sources[e.g.,reactive oxygen species(ROS)]and environmen-tal stressors,such as ultraviolet(UV)and ionizing radiation(IR).Such lesions compromise genomic stability and may escalate into DNA double-strand breaks(DSBs).Failure to repair DSBs can ultimately trigger cell death1.展开更多
In recmt years,depresion has emerged ss a significant gbbal health cotcern,prompting many individuals to seek pharmacoogical interventions.The identification of inflammatory changes in the hippocampns of depressed pat...In recmt years,depresion has emerged ss a significant gbbal health cotcern,prompting many individuals to seek pharmacoogical interventions.The identification of inflammatory changes in the hippocampns of depressed patients has highlighted a potential therapeutic target.Never-thelo,the effectiveness of medicntions targeting these specific alterntions has yrt to be fully substantinted.Prediminary remrch has suggusted the potentisl bemefits of photobiomodulation(PBM)as a trestment fot deptession,with no significant adetse eflects reported.This study utiliæd nesr-infrared light at intensities of 50 mW/cmend 300 mW/cm"to illuminate mice with chronic mild strea(CMS)-induced depresion model,aiming to explorethe therapeutik effects of PBM an depresion.The findings revealed that when exposedto a power denstty af 300 m W/cm?,the mice exhibited enhanæd behavioral outcomes,aскоmpanied by deressed levels of inflam-matory eytokines such as Il-1a,11-13,11-5,and'I-6 in the hippocampus.A notewarthy ae-socistion was observed between behavioral manifestations and inflammatory cytokine kvels.This study poits that PBM at an intensity of 300mW/cm is a viable nonpharmacological intervention for depression,as it demonstrntes a notable enhanoment in deprasive symptoms and the regulation of inflammatory medistors within the hippocятpal region of the brain.However,this study is constrained by the particular PBM parameters employed;therefore,additional resesrch is neceary to investigate a broader spectrum af doees and trestment durations in order to enhan the therapeutic application and deepen the understanding of the underlying mechanisma.展开更多
This comprehensive review explores the multifaceted landscape of skin bioprinting,revolutionizing dermatological research.The applications of skin bioprinting utilizing techniques like extrusion-,droplet-,laser-and li...This comprehensive review explores the multifaceted landscape of skin bioprinting,revolutionizing dermatological research.The applications of skin bioprinting utilizing techniques like extrusion-,droplet-,laser-and light-based methods,with specialized bioinks for skin biofabrication have been critically reviewed along with the intricate aspects of bioprinting hair follicles,sweat glands,and achieving skin pigmentation.Challenges remain with the need for vascularization,safety concerns,and the integration of automated processes for effective clinical translation.The review further investigates the incorporation of biosensor technologies,emphasizing their role in monitoring and enhancing the wound healing process.While highlighting the remarkable progress in the field,critical limitations and concerns are critically examined to provide a balanced perspective.This synthesis aims to guide scientists,engineers,and healthcare providers,fostering a deeper understanding of the current state,challenges,and future directions in skin bioprinting for transformative applications in tissue engineering and regenerative medicine.展开更多
Objective:To assess the effects of turmeric extract and its compounds on oxidative stress,inflammation,and apoptosis in acetaminophen-induced liver injury.Methods:HepG2 cells were administered with acetaminophen(40 mM...Objective:To assess the effects of turmeric extract and its compounds on oxidative stress,inflammation,and apoptosis in acetaminophen-induced liver injury.Methods:HepG2 cells were administered with acetaminophen(40 mM)to induce hepatotoxicity,followed by treatment with turmeric extract and its isolated compounds including curcumin,demethoxycurcumin,bis-demethoxycurcumin and ar-turmerone at 5,25,and 125μg/mL.IL-1β,IL-6,and IL-10 levels were quantified with ELISA kits.Further,qRT-PCR was used to analyze the mRNA expression of JNK,Casp-9,and Casp-3.Meanwhile,the levels of nitric oxide and lactate dehydrogenase were analyzed using colorimetric assay.Results:Acetaminophen administration caused an increase in the levels of lactate dehydrogenase,nitric oxide,IL-1β,IL-6,and the mRNA expression of JNK,Casp-9,and Casp-3 in HepG2 cells while reducing IL-10 levels.Treatment with turmeric extract,curcumin,demethoxycurcumin,bis-demethoxycurcumin,and ar-turmerone lowered IL-1β,IL-6,nitric oxide,and lactate dehydrogenase levels,downregulated the mRNA expression of JNK,Casp-9,and Casp-3,and increased IL-10 levels.Conclusions:Turmeric extract and its compounds have significant hepatoprotective activity and could be further explored for the treatment of liver damage.展开更多
The objective of this work is to demonstrate how the viscoelastic, thermal, rheological, hardness, wear resistance and fracture behavior of bioinert high-density polyethylene (HDPE) can be changed by the addition of...The objective of this work is to demonstrate how the viscoelastic, thermal, rheological, hardness, wear resistance and fracture behavior of bioinert high-density polyethylene (HDPE) can be changed by the addition of hydroxyapatite (HAP) nano particles. Also the effects of accelerated thermal ageing on the composite properties have been investigated. Different weight fractions of HAP nano particles up to 30 wt% have been incorporated in HDPE matrix by using melt blending in co-rotating intermeshing twin screw extruder. The fracture toughness results showed a remarkable decrease in proportion to the HAP content. The differential scanning calorimetry results indicated that the melting temperature and crystallinity were affected by the addition of HAP nano particles into the matrix. The complex viscosity increased as the percentage of HAP increased due to the restriction of the molecular mobility. The dynamic mechanical analysis results revealed that higher storage modulus (8.3 1011 Pa) could be obtained in the developed HDPE/HAP in 30 wt% compared to neat HDPE (5.1 1011 Pa). Finally, the hardness and wear resistance of HDPE were improved significantly due to the addition of HAP nano particles. The changes in the HDPE and its nano composite properties due to ageing showed that the HDPE and its nano composites crystallinity increased while the fracture toughness, hardness, wear resistance, storage and loss modulus decreased.展开更多
