Breast Cancer(BC)remains a leadingmalignancy among women,resulting in highmortality rates.Early and accurate detection is crucial for improving patient outcomes.Traditional diagnostic tools,while effective,have limita...Breast Cancer(BC)remains a leadingmalignancy among women,resulting in highmortality rates.Early and accurate detection is crucial for improving patient outcomes.Traditional diagnostic tools,while effective,have limitations that reduce their accessibility and accuracy.This study investigates the use ofConvolutionalNeuralNetworks(CNNs)to enhance the diagnostic process of BC histopathology.Utilizing the BreakHis dataset,which contains thousands of histopathological images,we developed a CNN model designed to improve the speed and accuracy of image analysis.Our CNN architecture was designed with multiple convolutional layers,max-pooling layers,and a fully connected network optimized for feature extraction and classification.Hyperparameter tuning was conducted to identify the optimal learning rate,batch size,and number of epochs,ensuring robust model performance.The dataset was divided into training(80%),validation(10%),and testing(10%)subsets,with performance evaluated using accuracy,precision,recall,and F1-score metrics.Our CNN model achieved a magnification-independent accuracy of 97.72%,with specific accuracies of 97.50%at 40×,97.61%at 100×,99.06%at 200×,and 97.25%at 400×magnification levels.These results demonstrate the model’s superior performance relative to existing methods.The integration of CNNs in diagnostic workflows can potentially reduce pathologist workload,minimize interpretation errors,and increase the availability of diagnostic testing,thereby improving BC management and patient survival rates.This study highlights the effectiveness of deep learning in automating BC histopathological classification and underscores the potential for AI-driven diagnostic solutions to improve patient care.展开更多
Ciprofloxacin(CIP)is a commonly used antibiotic in the fluoroquinolone group and is widely used in medical and veterinary medicine disciplines to treat bacterial infections.When CIP is discharged into the sewage syste...Ciprofloxacin(CIP)is a commonly used antibiotic in the fluoroquinolone group and is widely used in medical and veterinary medicine disciplines to treat bacterial infections.When CIP is discharged into the sewage system,it cannot be removed by a conventional wastewater treatment plant because of its recalcitrant characteristics.In this study,boron-doped diamond anode and persulfate were used to degrade CIP in an aquatic solution by creating an electrochemically activated persulfate(EAP)process.Ironwas added to the system as a coactivator and the process was called EAP+Fe.The effects of independent variables,including pH,Fe^(2+),persulfate concentration,and electrolysis time on the systemwere optimized using the response surface methodology.The results showed that the EAP+Fe process removed 94%of CIP under the following optimum conditions:A pH of 3,persulfate/Fe^(2+)concentration of 0.4 mmol/L,initial CIP concentration 30 mg/L,and electrolysis time of 12.64 min.CIP removal efficiency was increased from 65.10%to 94.35%by adding Fe^(2+)as a transition metal.CIP degradation products,7 pathways,and 78 intermediates of CIP were studied,and three of those intermediates(m/z 298,498,and 505)were reported.The toxicological analysis based on toxicity estimation software results indicated that some degradation products of CIP were toxic to targeted animals,including fathead minnow,Daphnia magna,Tetrahymena pyriformis,and rats.The optimumoperation costswere similar in EAP and EAP+Fe processes,approximately 0.54€/m^(3).展开更多
Soil is a significant carbon reservoir with the capacity to store carbon twice as much as the atmosphere or plants. Given the significant potential of soil to capture and store atmospheric CO2, it presents a viable so...Soil is a significant carbon reservoir with the capacity to store carbon twice as much as the atmosphere or plants. Given the significant potential of soil to capture and store atmospheric CO2, it presents a viable solution for mitigating the present and future impacts of climate change. However, due to its high susceptibility to global environmental issues like land degradation, loss of biodiversity, and climate change, monitoring and protecting soil carbon pools is a complex challenge. Intensive agricultural