期刊文献+
共找到16,554篇文章
< 1 2 250 >
每页显示 20 50 100
NIR-II biomedical optics:evolution and prospects from technological advances towards clinical translation
1
作者 LI Yi-Xuan XIA Qi-Ming +9 位作者 CHEN Guo-Qiao ZHANG Yi-Yin LIU Xiao-Long Adam Sofia Abdulkadir JIN Sheng-Xi ZHOU Feng-Bin LIN Deng-Feng QIAN Jun FAN Xiao-Xiao LIN Hui 《红外与毫米波学报》 北大核心 2025年第5期801-818,共18页
The second near-infrared window(NIR-II,900-1880 nm)overcomes critical limitations of visible(360-760 nm)and NIR-I(760-900 nm)imaging—including restricted penetration depth,low signal-to-back⁃ground ratio,and tissue a... The second near-infrared window(NIR-II,900-1880 nm)overcomes critical limitations of visible(360-760 nm)and NIR-I(760-900 nm)imaging—including restricted penetration depth,low signal-to-back⁃ground ratio,and tissue autofluorescence—establishing its pivotal role for in vivo deep-tissue bioimaging.With exponential growth in NIR-II photodiagnosis and phototherapy research over the past decade,bibliometric analy⁃sis is essential to map the evolving landscape and guide strategic priorities.We systematically analyzed 2,491 NIR-II-related publications(2009-2023)from the Web of Science Core Collection,employing scientometric tools for distinct analytical purposes:(a)VOSviewer,SCImago Graphica,and Gephi for co-authorship and co-occur⁃rence network mapping;(b)the R bibliometrix package for tracking field evolution and identifying high-impact publications/journals.The search retrieved 2491 studies from 359 journals originating from 54 countries.The country with the most published articles is China.Chinese institutions drive>60%of publications,with Stanford University(USA)and Nanyang Technological University(Singapore)ranked as the top two institutions by re⁃search quality.International cooperation is becoming increasingly frequent.Fan Quli,Tang Benzhong and Dai Hongjie are the top 3 productive authors in this field.Keyword evolution identifies"photodynamic therapy"and"immunotherapy"as pivotal future directions.We summarize the most cited literatures and NIR-II imaging clini⁃cal trials.This study delineates the NIR-II research trajectory,highlighting China's leadership,intensifying glob⁃al collaboration,and interdisciplinary convergence.Future efforts should prioritize the novel NIR-II probe devel⁃opment for NIR-II imaging and clinical translation of photodynamic/immunotherapy combinational platforms. 展开更多
关键词 second near-infrared window(NIR-II) biomedical optics clinical translation research trend
在线阅读 下载PDF
A Review of Deep Learning for Biomedical Signals:Current Applications,Advancements,Future Prospects,Interpretation,and Challenges
2
作者 Ali Mohammad Alqudah Zahra Moussavi 《Computers, Materials & Continua》 2025年第6期3753-3841,共89页
This reviewpresents a comprehensive technical analysis of deep learning(DL)methodologies in biomedical signal processing,focusing on architectural innovations,experimental validation,and evaluation frameworks.We syste... This reviewpresents a comprehensive technical analysis of deep learning(DL)methodologies in biomedical signal processing,focusing on architectural innovations,experimental validation,and evaluation frameworks.We systematically evaluate key deep learning architectures including convolutional neural networks(CNNs),recurrent neural networks(RNNs),transformer-based models,and hybrid systems across critical tasks such as arrhythmia classification,seizure detection,and anomaly segmentation.The study dissects preprocessing techniques(e.g.,wavelet denoising,spectral normalization)and feature extraction strategies(time-frequency analysis,attention mechanisms),demonstrating their impact on model accuracy,noise robustness,and computational efficiency.Experimental results underscore the superiority of deep learning over traditional methods,particularly in automated feature extraction,real-time processing,cross-modal generalization,and achieving up to a 15%increase in classification accuracy and enhanced noise resilience across electrocardiogram(ECG),electroencephalogram(EEG),and electromyogram(EMG)signals.Performance is rigorously benchmarked using precision,recall,F1-scores,area under the receiver operating characteristic curve(AUC-ROC),and computational complexitymetrics,providing a unified framework for comparing model efficacy.Thesurvey addresses persistent challenges:synthetic data generationmitigates limited training samples,interpretability tools(e.g.,Gradient-weighted Class Activation Mapping(Grad-CAM),Shapley values)resolve model opacity,and federated learning ensures privacy-compliant