Titanium and its alloys are currently considered as one of the most important metallic materials used in the biomedical applications, due to their excellent mechanical properties and superior biocompatibility. In the ...Titanium and its alloys are currently considered as one of the most important metallic materials used in the biomedical applications, due to their excellent mechanical properties and superior biocompatibility. In the present study, a new effective method for fabricating high porosity titanium alloy scaffolds was developed. Porous Ti-6Al-4V scaffolds are successfully fabricated with porosities ranging from 30% to 70% using spaceholder and powder sintering technique. Based on its acceptable properties, spherical carbamide particles with different diameters (0.56, 0.8, and 1mm) were used as the space-holder material in the present investigation. The Ti-6Al-4V scaffolds porosity is characterized by using scanning electron microscopy. The results show that the scaffolds spherical-shaped pores are depending on the shape, size and distribution of the space-holder particles. This investigation shows that the present new manufacturing technique is promising to fabricate a controlled high porosity and high purity Ti-6Al-4V scaffolds for hard tissue replacement.展开更多
Neurological diseases and injuries present some of the great- est challenges in modern medicine, often causing irrevers- ible and lifelong burdens in the people whom they afflict. Conditions of stroke, traumatic brain...Neurological diseases and injuries present some of the great- est challenges in modern medicine, often causing irrevers- ible and lifelong burdens in the people whom they afflict. Conditions of stroke, traumatic brain injury, spinal cord injury, and neurodegenerative diseases have devastating con- sequences on millions of people each year, and yet there are currently no therapies or interventions that can repair the structure of neural circuits and restore neural tissue function in the brain and spinal cord. Despite the challenges of over- coming these limitations, there are many new approaches under development that hold much promise. Neural tissue engineering aims to restore and influence the function of damaged or diseased neural tissue generally through the use of stem cells and biomaterials. Many types of biomaterials may be implemented in various designs to influence the survival, differentiation, and function of developing stem cells, as well as to guide neurite extension and morphological architecture of cell cultures. Such designs may aim to reca- pitulate the cellular interactions, extracellular matrix char- acteristics, biochemical factors, and sequences of events that occur in neurodevelopment, in addition to supporting cell survival, differentiation, and integration into innate neural tissue.展开更多
Introduction Regenerative medicine holds great promise for the treatment of diseases that are unbeatable at present,such as various gene and neurological disorders,cardiovascular diseases,as well as hematological mali...Introduction Regenerative medicine holds great promise for the treatment of diseases that are unbeatable at present,such as various gene and neurological disorders,cardiovascular diseases,as well as hematological malignancies.Realization of this potential remains limited by current challenges associated with the control of cell phenotype and function in cell culture.In this respect,the fate of cells is dictated by the in vivo microenvironment where these cells interact with both the extracellular matrix(ECM)and with neighboring cells.The ECM serves as a structural support for cells and provides,in concert with spatio-temporally arranged biochemical cues such as soluble factors,topographical and mechanical cues that direct cell adhesion,spreading,migra-展开更多
Optoacoustics is a promising modality for biomedical imaging,sensing,and monitoring with high resolution and contrast.In this paper,we present an overview of our studies for the last two decades on optoacoustic effect...Optoacoustics is a promising modality for biomedical imaging,sensing,and monitoring with high resolution and contrast.In this paper,we present an overview of our studies for the last two decades on optoacoustic effects in tissues and imaging capabilities of the optoacoustic technique.In our earlier optoacoustic works we studied laser ablation of tissues and tissue-like media and proposed to use optoacoustics for imaging in tissues.In mid-90s we demonstrated detection of optoacoustic signals from tissues at depths of up to several centimeters,well deeper than the optical diffusion limit.We then obtained optoacoustic images of tissues both in vitro and in vivo.In late 90s we studied optoacoustic monitoring of thermotherapy:hyperthermia,coagulation,and freezing.Then we proposed and studied optoacoustic monitoring of blood oxygenation,hemoglobin concentration,and other physiologic parameters.展开更多
A novel injectable hydrogel that was synthesized by in situ crosslinking of hyaluronan and polyvinyl phosphonic acid was proposed in this study. Fourier transform infrared spectrum (FT-IR) analysis, scanning electron ...A novel injectable hydrogel that was synthesized by in situ crosslinking of hyaluronan and polyvinyl phosphonic acid was proposed in this study. Fourier transform infrared spectrum (FT-IR) analysis, scanning electron microscope (SEM), pH measurement, and biodegradation test were used to confirm its characteristics. The results permitted to prove successful crosslinking, observe the inner morphology of hydrogel and pore sizes distribution, and determine the decomposition of hydrogel components during incubation time. Result of pH measurement showed that the pH scale of hydrogel decreased when volume of PVPA increased. As a consequence, it affected the cytotoxicity value, cell proliferation, and cell growth behaviors of each hydrogel. Optical microscope observation showed that chondroblasts cell proliferated well on HA-PVPA hydrogel. Therefore, these results suggest that the new injectable hydrogel is appropriate for bone/cartilage regeneration applications.展开更多