operations have detrimental effects on the soil, including the rapid breakdown of soil organic carbon, which releases excess carbon into the air, causing increased atmospheric CO2 levels and a depletion of the soil carbon reserves. The diversity and abundance of soil microbial communities play a crucial role in controlling essential ecosystem processes, including the decomposition of organic matter and nutrient cycling, including carbon. Heterotrophic soil microorganisms facilitate the soil organic matter turnover to obtain the nutrients and energy required for their growth and maintenance. Therefore, the microbial residues and exudates have up to 80% carbon in the stable soil organic matter fractions. This overview attempts to summarize the information on various carbon pools, soil carbon interaction with microbes, impacts on environmental changes, and strategies to enhance the storage of belowground carbon.展开更多
提出了利用可见/近红外高光谱成像技术检测高温障碍胁迫下番茄叶片色差的方法。首先采集380~1 023nm波段范围内60个高温障碍胁迫和60个健康番茄叶片的高光谱图像,同时获取全部叶片的色差值(L*,a*和b*),然后提取所有样本的高光谱图...提出了利用可见/近红外高光谱成像技术检测高温障碍胁迫下番茄叶片色差的方法。首先采集380~1 023nm波段范围内60个高温障碍胁迫和60个健康番茄叶片的高光谱图像,同时获取全部叶片的色差值(L*,a*和b*),然后提取所有样本的高光谱图像中感兴趣区域(region of interest,ROI)的光谱反射率值。基于不同预处理方法建立偏最小二乘(partial least squares,PLS)预测模型,再利用连续投影算法(successive projections algorithm,SPA)提取特征波长并建立SPA-PLS预测模型。最后分别基于全波段和特征波段建立偏最小二乘-判别分析(partial least squares-discriminant analysis,PLS-DA)模型。结果显示,全波段中基于原始光谱信息建立的模型效果最好,3个色差值的预测集决定系数(determination coefficient,R2)分别是0.818,0.109和0.896;基于特征波长建立的模型预测集R2分别是0.591,0.244和0.673;所有模型预测集的总体识别率均大于77.50%。结果表明,可见/近红外高光谱成像技术检测番茄叶片色差值(L*和b*)和识别高温障碍样本是可行的。展开更多
Objective To evaluate the toxic and carcinogenic potential of ozone alone or in combination with 4-(N-methyl-N-nitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and/or dibutyl phthalate (DBP). Methods Male and femal...Objective To evaluate the toxic and carcinogenic potential of ozone alone or in combination with 4-(N-methyl-N-nitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and/or dibutyl phthalate (DBP). Methods Male and female B6C3F1 mice were exposed, through inhalation, intravenous administration and diet, to 0.5 ppm of ozone, 1.0 mg/kg of NNK and 5000 ppm of DBP, individually and in combination for 16 and 32 weeks. Results No treatment-related death was seen, but significant differences in body and organ weights between control and treated mice were observed during the study. No incidence of lung tumor incidence was recorded in mice exposed to either ozone alone or combined treatment. Oviductal carcinomas were observed in female mice exposed to ozone or DBP alone for 16 weeks and ozone in combination with NNK and DBP for 32 weeks. Conclusion Although ozone alone and in conjunction with NNK and/or DBP does not induce lung cancer under our experimental conditions, they induce oviductal carcinomas in B6C3F1 mice.展开更多
Application of biochar to agricultural soils is effective to sequester atmospheric carbon and improve soil quality, but current pyrolysis and transportation costs are high, making biochar too costly to be used at the ...Application of biochar to agricultural soils is effective to sequester atmospheric carbon and improve soil quality, but current pyrolysis and transportation costs are high, making biochar too costly to be used at the field scale. This study developed a new in-situ technique, burning and soil covering(B-SC), which can be used by farmers for production of biochar with crop residue. In this study,the air-dried feedstocks, elephant grass and corn residue, were burnt in situ for biochar production in the field. After approximately 90% of the leaves were combusted, the burning process was dramatically slowed down by covering the feedstock with soil. The biochar yield averaged 18.0 ± 1.3(n = 15) and 13.7 ± 1.3(n = 10) kg per 100 kg air-dried feedstock for the elephant grass and corn residue,respectively. The biochar properties were suitable for soil improvement. The inputs for biochar production of the B-SC process only included low labor force, open field, feedstock(e.g., grass and crop residue), and simple tools. The operation time for processing 10 kg of the corn residue by an individual farmer was 24.4 ± 4.1 min(n = 10). As compared with the conventional field burning process, the B-SC process drastically shortened the time for biomass burning and generated a significantly lower emission of smoke and thermal energy. This simple technique can be particularly practical and effective for farmers to improve the soils of poor quality in China.展开更多