deployments.Distinguished from prior reviews,this work offers a structured taxonomy of deep learning architectures,integrates emerging paradigms like transformers and domain-specific attention mechanisms,and evaluates preprocessing pipelines for spectral-temporal trade-offs.It advances the field by bridging technical advancements with clinical needs,such as scalability in real-world settings(e.g.,wearable devices)and regulatory alignment with theHealth Insurance Portability and Accountability Act(HIPAA)and General Data Protection Regulation(GDPR).By synthesizing technical rigor,ethical considerations,and actionable guidelines for model selection,this survey establishes a holistic reference for developing robust,interpretable biomedical artificial intelligence(AI)systems,accelerating their translation into personalized and equitable healthcare solutions. 展开更多
关键词 Deep learning deep models biomedical signals physiological signals biosignals
在线阅读 下载PDF
Understanding of endo/lysosomal escape of nanomaterials in biomedical application
3
作者 Xin Wang Haoyu Li +1 位作者 Chen Chen Zhihui Liang 《Smart Molecules》 2025年第4期33-46,共14页
Emerging therapies rely on the efficient and specific delivery of targeted agents into the cytosol,such as DNA,siRNA and proteins.Nanoparticles showed great potentials in safe delivery and transportation of the target... Emerging therapies rely on the efficient and specific delivery of targeted agents into the cytosol,such as DNA,siRNA and proteins.Nanoparticles showed great potentials in safe delivery and transportation of the targeted cargoes;however,the entrapment in endosomes and degradation by specific enzymes in the lysosome hindered the bioavailability,cytosolic delivery and subsequent therapeutic efficacy.In this case,the development of methods for efficient and specific delivery of targeted therapeutic agents focuses on overcoming the major challenge of endo/lysosomal escape,which relies on the development of safe and efficient nanodelivery systems.A deeper mechanistic understanding in the endo/lysosomal escape will guide the development of more efficient nano-delivery systems.In this review,we summarize various mechanisms by which nanoparticles escape from the endo/lysosome,and showcase the recent progress in dissecting the endo/lysosomal approaches based on nano-delivery systems.Emphasis will lie on the properties of nanoparticles that govern the endo/lysosomal escape pathway as well as the latest promising applications in vaccine delivery and genetic engineering field. 展开更多
关键词 biomedical application endo/lysosomal escape nanomaterials property
暂未订购
Inspired by nature:Bioinspired and biomimetic photocatalysts for biomedical applications
4
作者 Ashkan Bigham Atefeh Zarepour +5 位作者 Moein Safarkhani YunSuk Huh Arezoo Khosravi Navid Rabiee Siavash Iravani Ali Zarrabi 《Nano Materials Science》 2025年第1期1-23,共23页
The field of photocatalysis has witnessed a significant advancement in the development of bioinspired and biomimetic photocatalysts for various biomedical applications,including drug delivery,tissue engineering,cancer... The field of photocatalysis has witnessed a significant advancement in the development of bioinspired and biomimetic photocatalysts for various biomedical applications,including drug delivery,tissue engineering,cancer therapy,and bioimaging.Nature has evolved efficient light-harvesting systems and energy conversion mechanisms,which serve as a benchmark for researchers.However,reproducing such complexity and harnessing it for biomedical applications is a daunting task.It requires a comprehensive understanding of the underlying biological processes and the ability to replicate them synthetically.By utilizing light energy,these photocatalysts can trigger specific chemical reactions,leading to targeted drug release,enhanced tissue regeneration,and precise imaging of biological structures.In this context,addressing the stability,long-term performance,scalability,and costeffectiveness of these materials is crucial for their widespread implementation in biomedical applications.While challenges such as complexity and stability persist,their advantages such as targeted drug delivery and personalized medicine make them a fascinating area of research.The purpose of this review is to provide a comprehensive analysis and evaluation of existing research,highlighting the advancements,current challenges,advantages,limitations,and future prospects of bioinspired and biomimetic photocatalysts in biomedicine. 展开更多