In-vivo flow cytometry is a noninvasive real-time diagnostic technique that facilitates continuous monitoring of cells without perturbing their natural biological environment,which renders it a valuable tool for both ...In-vivo flow cytometry is a noninvasive real-time diagnostic technique that facilitates continuous monitoring of cells without perturbing their natural biological environment,which renders it a valuable tool for both scientific research and clinical applications.However,the conventional approach for improving classification accuracy often involves labeling cells with fluorescence,which can lead to potential phototoxicity.This study proposes a label-free in-vivo flow cytometry technique,called dynamic YOLOv4(D-YOLOv4),which improves classification accuracy by integrating absorption intensity fluctuation modulation(AIFM)into YOLOv4 to demodulate the temporal features of moving red blood cells(RBCs)and platelets.Using zebrafish as an experimental model,the D-YOLOv4 method achieved average precisions(APs)of 0.90 for RBCs and 0.64 for thrombocytes(similar to platelets in mammals),resulting in an overall AP of 0.77.These scores notably surpass those attained by alternative network models,thereby demonstrating that the combination of physical models with neural networks provides an innovative approach toward developing label-free in-vivoflow cytometry,which holds promise for diverse in-vivo cell classification applications.展开更多
Optical reservoir computing(ORC)offers advantages,such as high computational speed,low power consumption,and high training speed,so it has become a competitive candidate for time series analysis in recent years.The cu...Optical reservoir computing(ORC)offers advantages,such as high computational speed,low power consumption,and high training speed,so it has become a competitive candidate for time series analysis in recent years.The current ORC employs single-dimensional encoding for computation,which limits input resolution and introduces extraneous information due to interactions between optical dimensions during propagation,thus constraining performance.Here,we propose complex-value encoding-based optoelectronic reservoir computing(CE-ORC),in which the amplitude and phase of the input optical field are both modulated to improve the input resolution and prevent the influence of extraneous information on computation.In addition,scale factors in the amplitude encoding can fine-tune the optical reservoir dynamics for better performance.We built a CE-ORC processing unit with an iteration rate of up to∼1.2 kHz using high-speed communication interfaces and field programmable gate arrays(FPGAs)and demonstrated the excellent performance of CE-ORC in two time series prediction tasks.In comparison with the conventional ORC for the Mackey–Glass task,CE-ORC showed a decrease in normalized mean square error by∼75%.Furthermore,we applied this method in a weather time series analysis and effectively predicted the temperature and humidity within a range of 24 h.展开更多
Immersion of scaffolds in Simulated Body Fluid(10SBF)is a standardized method for evaluating their bioactivity,simulating in vivo conditions where apatite deposits can be formed on the surface of scaffold,facilitating...Immersion of scaffolds in Simulated Body Fluid(10SBF)is a standardized method for evaluating their bioactivity,simulating in vivo conditions where apatite deposits can be formed on the surface of scaffold,facilitating bone integration and ensuring their suitability for bone implant purposes,ultimately contributing to long-term implant success.The effect of apatite deposition on bioactivity and cell behavior of TiO_(2)scaffolds was studied.Scaffolds were soaked in 10SBF for different durations to form HAP layer on their surface.The results proved the development of a hydroxyapatite film resembling the mineral composition of bone Extracellular Matrix(ECM)on the TiO_(2)scaffolds.The XRD test findings showed the presence of hydroxyapatite layer similar to bone at the depth of 10 nm.A decrease in the specific surface area(18.913 m^(2)g^(−1)),the total pore volume(0.045172 cm^(3)g^(−1)(at p/p0=0.990)),and the mean pore diameter(9.5537 nm),were observed by BET analysis which confirmed the formation of the apatite layer.It was found that titania scaffolds with HAP coating promoted human osteosarcoma bone cell(MG63)cell attachment and growth.It seems that immersing the scaffolds in 10SBF to form HAP coating before utilizing them for bone tissue engineering applications might be a good strategy to promote bioactivity,cell attachment,and implant fixation.展开更多
Background:Breast cancer(BC)continues to be a significant global health issue,with a rising number of cases requiring ongoing research and innovation in treatment strategies.Curcumin(CUR),a natural compound derived fr...Background:Breast cancer(BC)continues to be a significant global health issue,with a rising number of cases requiring ongoing research and innovation in treatment strategies.Curcumin(CUR),a natural compound derived from Curcuma longa,and similar compounds have shown potential in targeting the STAT3 signaling pathway,which plays a crucial role in BC progression.Aims:The aim of this study was to investigate the effects of curcumin and its analogues on BC based on cellular and molecular mechanisms.Materials&Methods:The literature search conducted for this study involved utilizing the Scopus,ScienceDirect,PubMed,and Google Scholar databases in order to identify pertinent articles.Results:This narrative review explores