Vapor phase catalytic hydrogen peroxide production by oxidation of water is possible by coupling the reaction with oxidation of an organic sacrificial reductant. It is potentially a safer process than direct synthesis...Vapor phase catalytic hydrogen peroxide production by oxidation of water is possible by coupling the reaction with oxidation of an organic sacrificial reductant. It is potentially a safer process than direct synthesis from H2 and O2. Based on mechanistic information available mostly for liquid phase catalytic processes, feasible reaction mechanisms for such coupled reactions are proposed based on which desirable catalyst properties are identified. It is found that the surface-adsorbed oxygen bond is an important parameter for identifying desirable catalysts. Thermodynamics can be used to identify the types of organic oxidation reactions that can couple with water oxidation such that H2O2 formation becomes thermodynamically favorable. Reactions such as epoxidation of alkenes and selective oxidation of alkanes to alcohols cannot provide sufficient thermodynamic driving force, whereas oxidation of alcohols to aldehydes and to acids can. Finally, further research is suggested to identify catalytic properties important for H2O2 decomposition and for coupling selective oxidation of organic compounds to oxidation of H2O in order to facilitate development of H2O2 production coupled with selective organic oxidation.展开更多
A novel flower-like hydrated magnesium carbonate hydroxide, Mg5 (CO3 )4 (OH)2·4H2O, with micro-structure composed of individual thin nano-sheets was synthesized using a facile solution route without the use o...A novel flower-like hydrated magnesium carbonate hydroxide, Mg5 (CO3 )4 (OH)2·4H2O, with micro-structure composed of individual thin nano-sheets was synthesized using a facile solution route without the use of template or organic surfactant. Reaction time has an important effect on the final morphology of the product. The micro-structure and morphology of Mg5 (CO3)4 (OH)2·4H2O were characterized by means of X-ray diffractometry (XRD), fieldemission scanning electron microscopy(FE-SEM). Brunauer-Emmett-Teller(BET) surface areas of the samples were also measured. The probable formation mechanism of flower-like micro-structure was discussed. It was found that Mg5 (CO3)4( OH)2·4H2O with flower-like micro-structure was a novel and efficient catalyst for the synthesis of diphenyl carbonate (DPC) by transesterification of dimethyl carbonate (DMC) with phenol.展开更多
Electrocatalytic reduction of oxygen is a growing synthetic technique for the sustainable production of hydrogen peroxide(H_(2)O_(2)).The current challenges concern seeking low-cost,highly active,and selective electro...Electrocatalytic reduction of oxygen is a growing synthetic technique for the sustainable production of hydrogen peroxide(H_(2)O_(2)).The current challenges concern seeking low-cost,highly active,and selective electrocatalysts.Cobalt-nitrogen-doped carbon containing catalytically active cobalt-nitrogen(Co-N_(x))sites is an emerging class of materials that can promote the electrochemical generation of H_(2)O_(2).Here,we report a straightforward method for the preparation of cobalt-nitrogen-doped carbon composed of a number of Co-N_(x)moieties using low-energy dry-state ball milling,followed by controlled pyrolysis.This scalable method uses inexpensive materials containing cobalt acetate,2-methylimidazole,and Ketjenblack EC-600JD as the metal,nitrogen,and carbon precursors,respectively.Electrochemical measurements in an acidic medium show the present material exhibits a significant increase in the oxygen reduction reaction current density,accompanied by shifting the onset potential into the positive direction.The current catalyst has also demonstrated an approximate 90%selectivity towards H_(2)O_(2)across a wide range of potential.The H_(2)O_(2)production rate,as measured by H_(2)O_(2)bulk electrolysis,has reached 100 mmol g_(cat).^(–1)h^(–1)with high H_(2)O_(2)faradaic efficiency close to 85%(for 2 h at 0.3 V vs.RHE).Lastly,the catalyst durability has been tested(for 6 h at 0.3 V vs.RHE).The catalyst has shown relatively consistent performance,while the overall faradic efficiency reaches approximate 85%throughout the test cycle indicating the promising catalyst durability for practical applications.The formed Co-N_(x)moieties,along with other parameters,including the acidic environment and the applied potential,likely are the primary reasons for such high activity and selectivity to H_(2)O_(2)production.展开更多