关键词 Bioinspired photocatalysts Nanophotocatalysts Biomedical applications Biomimetic photocatalysts Environmentally-benign strategies
在线阅读 下载PDF
Long-Term Evolving Dynamic Degradation-Associated Cytocompatibilities of Biodegradable Zinc for Biomedical Applications
5
作者 Junyu Qian En Su +5 位作者 Zhenhai Xie Jinlong Mao Yuanhao Wang Yingqi Chen Haotian Qin Guojiang Wan 《Acta Metallurgica Sinica(English Letters)》 2025年第11期1891-1908,共18页
Zinc(Zn)and its alloys are considered promising biodegradable metallic materials for biomedical implants.However,the correlation between the dynamic degradation evolution of Zn and its biocompatibility remains unclear... Zinc(Zn)and its alloys are considered promising biodegradable metallic materials for biomedical implants.However,the correlation between the dynamic degradation evolution of Zn and its biocompatibility remains unclear.This study evaluates the long-term degradation/corrosion behavior of pure Zn under dynamic immersion in Hank’s solution containing bovine serum albumin(BSA),and investigates the impact of its dynamic degradation evolution on cytocompatibilities of the representative human umbilical vein endothelial cells(HUVECs)and bone marrow mesenchymal stem cells(BMSCs).Degradation behavior results demonstrate that the dynamic fluidic medium led to speeding-up of the corrosion rate of Zn and exacerbation of the localized corrosion,with this phenomenon being more pronounced under influence of BSA.Correspondingly,the cells’viability increased with prolonged immersion time under both static and dynamic conditions,alleviating a certain level of cytotoxicity initiated at an earlier stage.Nonetheless,as compared to the static cases the dynamic fluidic environments induced a poorer cell viability,although the BSA helped to offset this impact.Our findings provide not only new insights into better-understanding Zn-based biodegradable metals but also clarify the critical concern in their clinical translations,offering therefore important guidance for development of new biodegradable metallic medical implants. 展开更多
关键词 Biodegradable Zn Dynamic immersion degradation Corrosion mechanism CYTOCOMPATIBILITY Temporary medical implants
原文传递
Biomedical microwave-induced thermoacoustic imaging 被引量:5
6
作者 Qiang Liu Xiao Liang +3 位作者 Weizhi Qi Yubin Gong Huabei Jiang Lei Xi 《Journal of Innovative Optical Health Sciences》 SCIE EI CAS 2022年第4期13-48,共36页
Microwave induced thermoacoustic imaging(MTAI)has emerged as a potential biomedical imaging modality with over 20-year growth.MTAI typically employs pulsed microwave as the pumping source,and detects the microwave-ind... Microwave induced thermoacoustic imaging(MTAI)has emerged as a potential biomedical imaging modality with over 20-year growth.MTAI typically employs pulsed microwave as the pumping source,and detects the microwave-induced ultrasound wave via acoustic transducers.Therefore,it features high acoustic resolution,rich elect romagnetic contrast,and large imaging depth.Benefiting from these unique advantages,MTAI has been extensively applied to various fields including pathology,biology,material and medicine.Till now,MTAI has been deployed for a wide range of biomedical applications,including cancer diagnosis,joint evaluation,brain in-vestigation and endoscopy.This paper provides a comprehensive review on(1)essential physics(endogenous/exogenous contrast mechanisms,penetration depth and resolution),(2)hardware configurations and software implementations(excit ation source,antenna,ultrasound detector and image recovery algorithm),(3)animal studies and clinical applications,and(4)future directions. 展开更多
关键词 Thermoacoustic imaging biomedical imaging electromagnetic radiation acoustic waves biomedical image processing
原文传递
Ophthalmological instruments of Al-Halabi fill in a gap in the biomedical engineering history
7
作者 Mohamed N Saad 《World Journal of Methodology》 2022年第1期1-19,共19页
Al-Halabi is an intriguing ophthalmologist who invented numerous surgicalinstruments for treating various eye diseases. The illustrations of such instrumentsin his invaluable book “Kitab Al-Kafi fi Al-Kuhl” reflect ... Al-Halabi is an intriguing ophthalmologist who invented numerous surgicalinstruments for treating various eye diseases. The illustrations of such instrumentsin his invaluable book “Kitab Al-Kafi fi Al-Kuhl” reflect his willingness toteach. Moreover, he included in his book a magnificent illustration of theanatomical structure of the eye. The book reflects Al-Halabi’s medical practice andteaching and shows several advanced medical techniques and tools. Hisinvaluable comments reflect his deep experimental observations in the field ofophthalmology. The current article provides proof that Al-Halabi is one of ourearly biomedical engineers from more than 800 years ago. Al-Halabi represents aring in the chain of biomedical engineering history. His surgical instrumentsrepresent the biomechanics field. Al-Halabi should be acknowledged among thebiomedical engineering students for his various contributions in the field ofsurgical instruments. 展开更多