the potential of CUR and similar compounds in inhibiting STAT3 activation,thereby suppressing the proliferation of cancer cells,inducing apoptosis,and inhibiting metastasis.The review demonstrates that CUR directly inhibits the phosphorylation of STAT3,preventing its movement into the nucleus and its ability to bind to DNA,thereby hindering the survival and proliferation of cancer cells.CUR also enhances the effectiveness of other therapeutic agents and modulates the tumor microenvironment by affecting tumor-associated macrophages(TAMs).CUR analogues,such as hydrazinocurcumin(HC),FLLL11,FLLL12,and GOY030,show improved bioavailability and potency in inhibiting STAT3,resulting in reduced cell proliferation and increased apoptosis.Conclusion:CUR and its analogues hold promise as effective adjuvant treatments for BC by targeting the STAT3 signaling pathway.These compounds provide new insights into the mechanisms of action of CUR and its potential to enhance the effectiveness of BC therapies.展开更多
This paper presents a study on the integration of domain-specific knowledge in prompt engineering to enhance the performance of large language models(LLMs)in scientific domains.The proposed domain-knowledge embedded p...This paper presents a study on the integration of domain-specific knowledge in prompt engineering to enhance the performance of large language models(LLMs)in scientific domains.The proposed domain-knowledge embedded prompt engineering method outperforms traditional prompt engineering strategies on various metrics,including capability,accuracy,F1 score,and hallucination drop.The effectiveness of the method is demonstrated through case studies on complex materials including the MacMillan catalyst,paclitaxel,and lithium cobalt oxide.The results suggest that domain-knowledge prompts can guide LLMs to generate more accurate and relevant responses,highlighting the potential of LLMs as powerful tools for scientific discovery and innovation when equipped with domain-specific prompts.The study also discusses limitations and future directions for domain-specific prompt engineering development.展开更多
文摘Al-Halabi is an intriguing ophthalmologist who invented numerous surgicalinstruments for treating various eye diseases. The illustrations of such instrumentsin his invaluable book “Kitab Al-Kafi fi Al-Kuhl” reflect his willingness toteach. Moreover, he included in his book a magnificent illustration of theanatomical structure of the eye. The book reflects Al-Halabi’s medical practice andteaching and shows several advanced medical techniques and tools. Hisinvaluable comments reflect his deep experimental observations in the field ofophthalmology. The current article provides proof that Al-Halabi is one of ourearly biomedical engineers from more than 800 years ago. Al-Halabi represents aring in the chain of biomedical engineering history. His surgical instrumentsrepresent the biomechanics field. Al-Halabi should be acknowledged among thebiomedical engineering students for his various contributions in the field ofsurgical instruments.
文摘Accurate brain tumour segmentation is critical for diagnosis and treatment planning, yet challenging due to tumour complexity. Manual segmentation is time-consuming and variable, necessitating automated methods. Deep learning, particularly 3D U-Net architectures, has revolutionised medical image analysis by leveraging volumetric data to capture spatial context, enhancing segmentation accuracy. This paper reviews brain tumour segmentation methods, emphasising 3D U-Net advancements. We analyse contributions from the Brain Tumour Segmentation (BraTS) challenges (2014-2023), highlighting key improvements and persistent challenges, including tumour heterogeneity, limited annotated data, varied imaging protocols, computational constraints, and model generalisation. Unlike previous reviews, we synthesise these challenges, proposing targeted research directions: enhancing model robustness through domain adaptation and multi-institutional data sharing, developing lightweight architectures for clinical deployment, integrating multi-modal and clinical data, and incorporating explainability techniques to build clinician trust. By addressing these challenges, we aim to guide future research toward developing more robust, generalisable, and clinically applicable segmentation models, ultimately improving patient outcomes in neuro-oncology.
基金supported by the National Key Research and Development Project(No.2023YFC3404400)。
文摘Objective:Acral melanoma(AM),a unique subtype prevalent in China,develops on the palms,soles,and nail beds.Despite its distinct clinical and pathological features compared to cutaneous melanoma(CM),the molecular basis underlying these differences remains poorly understood.This study aims to perform a comprehensive comparative transcriptomic analysis of AM and CM at the single-cell level to uncover key molecular distinctions.Methods:We analyzed single-cell RNA sequencing(scRNA-seq)data from 39 AM patients and 18 CM cases.Single-cell transcriptomic profiling was used to compare tumor cell subpopulations and microenvironmental differences.Bioinformatics tools were employed for cell clustering,differential gene expression analysis,cell-cell communication network inferences,and survival analysis.Results:AM exhibited a significantly higher proportion of MPZ^(+)melanoma cells,a subpopulation with Schwann cell-like properties associated with poor prognosis.These MPZ^(+)melanoma cells established extensive communication networks with AM-specific immune and stromal components,prompting an immunosuppressive microenvironment and enhancing angiogenic potential.Survival analysis further indicated that the presence of MPZ^(+)melanoma cells is closely linked to worse clinical outcomes in AM patients.Conclusions:This study provides novel insights into the molecular distinctions between AM and CM,highlighting the critical role of MPZ^(+)melanoma cells in AM progression.These findings enhance our understanding of AM pathophysiology and may contribute to the development of more targeted therapeutic strategies.