The traditional method to refine crude cottonseed oil is time-consuming and expensive.This study evaluates the effectiveness of coagulation–flocculation–sedimentation process using quaternary polyamine-based polymer...The traditional method to refine crude cottonseed oil is time-consuming and expensive.This study evaluates the effectiveness of coagulation–flocculation–sedimentation process using quaternary polyamine-based polymers in refining crude cottonseed oil.Flocculated by four commercial polyamine-based cationic polymers(SL2700,SL3000,SL4500 and SL5000)with varied molecular weight(MW)and charge density(CD)and followed by coagulation with sodium hydroxide,crude cottonseed oil can be effectively purified.Free fatty acids,gossypol,pigments and trace elements are all effectively and sufficiently removed by the four polymers in a MW-and CDdependent manner.Our results suggest that the use of polyamine-based cationic polymers may offer an effective and feasible alternative to the traditional method for crude cottonseed oil refining.展开更多
Essential plant nutrients contained in residues and wastes generated during biofuel processing can be recovered for further production of bioenergy biomass. The objective of this study was to determine the relative ag...Essential plant nutrients contained in residues and wastes generated during biofuel processing can be recovered for further production of bioenergy biomass. The objective of this study was to determine the relative agronomic efficiency of “processed” biofuel residual (PBR). Liquid biofuel residual was “processed” by precipitating phosphate and ammonium in the residual with magnesium into a struvite-like material. Then, in a series of greenhouse experiments, we evaluated the fertility potential of PBR, using sweet sorghum (Sorghum bicolor (L.) Moench), as a test bioenergy crop. We compared the agronomic effectiveness of PBR to inorganic commercial fertilizers, biosolids, and poultry manure as nutrient sources. The sources were either applied alone or in combination with supplemental essential plant nutrients (S, K, Mg, and micronutrients). In each of the greenhouse experiments, the crop was grown for 12 wk on soil of minimal native fertility. After each harvest, sufficient water was applied to the soil in each pot over a 6-wk period to yield ~2 L (~one pore volume) of leachate to assess potential total N and soluble reactive phosphorus (SRP) losses. Dry matter yields from the PBR treatment applied alone were significantly greater than yields from inorganic fertilizers, biosolids, and poultry manure treatments applied alone, and similar to yields obtained when the supplemental essential plant nutrients were added to the inorganic fertilizer, biosolids, and manure treatments. Leachate N and SRP concentrations from the PBR treatment were significantly lower than in the treatments with inorganic fertilizers, poultry manure, and biosolids. We conclude that PBR can substitute for inorganic fertilizers and other organic sources of plant nutrients to produce bioenergy biomass cheaply, without causing offsite N and P losses in vulnerable soils.展开更多
Carbon dioxide(CO2),the main gas emitted from fossil burning,is the primary contributor to global warming.Circulating fluidized bed reactor(CFBR)is proved as an energy-efficient method for post-combustion CO2 capture....Carbon dioxide(CO2),the main gas emitted from fossil burning,is the primary contributor to global warming.Circulating fluidized bed reactor(CFBR)is proved as an energy-efficient method for post-combustion CO2 capture.The numerical simulation by computational fluid dynamics(CFD)is believed as a promising tool to study CO2 adsorption process in CFBR.Although three-dimensional(3D)simulations were proved to have better predicting performance with the experimental results,two-dimensional(2D)simulations have been widely reported for qualitative and quantitative studies on gas-solid behavior in CFBR for its higher computational efficiency recently.However,the discrepancies between 2D and 3D simulations have rarely been evaluated by detailed study.Considering that the differences between the 2D and 3D simulations will vary substantially