关键词 Al-Halabi Biomedical engineering education Biomedical engineering history Ophthalmological instruments
在线阅读 下载PDF
Role of Cu element in biomedical metal alloy design 被引量:23
8
作者 Er-Lin Zhang Shan Fu +7 位作者 Ruo-Xian Wang Hai-Xia Li Ying Liu Zhi-Qiang Ma Guang-Kun Liu Chen-Shun Zhu Gao-Wu Qin Da-Fu Chen 《Rare Metals》 SCIE EI CAS CSCD 2019年第6期476-494,共19页
Biomedical metals are widely used as implant materials in the human or animal body to repair organs and restore function, such as heart valves, meninges, peritoneum and artificial organs.Alloying element affects the m... Biomedical metals are widely used as implant materials in the human or animal body to repair organs and restore function, such as heart valves, meninges, peritoneum and artificial organs.Alloying element affects the microstructure, mechanical property, corrosion resistance and wear resistance, but also influences the antibacterial and biological activity.Recently, antibacterial metal alloys have shown great potential as a new kind of biomedical materials, in which Cu has been widely used as antibacterial agent element.In addition, biodegradable metal alloys, including magnesium alloy and zinc alloy, also have attracted much attention worldwide.Cu was also used as alloying element to adjust the degradation rate.Thus, the role of Cu in the alloy design will be very important for the development of new alloy.In this paper, we summarized the recent research results on the Cu-containing metal alloy for biomedical application and hoped that this review would give more suggestions for the further development of biomedical metal alloy. 展开更多
关键词 CU BIOMEDICAL metal alloy Corrosion resistance ANTIBACTERIAL PROPERTY BIOLOGICAL PROPERTY
原文传递
Comprehensive Application of Graphene: Emphasis on Biomedical Concerns 被引量:6
9
作者 S.Syama P.V.Mohanan 《Nano-Micro Letters》 SCIE EI CAS CSCD 2019年第1期101-131,共31页
Graphene, sp^2 hybridized carbon framework of one atom thickness, is reputed as the strongest material to date. It has marked its impact in manifold applications including electronics, sensors, composites, and catalys... Graphene, sp^2 hybridized carbon framework of one atom thickness, is reputed as the strongest material to date. It has marked its impact in manifold applications including electronics, sensors, composites, and catalysis. Current state-of-the-art graphene research revolves around its biomedical applications. The two-dimensional(2D) planar structure of graphene provides a large surface area for loading drugs/biomolecules and the possibility of conjugating fluorescent dyes for bioimaging. The high near-infrared absorbance makes graphene ideal for photothermal therapy. Henceforth, graphene turns out to be a reliable multifunctional material for use in diagnosis and treatment. It exhibits antibacterial property by directly interacting with the cell membrane. Potential application of graphene as a sca old for the attachment and proliferation of stem cells and neuronal cells is captivating in a tissue regeneration scenario. Fabrication of 2D graphene into a 3D structure is made possible with the help of 3D printing, a revolutionary technology having promising applications in tissue and organ engineering. However, apart from its advantageous application scope, use of graphene raises toxicity concerns. Several reports have confirmed the potential toxicity of graphene and its derivatives, and the inconsistency may be due to the lack of standardized consensus protocols. The present review focuses on the hidden facts of graphene and its biomedical application, with special emphasis on drug delivery, biosensing, bioimaging, antibacterial, tissue engineering, and 3D printing applications. 展开更多
关键词 GRAPHENE BIOMEDICAL BIOPRINTING Toxicity PHOTOTHERMAL therapy
在线阅读 下载PDF
Anticorrosive and antibacterial smart integrated strategy for biomedical magnesium 被引量:2
10
作者 JianLiang Zhao HanRui Cui +4 位作者 ZeYu Gao YanZe Bi ZhenZhen Dong Yan Li CaiQi Wang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第8期2789-2800,共12页