基金funded by the Deanship of Graduate Studies and Scientific Research at Qassim University for financial support(QU-APC-2025).
文摘Hemoglobin is a vital protein in red blood cells responsible for transporting oxygen throughout the body.Its accurate measurement is crucial for diagnosing and managing conditions such as anemia and diabetes,where abnormal hemoglobin levels can indicate significant health issues.Traditional methods for hemoglobin measurement are invasive,causing pain,risk of infection,and are less convenient for frequent monitoring.PPG is a transformative technology in wearable healthcare for noninvasive monitoring and widely explored for blood pressure,sleep,blood glucose,and stress analysis.In this work,we propose a hemoglobin estimation method using an adaptive lightweight convolutional neural network(HMALCNN)from PPG.The HMALCNN is designed to capture both fine-grained local waveform characteristics and global contextual patterns,ensuring robust performance across acquisition settings.We validated our approach on two multi-regional datasets containing 152 and 68 subjects,respectively,employing a subjectindependent 5-fold cross-validation strategy.The proposed method achieved root mean square errors(RMSE)of 0.90 and 1.20 g/dL for the two datasets,with strong Pearson correlations of 0.82 and 0.72.We conducted extensive posthoc analyses to assess clinical utility and interpretability.A±1 g/dL clinical error tolerance evaluation revealed that 91.3%and 86.7%of predictions for the two datasets fell within the acceptable clinical range.Hemoglobin range-wise analysis demonstrated consistently high accuracy in the normal and low hemoglobin categories.Statistical significance testing using the Wilcoxon signed-rank test confirmed the stability of performance across validation folds(p>0.05 for both RMSE and correlation).Furthermore,model interpretability was enhanced using Gradient-weighted Class Activation Mapping(Grad-CAM),supporting the model’s clinical trustworthiness.The proposed HMALCNN offers a computationally efficient,clinically interpretable,and generalizable framework for noninvasive hemoglobin monitoring,with strong potential for integration into wearable healthcare systems as a practical alternative to invasive measurement techniques.
基金supported by grants fromthe Shenzhen Medical Research Fund(Grant No.A2302040).
文摘During cellular proliferation DNA undergoes frequent rep-lication cycles in which errors inevitably accumulate.DNA simultaneously faces continuous damage from endogenous sources[e.g.,reactive oxygen species(ROS)]and environmen-tal stressors,such as ultraviolet(UV)and ionizing radiation(IR).Such lesions compromise genomic stability and may escalate into DNA double-strand breaks(DSBs).Failure to repair DSBs can ultimately trigger cell death1.
基金supported by the National Natural Science Foundation of China(Grant No.81927804),horizontal projects ofthe integration between industry and education(Nos.KH54429301,KH54392701)supported by the Research Funding of Hangzhou International Innovation Institute of Beihang University(Grant No.2024KQ098)+2 种基金the China Disabled Persons,Federation special topic(Grant No.CDPF2023KF00001)the National Natural Science Foundation of China(Grant No.8246140544)the National Key Research and Development Plan(Grant Nos.2021YFF0501600,and 2022YFC3601200).
文摘In recmt years,depresion has emerged ss a significant gbbal health cotcern,prompting many individuals to seek pharmacoogical interventions.The identification of inflammatory changes in the hippocampns of depressed patients has highlighted a potential therapeutic target.Never-thelo,the effectiveness of medicntions targeting these specific alterntions has yrt to be fully substantinted.Prediminary remrch has suggusted the potentisl bemefits of photobiomodulation(PBM)as a trestment fot deptession,with no significant adetse eflects reported.This study utiliæd nesr-infrared light at intensities of 50 mW/cmend 300 mW/cm"to illuminate mice with chronic mild strea(CMS)-induced depresion model,aiming to explorethe therapeutik effects of PBM an depresion.The findings revealed that when exposedto a power denstty af 300 m W/cm?,the mice exhibited enhanæd behavioral outcomes,aскоmpanied by deressed levels of inflam-matory eytokines such as Il-1a,11-13,11-5,and'I-6 in the hippocampus.A notewarthy ae-socistion was observed between behavioral manifestations and inflammatory cytokine kvels.This study poits that PBM at an intensity of 300mW/cm is a viable nonpharmacological intervention for depression,as it demonstrntes a notable enhanoment in deprasive symptoms and the regulation of inflammatory medistors within the hippocятpal region of the brain.However,this study is constrained by the particular PBM parameters employed;therefore,additional resesrch is neceary to investigate a broader spectrum af doees and trestment durations in order to enhan the therapeutic application and deepen the understanding of the underlying mechanisma.