with the changes of independent operating conditions,it is beneficial to lower computational costs to clarify the effects of dimensionality on the numerical CO2 adsorption runs under various operating conditions.In this work,the comparative analysis for CO2 adsorption in 2D and 3D simulations was conducted to enlighten the effects of dimensionality on the hydrodynamics and reaction behaviors,in which the separation rate,species distribution and hydrodynamic characteristics were comparatively studied for both model frames.With both accuracy and computational costs considered,the viable suggestions were provided in selecting appropriate model frame for the studies on optimization of operating conditions,which directly affect the capture and energy efficiencies of cyclic CO2 capture process in CFBR.展开更多
<span style="font-family:Verdana;">The eddy covariance technique is an accurate and direct tool to measure the Net Ecosystem Exchange (NEE) of carbon dioxide. However, sometimes conditions are not amen...<span style="font-family:Verdana;">The eddy covariance technique is an accurate and direct tool to measure the Net Ecosystem Exchange (NEE) of carbon dioxide. However, sometimes conditions are not amenable to measurements using this technique. Thus, different methods have been developed to allow gap-filling and quality assessment of eddy covariance data sets. In this study first, two different Artificial Neural Networks (ANNs) approaches, the Multi-layer Perceptron (MLP) trained by the Back-Propagation (BP) algorithm, and the Radial Basis Function (RBF), were used to fill missing NEE data measured above rain-fed maize at the University of Nebraska-Lincoln Agricultural Research and Development Center near Mead, Nebraska. The gap-filled data were then compared by different statistical indices to gap-filled data obtained with the technique suggested by Suyker and Verma in 2005 [S&V method], and the ANN approach presented by Papale in 2003. The results showed that the RBF network was able to find better fits for missing values compared to the MLP (BP) network and S&V method. In addition, unlike the S&V method, which depends on different gap-filling procedures over the year;the structure of RBF and MLP (BP) networks was constant. However, data analysis indicated Papale’s approach gave better fits than the RBF and MLP (BP) methods. Thus, based on this work, Papale’s approach is the best method to estimate the missing data;though the applied statistical indices, which were used for model evaluation, show little difference between Papale’s approach and the RBF and MLP (BP).</span>展开更多
The applicability, transferability, and scalability of visible/near-infrared(VNIR)-derived soil total carbon(TC) models are still poorly understood. The objectives of this study were to: i) compare models of three mul...The applicability, transferability, and scalability of visible/near-infrared(VNIR)-derived soil total carbon(TC) models are still poorly understood. The objectives of this study were to: i) compare models of three multivariate statistical methods, partial least squares regression(PLSR), support vector machine(SVM), and random forest methods, to predict soil logarithm-transformed TC(logTC) using five fields(local scale) and a pooled(regional-scale) VNIR spectral dataset(a total of 560 TC spectral datasets), ii)assess the model transferability among fields, and iii) evaluate their up-and downscaling behaviors in Florida, USA. The transferability and up-and downscaling of the models were limited by the following factors: i) the spectral data domain, ii) soil attribute domain,iii) methods that describe the internal model structure of VNIR-TC relationships, and iv) environmental domain space of attributes that control soil carbon dynamics. All soil logTC models showed excellent performance based on all three methods with R^2> 0.86,bias < 0.01%, root mean squared error(RMSE) = 0.09%, residual predication deviation(RPD) > 2.70%, and ratio of prediction error to interquartile range(RPIQ) > 4.54. The PLSR method performed substantially better than the SVM method to scale and transfer the TC models. This could be attributed to the tendency of SVM to overfit models, while the asset of the PLSR method was its robustness when the models were validated with independent datasets, transferred, and/or scaled. The upscaled soil TC models performed somewhat better in terms of model fit(R2), RPD, and RPIQ, whereas the downscaled models showed less bias and smaller RMSE based on PLSR. We found no universal trend indicating which of the four limiting factors mentioned above had the most impact that constrained the transferability and scalability of the models. Given that several factors can impinge on the empirically derived soil spectral prediction models, as demonstrated by this study, more focus on their applicability and scalability is needed.展开更多