Biomedical magnesium is an ideal material for hard tissue repair and replacement.However,its rapid degradation and infection after implantation significantly hindersclinical applications.To overcome these two critical... Biomedical magnesium is an ideal material for hard tissue repair and replacement.However,its rapid degradation and infection after implantation significantly hindersclinical applications.To overcome these two critical drawbacks,we describe an integrated strategybased on the changes in pH and Mg^(2+)triggered by magnesiumdegradation.This system can simultaneously offer anticorrosion and antibacterial activity.First,nanoengineered peptide-grafted hyperbranched polymers(NPGHPs)with excellent antibacterial activity were introduced to sodium alginate(SA)to construct a sensitive NPGHPs/SA hydrogel.The swelling degree,responsiveness,and antibacterial activity were then investigated,indicating that the system can perform dual stimulation of pH and Mg^(2+)with controllable antimicrobial properties.Furthermore,an intelligent platform was constructed by coating hydrogels on magnesium with polydopamine as the transition layer.The alkaline environment generated by the corrosion of magnesium reduces the swelling degree of the coatingso that the liquid is unfavorable for contacting the substrate,thus exhibiting superior corrosion resistance.Antibacterial testing shows that the material can effectively fight against bacteria,while hemolytic and cytotoxicity testing suggest that it is highly biocompatible.Thus,this work realizes the smart integration of anticorrosion and antibacterial properties of biomedical magnesium,thereby providing broader prospects for the use of magnesium. 展开更多
关键词 Biomedical magnesium ANTICORROSION ANTIBACTERIAL Intelligent Nanoengineered peptide-grafted hyperbranched polymers
在线阅读 下载PDF
Engineering organoid microfluidic system for biomedical and health engineering:A review 被引量:5
11
作者 Yifan Xing Junyu Liu +9 位作者 Xiaojie Guo Haipeng Liu Wen Zeng Yi Wang Chong Zhang Yuan Lu Dong He Shaohua Ma Yonghong He Xin-Hui Xing 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第2期244-254,共11页
In recent years,organoid technology,i.e.,in vitro three-dimensional(3D)tissue culture,has attracted increasing attention in biomedical engineering.Organoids are cell complexes induced by differentiation of stem cells ... In recent years,organoid technology,i.e.,in vitro three-dimensional(3D)tissue culture,has attracted increasing attention in biomedical engineering.Organoids are cell complexes induced by differentiation of stem cells or organ-progenitor cells in vitro using 3D culture technology.They can replicate the key structural and functional characteristics of the target organs in vivo.With the opening up of this new field of health engineering,there is a need for engineering-system approaches to the production,control,and quantitative analysis of organoids and their microenvironment.Traditional organoid technology has limitations,including lack of physical and chemical microenvironment control,high heterogeneity,complex manual operation,imperfect nutritional supply system,and lack of feasible online analytical technology for the organoids.The introduction of microfluidic chip technology into organoids has overcome many of these limitations and greatly expanded the scope of applications.Engineering organoid microfluidic system has become an interdisciplinary field in biomedical and health engineering.In this review,we summarize the development and culture system of organoids,discuss how microfluidic technology has been used to solve the main technical challenges in organoid research and development,and point out new opportunities and prospects for applications of organoid microfluidic system in drug development and screening,food safety,precision medicine,and other biomedical and health engineering fields. 展开更多
关键词 ORGANOIDS Stem cell Culture system MICROFLUIDICS Biomedical engineering Human health
暂未订购
A Review of Nano/Micro/Milli Needles Fabrications for Biomedical Engineering 被引量:1
12
作者 Bin Liu Xin Yi +6 位作者 Ying Zheng Zhishan Yuan Jingbo Yang Jian Yang Xiao Yu Lelun Jiang Chengyong Wang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2022年第3期51-79,共29页