基金supported by National Institutes of Health Award(Nos.R01DE028614(I T O)and R21AR082668(I T O)),and 2236 CoCirculation2 of TUBITAK award(No.121C359(I T O))supported by The Assistant Secretary of Defense for Health Affairs endorsed by the Department of Defense,in the amount of($1986275)through the Peer Reviewed Medical Research Program under Award Number(No.HT9425-23-1-0487)。
文摘This comprehensive review explores the multifaceted landscape of skin bioprinting,revolutionizing dermatological research.The applications of skin bioprinting utilizing techniques like extrusion-,droplet-,laser-and light-based methods,with specialized bioinks for skin biofabrication have been critically reviewed along with the intricate aspects of bioprinting hair follicles,sweat glands,and achieving skin pigmentation.Challenges remain with the need for vascularization,safety concerns,and the integration of automated processes for effective clinical translation.The review further investigates the incorporation of biosensor technologies,emphasizing their role in monitoring and enhancing the wound healing process.While highlighting the remarkable progress in the field,critical limitations and concerns are critically examined to provide a balanced perspective.This synthesis aims to guide scientists,engineers,and healthcare providers,fostering a deeper understanding of the current state,challenges,and future directions in skin bioprinting for transformative applications in tissue engineering and regenerative medicine.
基金funded by Maranatha Christian University,Bandung,Indonesia for Productive Lecturer Research under grant number:011/SK/ADD/UKM/IV/2024.
文摘Objective:To assess the effects of turmeric extract and its compounds on oxidative stress,inflammation,and apoptosis in acetaminophen-induced liver injury.Methods:HepG2 cells were administered with acetaminophen(40 mM)to induce hepatotoxicity,followed by treatment with turmeric extract and its isolated compounds including curcumin,demethoxycurcumin,bis-demethoxycurcumin and ar-turmerone at 5,25,and 125μg/mL.IL-1β,IL-6,and IL-10 levels were quantified with ELISA kits.Further,qRT-PCR was used to analyze the mRNA expression of JNK,Casp-9,and Casp-3.Meanwhile,the levels of nitric oxide and lactate dehydrogenase were analyzed using colorimetric assay.Results:Acetaminophen administration caused an increase in the levels of lactate dehydrogenase,nitric oxide,IL-1β,IL-6,and the mRNA expression of JNK,Casp-9,and Casp-3 in HepG2 cells while reducing IL-10 levels.Treatment with turmeric extract,curcumin,demethoxycurcumin,bis-demethoxycurcumin,and ar-turmerone lowered IL-1β,IL-6,nitric oxide,and lactate dehydrogenase levels,downregulated the mRNA expression of JNK,Casp-9,and Casp-3,and increased IL-10 levels.Conclusions:Turmeric extract and its compounds have significant hepatoprotective activity and could be further explored for the treatment of liver damage.
基金the Deanship of Scientific Research at King Saud University for funding the work through the research group project No.RGP-VPP-133
文摘The objective of this work is to demonstrate how the viscoelastic, thermal, rheological, hardness, wear resistance and fracture behavior of bioinert high-density polyethylene (HDPE) can be changed by the addition of hydroxyapatite (HAP) nano particles. Also the effects of accelerated thermal ageing on the composite properties have been investigated. Different weight fractions of HAP nano particles up to 30 wt% have been incorporated in HDPE matrix by using melt blending in co-rotating intermeshing twin screw extruder. The fracture toughness results showed a remarkable decrease in proportion to the HAP content. The differential scanning calorimetry results indicated that the melting temperature and crystallinity were affected by the addition of HAP nano particles into the matrix. The complex viscosity increased as the percentage of HAP increased due to the restriction of the molecular mobility. The dynamic mechanical analysis results revealed that higher storage modulus (8.3 1011 Pa) could be obtained in the developed HDPE/HAP in 30 wt% compared to neat HDPE (5.1 1011 Pa). Finally, the hardness and wear resistance of HDPE were improved significantly due to the addition of HAP nano particles. The changes in the HDPE and its nano composite properties due to ageing showed that the HDPE and its nano composites crystallinity increased while the fracture toughness, hardness, wear resistance, storage and loss modulus decreased.
基金supported by the Korea Research Foundation (KRF)
文摘Titanium and its alloys are currently considered as one of the most important metallic materials used in the biomedical applications, due to their excellent mechanical properties and superior biocompatibility. In the present study, a new effective method for fabricating high porosity titanium alloy scaffolds was developed. Porous Ti-6Al-4V scaffolds are successfully fabricated with porosities ranging from 30% to 70% using spaceholder and powder sintering technique. Based on its acceptable properties, spherical carbamide particles with different diameters (0.56, 0.8, and 1mm) were used as the space-holder material in the present investigation. The Ti-6Al-4V scaffolds porosity is characterized by using scanning electron microscopy. The results show that the scaffolds spherical-shaped pores are depending on the shape, size and distribution of the space-holder particles. This investigation shows that the present new manufacturing technique is promising to fabricate a controlled high porosity and high purity Ti-6Al-4V scaffolds for hard tissue replacement.