Two approaches to synthesize silicon-based catalytic structures that aim at capturing the properties and functionalities of natural enzymes are described in this brief review:unit-by-unit synthesis of macromolecular u...Two approaches to synthesize silicon-based catalytic structures that aim at capturing the properties and functionalities of natural enzymes are described in this brief review:unit-by-unit synthesis of macromolecular units and templating/imprinting synthesis of nanocages. The unit-by-unit approach mimics the peptide synthesis method,offers atomic control of the structure,but is inefficient in synthesizing large structures such as nanocages. The templating/imprinting method is more suitable for nanocages at the sacrifice of atomic control,and the nanocages obtained are shown to possess properties exhibited by enzyme cavities.展开更多
β-Co(OH)2 and Mg(OH)2 nanoplates were synthesized via a facile template-free hydrothermal approach.The different conditions of preparation and catalytic properties of the products were studied and discussed.The p...β-Co(OH)2 and Mg(OH)2 nanoplates were synthesized via a facile template-free hydrothermal approach.The different conditions of preparation and catalytic properties of the products were studied and discussed.The products were characterized by X-ray diffraction,transmission electron microscopy,scanning electron microscopy,selected area electron diffraction(SAED),and gas chromatograph.展开更多
[Objectives] To study the effect of different culture conditions on the growth of wild I. cicadae Miq. liquid strain. [Methods]The I. cicadae Miq. strain was inoculated into the liquid culture medium with different ca...[Objectives] To study the effect of different culture conditions on the growth of wild I. cicadae Miq. liquid strain. [Methods]The I. cicadae Miq. strain was inoculated into the liquid culture medium with different carbon sources,nitrogen sources,micronutrients and p H,cultured in the constant temperature shaking incubator with rotating speed of 120 r/min at 19℃,and the mycelium pellet diameter,density and weight were compared between different treatments. [Results] The results showed that the optimum components of I. cicadae Miq.strain liquid included soluble starch,milk powder and vitamin B_(12),and the optimum p H was 5. 0-6. 0. [Conclusions] Soluble starch was the most suitable carbon source for the culture medium of I. cicadae Miq. liquid strain; milk powder was the most suitable nitrogen source for the culture medium of I. cicadae Miq. liquid strain; the most suitable p H was 5. 0-9. 0 for the mycelial growth of I. cicadae Miq.; the formula and mixture ratio of the optimum culture medium for the growth of liquid strain were determined.展开更多
Currently, the analysis of acetone-butanol-ethanol (ABE) broths is performed using both High Performance Liquid Chromatography (HPLC) and Gas Chromatography (GC) for each sample since GC cannot be used in quantifying ...Currently, the analysis of acetone-butanol-ethanol (ABE) broths is performed using both High Performance Liquid Chromatography (HPLC) and Gas Chromatography (GC) for each sample since GC cannot be used in quantifying sugars and HPLC methods are not yet efficient enough to detect all components separately. In this study, a novel method was developed to quantify all main components present in ABE model solutions (acetone, butanol, ethanol, butyric acid, acetic acid, glucose and xylose) using only HPLC. Although the HPLC operating conditions were optimized to obtain the best possible resolution in HPLC chromatograms, it was observed that the peaks for butyric acid, acetone and ethanol overlapped. The same trend was observed for glucose and xylose. Using the asymmetric Gaussian fit, a program was written in MATLAB to detect the overlapped peaks, deconvolute them and calculate the area of each separated peak. The concentrations of each component were then calculated using the areas and the calibration curves for each component. Experimental results show that this method works well for the ABE model solutions and can be used to quantify all components in the solution when there are some overlapped peaks in the HPLC chromatograms.展开更多