Needles,as some of the most widely used medical devices,have been effectively applied in human disease prevention,diagnosis,treatment,and rehabilitation.Thin 1D needle can easily penetrate cells/organs by generating h... Needles,as some of the most widely used medical devices,have been effectively applied in human disease prevention,diagnosis,treatment,and rehabilitation.Thin 1D needle can easily penetrate cells/organs by generating highly localized stress with their sharp tips to achieve bioliquid sampling,biosensing,drug delivery,surgery,and other such applications.In this review,we provide an overview of multiscale needle fabrication techniques and their biomedical applications.Needles are classified as nanoneedles,microneedles and millineedles based on the needle diameter,and their fabrication techniques are highlighted.Nanoneedles bridge the inside and outside of cells,achieving intracellular electrical recording,biochemical sensing,and drug delivery.Microneedles penetrate the stratum corneum layer to detect biomarkers/bioelectricity in interstitial fluid and deliver drugs through the skin into the human circulatory system.Millineedles,including puncture,syringe,acupuncture and suture needles,are presented.Finally,conclusions and future perspectives for next-generation nano/micro/milli needles are discussed. 展开更多
关键词 NANONEEDLES MICRONEEDLES Millineedles Fabrication methods Biomedical Engineering
在线阅读 下载PDF
The age of vanadium-based nanozymes: Synthesis, catalytic mechanisms, regulation and biomedical applications 被引量:1
13
作者 Shuaiwen Li Zihui Chen +1 位作者 Feng Yang Wanqing Yue 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第4期52-60,共9页
Nanomaterials with enzyme-mimic(nanozyme) activity have garnered considerable attention as a potential alternative to natural enzymes, thanks to their low preparation cost, high activity, ease of preservation, and uni... Nanomaterials with enzyme-mimic(nanozyme) activity have garnered considerable attention as a potential alternative to natural enzymes, thanks to their low preparation cost, high activity, ease of preservation, and unique physicochemical properties. Vanadium(V) is a transition metal that integrates the benefits of valence-richness, low cost, and non-toxicity, making it a desirable candidate for developing a range of emerging nanozymes. In this review, we provide the first systematic summary of recent research progress on V-based nanozymes. First, we summarize the preparation of V-based nanozymes using both top-down and bottom-up synthesis methods. Next, we review the mechanism of V-based nanozymes that mimic the activity of various enzymes. We then discuss methods for regulating V-based nanozyme activity, including morphology, size, valence engineering, defect engineering, external triggering, and surface engineering. Afterward, we outline various biomedical applications, including therapeutic, anti-inflammatory, antibacterial, and biosensing. Finally, we prospect the challenges and countermeasures for V-based nanozymes based on their development. By summarizing recent research progress on V-based nanozymes, we hope to provide useful insights for researchers to further explore their potential applications and overcome their existing challenges. 展开更多
关键词 VANADIUM Nanozymes Catalytic mechanisms Biomedical applications REGULATION
原文传递
A bibliometric analysis: Research progress and prospects on transition metal dichalcogenides in the biomedical field 被引量:2
14
作者 Yaping Liu Shuang Zhu +1 位作者 Zhanjun Gu Yuliang Zhao 《Chinese Chemical Letters》 SCIE CAS CSCD 2021年第12期3762-3770,共9页
Recent years have witnessed the wide contributions made by transition metal dichalcogenides(TMDCs)to various fields, including the biomedical field. Here, to identify and further promote the development of biomedical ... Recent years have witnessed the wide contributions made by transition metal dichalcogenides(TMDCs)to various fields, including the biomedical field. Here, to identify and further promote the development of biomedical TMDCs, we provide a bibliometric analysis of literature regarding TMDCs for biomedical applications. Firstly, general bibliometric distributions of the dataset by year, country, institute, Web of Science category and referenced source are recognized. Following, we carefully explore the research hotspots of the TMDC-related biomedical field, among which biosensing, bioelectronics, cancer theranostics, antibacterial and tissue engineering are identified. The functions of TMDCs in each biomedical scenario, the related properties and research challenges are highlighted. Finally, future prospects are proposed to shed light on the design of novel TMDC-related biomaterials, potential new biomedical applications, as well as their clinical translation. 展开更多
关键词 Transition metal dichalcogenides Biomedical applications Bibliometric analysis BIOSENSING Cancer theranostics ANTIBACTERIAL
原文传递