文摘Neurological diseases and injuries present some of the great- est challenges in modern medicine, often causing irrevers- ible and lifelong burdens in the people whom they afflict. Conditions of stroke, traumatic brain injury, spinal cord injury, and neurodegenerative diseases have devastating con- sequences on millions of people each year, and yet there are currently no therapies or interventions that can repair the structure of neural circuits and restore neural tissue function in the brain and spinal cord. Despite the challenges of over- coming these limitations, there are many new approaches under development that hold much promise. Neural tissue engineering aims to restore and influence the function of damaged or diseased neural tissue generally through the use of stem cells and biomaterials. Many types of biomaterials may be implemented in various designs to influence the survival, differentiation, and function of developing stem cells, as well as to guide neurite extension and morphological architecture of cell cultures. Such designs may aim to reca- pitulate the cellular interactions, extracellular matrix char- acteristics, biochemical factors, and sequences of events that occur in neurodevelopment, in addition to supporting cell survival, differentiation, and integration into innate neural tissue.
基金supported by the National Institute of Health(NIH HL83008)
文摘Introduction Regenerative medicine holds great promise for the treatment of diseases that are unbeatable at present,such as various gene and neurological disorders,cardiovascular diseases,as well as hematological malignancies.Realization of this potential remains limited by current challenges associated with the control of cell phenotype and function in cell culture.In this respect,the fate of cells is dictated by the in vivo microenvironment where these cells interact with both the extracellular matrix(ECM)and with neighboring cells.The ECM serves as a structural support for cells and provides,in concert with spatio-temporally arranged biochemical cues such as soluble factors,topographical and mechanical cues that direct cell adhesion,spreading,migra-
文摘Optoacoustics is a promising modality for biomedical imaging,sensing,and monitoring with high resolution and contrast.In this paper,we present an overview of our studies for the last two decades on optoacoustic effects in tissues and imaging capabilities of the optoacoustic technique.In our earlier optoacoustic works we studied laser ablation of tissues and tissue-like media and proposed to use optoacoustics for imaging in tissues.In mid-90s we demonstrated detection of optoacoustic signals from tissues at depths of up to several centimeters,well deeper than the optical diffusion limit.We then obtained optoacoustic images of tissues both in vitro and in vivo.In late 90s we studied optoacoustic monitoring of thermotherapy:hyperthermia,coagulation,and freezing.Then we proposed and studied optoacoustic monitoring of blood oxygenation,hemoglobin concentration,and other physiologic parameters.
文摘A novel injectable hydrogel that was synthesized by in situ crosslinking of hyaluronan and polyvinyl phosphonic acid was proposed in this study. Fourier transform infrared spectrum (FT-IR) analysis, scanning electron microscope (SEM), pH measurement, and biodegradation test were used to confirm its characteristics. The results permitted to prove successful crosslinking, observe the inner morphology of hydrogel and pore sizes distribution, and determine the decomposition of hydrogel components during incubation time. Result of pH measurement showed that the pH scale of hydrogel decreased when volume of PVPA increased. As a consequence, it affected the cytotoxicity value, cell proliferation, and cell growth behaviors of each hydrogel. Optical microscope observation showed that chondroblasts cell proliferated well on HA-PVPA hydrogel. Therefore, these results suggest that the new injectable hydrogel is appropriate for bone/cartilage regeneration applications.
基金supported by the National Natural Science Foundation of China(62075042 and 62205060)the Research Fund of Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology(2020B1212030010)+1 种基金Fund for Research on National Major Research Instruments of China(Grant No.62027824)Fund for Science and Technology Innovation Cultivation of Guangdong University Students(No.pdjh2022b0543).
文摘In-vivo flow cytometry is a noninvasive real-time diagnostic technique that facilitates continuous monitoring of cells without perturbing their natural biological environment,which renders it a valuable tool for both scientific research and clinical applications.However,the conventional approach for improving classification accuracy often involves labeling cells with fluorescence,which can lead to potential phototoxicity.This study proposes a label-free in-vivo flow cytometry technique,called dynamic YOLOv4(D-YOLOv4),which improves classification accuracy by integrating absorption intensity fluctuation modulation(AIFM)into YOLOv4 to demodulate the temporal features of moving red blood cells(RBCs)and platelets.Using zebrafish as an experimental model,the D-YOLOv4 method achieved average precisions(APs)of 0.90 for RBCs and 0.64 for thrombocytes(similar to platelets in mammals),resulting in an overall AP of 0.77.These scores notably surpass those attained by alternative network models,thereby demonstrating that the combination of physical models with neural networks provides an innovative approach toward developing label-free in-vivoflow cytometry,which holds promise for diverse in-vivo cell classification applications.