Zwitterionic-phosphonate block polymer as anti-fouling coating for biomedical metals 被引量:1
15
作者 Ya-Hui Gu Hong-Wei Liu +6 位作者 Xiao-Han Dong Zhuang-Zhuang Ma You-Xin Li Li Li Dong-Lin Gan Ping-Sheng Liu Jian Shen 《Rare Metals》 SCIE EI CAS CSCD 2022年第2期700-712,共13页
Antifouling ability and blood compatibility are critically important in the development of medical metallic implants for clinical applications.Here,we report the zwitterionic-phosphonate block polymer as a new type of... Antifouling ability and blood compatibility are critically important in the development of medical metallic implants for clinical applications.Here,we report the zwitterionic-phosphonate block polymer as a new type of high-efficiency antifouling coating for metallic substrates.Six block polymers(pSBMA-b-pDEMMP)with different segment lengths(nSBMA:nDEMMP=10:25,40:25,100:25,75:5,75:40,75:100)were prepared and anchored on titanium alloy(TC4)substrates.1H nuclear magnetic resonance(NMR)results clearly showed the precise preparation of the block polymers.XPS analysis and water contact angle measurement indicated the successful construction of the block polymer on TC4 substrates.The relationship between the antifouling performance of the polymer coating and the length of pDEMMP and pSBMA segments in the block polymer was established.Results showed that the polymer containing the pSBMA segment above 40 repeat units could significantly inhibit protein adsorption,platelet adhesion,bacterial adhesion and cell adhesion,while the pDEMMP segment above 5 repeat units is able to generate stable zwitterionic polymer coating on TC4 substrates.This ease of production and high-efficiency antifouling modification strategy elucidated here may find broad application for biomedical implants and devices in clinical applications. 展开更多
关键词 ZWITTERIONIC PHOSPHONATE Anti-fouling coating Biomedical metals
原文传递
Recentprogress in thebiomedical application of PEDOT:PSS hydrogels 被引量:2
16
作者 Binhan Zhao Zheng Li +5 位作者 Lan Zheng Zhichao Ye Yuyang Yuan Shanshan Zhang Bo Liang Tianyu Li 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第10期13-27,共15页
Bioelectronics have gained substantial research attention owing to their potential applications in health monitoring and diagnose,and greatly promoted the development of biomedicine.Recently,poly(3,4-ethylenedioxythio... Bioelectronics have gained substantial research attention owing to their potential applications in health monitoring and diagnose,and greatly promoted the development of biomedicine.Recently,poly(3,4-ethylenedioxythiophene):polystyrene sulfonate(PEDOT:PSS)hydrogels have arose as a promising candi-date for the next-generation bioelectronic interface due to its high-conductivity,versatility,flexibility and biocompatibility.In this review,we highlight the recent advances of PEDOT:PSS hydrogels,including the gelation methods and modification strategies,and summarize their wide applications in different type of sensors and tissue engineering in detail.We expect that this work will provide valuable information regarding the functionalizations and applications of PEDOT:PSS hydrogels. 展开更多
关键词 Conductingpolymer PEDOT:PSS hydrogels Conjugatedpolymer Gelation methods Biomedicalapplication
原文传递
Mechanical and Corrosion Behavior of a Biomedical Mg–6Zn–0.5Zr Alloy Containing a Large Number of Twins 被引量:2
17
作者 Chang‑Jian Yan Bo Guan +5 位作者 Yun‑Chang Xin Ling‑Yu Zhao Guang‑Jie Huang Rui Hong Xiao‑Bo Chen Paul K.Chu 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2023年第3期439-455,共17页
The strong texture of Mg alloys can lead to strong tension–compression yield asymmetry and corrosion anisotropy,and this will consequently affect the effectiveness of hard tissue implants.A biomedical Mg–6Zn–0.5Zr ... The strong texture of Mg alloys can lead to strong tension–compression yield asymmetry and corrosion anisotropy,and this will consequently affect the effectiveness of hard tissue implants.A biomedical Mg–6Zn–0.5Zr alloy containing a large number of{1012}primary twins and{1012}–{1012}secondary twins is successfully prepared by cross compression.The dual twin structure not only removes the tension–compression yield asymmetry completely,but effectively reduces the corrosion anisotropy without compromise of corrosion resistance.The difference between the largest corrosion rate and smallest one is~1.2 times compared to~1.6 times of the original materials.It is found that the reduced corrosion anisotropy is related to re-distribution of crystallographic orientations by twins. 展开更多
关键词 Biomedical Mg alloy Corrosion Mechanical anisotropy Texture TWINS
原文传递
Comprehensive Physicochemical Profiling and Characterization of Neem Plant Leaf Extracts: Insights for Pharmaceutical & Biomedical Applications 被引量:1
18
作者 Martin Nduka Nwanekezie Julius Nnamdi Ndive +1 位作者 Ijeoma Love Ogbonna Godspower O. Sebe 《Advances in Chemical Engineering and Science》 2023年第4期382-399,共18页
This study presents a comprehensive physicochemical analysis of neem plant leaf extracts with a focus on their potential applications in pharmaceutical and biomedical contexts. Utilizing the soxhlet extraction method ... This study presents a comprehensive physicochemical analysis of neem plant leaf extracts with a focus on their potential applications in pharmaceutical and biomedical contexts. Utilizing the soxhlet extraction method with n-hexane as the solvent, the study investigated the quantitative and qualitative composition of neem leaf extracts in reference to concentrations. The results revealed a diverse array of compounds, including cyanogenic glycoside, cardiac glycoside, tannin, steroids, phytate, flavone, oxalate, rutin, lunamarin, catechin, spatein, naringin, resveratrol, kaempferol, flavonones, epicatechin, and epihedrine, with notable concentrations. Further analyses indicated shared physicochemical properties, such as carboxyl and hydroxyl groups. Qualitative assessments affirmed the presence of flavonoid and phenolic compounds, while FTIR analysis confirmed the existence of carboxyl and hydroxyl groups. These findings emphasize the potential use of neem leaves as pharmaceutical raw materials due to their antioxidant-rich content. Additionally, the study explored the density, viscosity, saponification value, and foaming power of neem leaf extracts, providing insights into their industrial applicability. GC-MS analyses highlighted the presence of significant chemical compounds, with potential therapeutic implications. Mineral analysis demonstrated essential elements for human and animal nutrition. This study underscores neem plant leaves’ multifaceted potential across pharmaceutical, herbal medicine, cosmetic, and functional food sectors. It lays a solid foundation for further research into the specific health benefits, offering valuable insights for harnessing neem leaves’ potential in innovative products and treatments. 展开更多
关键词 PHYTOCHEMICAL N-HEXANE Neem Leaves FTIR PHARMACEUTICAL BIOMEDICINE Biomedical Antioxidant Chemical HERBAL
在线阅读 下载PDF
Biomedical X-ray Imaging Enabled by Carbon Nanotube X-ray Sources
19
作者 Guohua Cao 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2018年第4期529-536,615,共9页
Although discovered more than 100 years ago, X-ray source technology has evolved rather slowly. The recent invention of the carbon nanotube (CNT) X-ray source technology holds great promise to revolutionize the fiel... Although discovered more than 100 years ago, X-ray source technology has evolved rather slowly. The recent invention of the carbon nanotube (CNT) X-ray source technology holds great promise to revolutionize the field of biomedical X-ray imaging. CNT X-ray sources have been successfully adapted to several biomedical imaging applications including dynamic rnicro-CT of small animals and stationary breast tomosynthesis of breast cancers. Yet their more irnportant biomedical imaging applications still lie ahead in the future, with the devel- oprnent of stationary rnulti-source CT as a noteworthy exarnple. 展开更多
关键词 Biomedical imaging X-ray imaging X-ray source Carbon nanotube X-raysource Carbon nanotube Field emission Cornputed tornography Breast tornosynthesis
在线阅读 下载PDF
Editorial:advances in deep learning techniques for biomedical imaging
20
作者 Chuang Niu Ge Wang 《Visual Computing for Industry,Biomedicine,and Art》 EI 2023年第1期153-154,共2页
The field of biomedical imaging has been revolutionized by deep learning techniques.This special issue is focused on the theme of“AI-based Image Analysis”.Because there are so many conferences and journals in this f... The field of biomedical imaging has been revolutionized by deep learning techniques.This special issue is focused on the theme of“AI-based Image Analysis”.Because there are so many conferences and journals in this field,our special issue can only be a small snapshot of a much bigger and highly dynamic picture.In this special issue,we present six papers that highlight the power of deep learning in solving challenging biomedical imaging and image analysis problems. 展开更多
关键词 LEARNING BIOMEDICAL techniques.
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部