基金the National Natural Science Foundation of China(Grant Nos.62375171,62305208,62205189,62105203,and 62405182)the Shanghai Pujiang Program(Grant No.22PJ1407500)+4 种基金the Oceanic Interdisciplinary Program of Shanghai Jiao Tong University(SJTU)(Grant No.SL2022ZD205)the National Key Research and Development Program of China(Grant No.2022YFC2806600)the Science Foundation of Donghai Laboratory(Grant Nos.DH-2022KF01001 and DH-2022KF01005)the Startup Fund for Young Faculty at SJTU(Grant No.24X010500120)the Science and Technology Commission of Shanghai Municipality(Grant No.20DZ2220400).
文摘Optical reservoir computing(ORC)offers advantages,such as high computational speed,low power consumption,and high training speed,so it has become a competitive candidate for time series analysis in recent years.The current ORC employs single-dimensional encoding for computation,which limits input resolution and introduces extraneous information due to interactions between optical dimensions during propagation,thus constraining performance.Here,we propose complex-value encoding-based optoelectronic reservoir computing(CE-ORC),in which the amplitude and phase of the input optical field are both modulated to improve the input resolution and prevent the influence of extraneous information on computation.In addition,scale factors in the amplitude encoding can fine-tune the optical reservoir dynamics for better performance.We built a CE-ORC processing unit with an iteration rate of up to∼1.2 kHz using high-speed communication interfaces and field programmable gate arrays(FPGAs)and demonstrated the excellent performance of CE-ORC in two time series prediction tasks.In comparison with the conventional ORC for the Mackey–Glass task,CE-ORC showed a decrease in normalized mean square error by∼75%.Furthermore,we applied this method in a weather time series analysis and effectively predicted the temperature and humidity within a range of 24 h.
文摘Immersion of scaffolds in Simulated Body Fluid(10SBF)is a standardized method for evaluating their bioactivity,simulating in vivo conditions where apatite deposits can be formed on the surface of scaffold,facilitating bone integration and ensuring their suitability for bone implant purposes,ultimately contributing to long-term implant success.The effect of apatite deposition on bioactivity and cell behavior of TiO_(2)scaffolds was studied.Scaffolds were soaked in 10SBF for different durations to form HAP layer on their surface.The results proved the development of a hydroxyapatite film resembling the mineral composition of bone Extracellular Matrix(ECM)on the TiO_(2)scaffolds.The XRD test findings showed the presence of hydroxyapatite layer similar to bone at the depth of 10 nm.A decrease in the specific surface area(18.913 m^(2)g^(−1)),the total pore volume(0.045172 cm^(3)g^(−1)(at p/p0=0.990)),and the mean pore diameter(9.5537 nm),were observed by BET analysis which confirmed the formation of the apatite layer.It was found that titania scaffolds with HAP coating promoted human osteosarcoma bone cell(MG63)cell attachment and growth.It seems that immersing the scaffolds in 10SBF to form HAP coating before utilizing them for bone tissue engineering applications might be a good strategy to promote bioactivity,cell attachment,and implant fixation.
文摘Background:Breast cancer(BC)continues to be a significant global health issue,with a rising number of cases requiring ongoing research and innovation in treatment strategies.Curcumin(CUR),a natural compound derived from Curcuma longa,and similar compounds have shown potential in targeting the STAT3 signaling pathway,which plays a crucial role in BC progression.Aims:The aim of this study was to investigate the effects of curcumin and its analogues on BC based on cellular and molecular mechanisms.Materials&Methods:The literature search conducted for this study involved utilizing the Scopus,ScienceDirect,PubMed,and Google Scholar databases in order to identify pertinent articles.Results:This narrative review explores the potential of CUR and similar compounds in inhibiting STAT3 activation,thereby suppressing the proliferation of cancer cells,inducing apoptosis,and inhibiting metastasis.The review demonstrates that CUR directly inhibits the phosphorylation of STAT3,preventing its movement into the nucleus and its ability to bind to DNA,thereby hindering the survival and proliferation of cancer cells.CUR also enhances the effectiveness of other therapeutic agents and modulates the tumor microenvironment by affecting tumor-associated macrophages(TAMs).CUR analogues,such as hydrazinocurcumin(HC),FLLL11,FLLL12,and GOY030,show improved bioavailability and potency in inhibiting STAT3,resulting in reduced cell proliferation and increased apoptosis.Conclusion:CUR and its analogues hold promise as effective adjuvant treatments for BC by targeting the STAT3 signaling pathway.These compounds provide new insights into the mechanisms of action of CUR and its potential to enhance the effectiveness of BC therapies.
基金supported by the National Key R&D Program of China(No.2022ZD0117501).
文摘This paper presents a study on the integration of domain-specific knowledge in prompt engineering to enhance the performance of large language models(LLMs)in scientific domains.The proposed domain-knowledge embedded prompt engineering method outperforms traditional prompt engineering strategies on various metrics,including capability,accuracy,F1 score,and hallucination drop.The effectiveness of the method is demonstrated through case studies on complex materials including the MacMillan catalyst,paclitaxel,and lithium cobalt oxide.The results suggest that domain-knowledge prompts can guide LLMs to generate more accurate and relevant responses,highlighting the potential of LLMs as powerful tools for scientific discovery and innovation when equipped with domain-specific prompts.The study also discusses limitations and future directions for domain-specific prompt engineering development.