This research aimed to combine 3 cell and tissue culture technologies to obtain mechanistic insights of cells in porous scaffolds. When cultivated on 2D (2-dimensional) surfaces, HDFs (human dermal fibroblasts) be...This research aimed to combine 3 cell and tissue culture technologies to obtain mechanistic insights of cells in porous scaffolds. When cultivated on 2D (2-dimensional) surfaces, HDFs (human dermal fibroblasts) behaved individually and had no strict requirement on seeding density for proliferation; while HaCat cells relied heavily on initial densities for proliferation and colony formation, which was facilitated when co-cultured with HDFs. Experiments using a 3D CCIS (3-dimensional cell culture and imaging system) indicated that HDFs colonised openpores of varying sizes (125-420 ~tm) on modular substrates via bridge structures; while HaCat cells formed aperture structures and only colonised small pores (125 txm). When co-cultured, HDFs not only facilitated HaCat attachment on the substrates, but also coordinated with HaCat cells to colonise open pores of varying sizes via bridge and aperture structures. Based on these observations, a 2-stage strategy for the culture of HDFs and HaCat cells on porous scaffolds was proposed and applied successfully on a cellulosic scaffold. This research demonstrated that cell colonisation in scaffolds was dependent on multiple factors; while the integrated 2D&3D culture technologies and the 3D CCIS was an effective and efficient approach to obtain mechanistic insights of their influences on tissue regeneration.展开更多
This study examined the effects of soil and switchgrass variety on sustainability and eco-friendliness of switchgrass-based ethanol production. Using the Agricultural Land Management Alternatives with Numerical Assess...This study examined the effects of soil and switchgrass variety on sustainability and eco-friendliness of switchgrass-based ethanol production. Using the Agricultural Land Management Alternatives with Numerical Assessment Criteria (ALMANAC) model, switchgrass biomass yields were simulated for several scenarios of soils and varieties. The yields were fed to the Integrated Biomass Supply Analysis and Logistics (IBSAL) model to compute energy use and carbon emissions in the biomass supply chain, which then were used to compute Net Energy Value (NEV) and Carbon Credit Balance (CCB), the indicators of sustainability and eco-friendliness, respectively. The results showed that the values of these indicators increased in the direction of heavier to lighter soils and on the order of north-upland, south-upland, north-lowland, and south-lowland varieties. The values of NEV and CCB increased in the direction of dry to wet year. Gaps among the varieties were smaller in a dry year than in a wet year. From south to north, NEV and CCB decreased for lowland varieties but increased for upland ones. Thus, the differences among the varieties decreased in the direction of lower to higher latitudes. The study demonstrated that the sustainability and eco-friendliness of switchgrass-based ethanol production could be increased with alternative soil and variety options.展开更多
基金funded by the Deanship of Graduate Studies and Scientific Research at Jouf University under grant No.(DGSSR-2024-02-01096).
文摘Breast Cancer(BC)remains a leadingmalignancy among women,resulting in highmortality rates.Early and accurate detection is crucial for improving patient outcomes.Traditional diagnostic tools,while effective,have limitations that reduce their accessibility and accuracy.This study investigates the use ofConvolutionalNeuralNetworks(CNNs)to enhance the diagnostic process of BC histopathology.Utilizing the BreakHis dataset,which contains thousands of histopathological images,we developed a CNN model designed to improve the speed and accuracy of image analysis.Our CNN architecture was designed with multiple convolutional layers,max-pooling layers,and a fully connected network optimized for feature extraction and classification.Hyperparameter tuning was conducted to identify the optimal learning rate,batch size,and number of epochs,ensuring robust model performance.The dataset was divided into training(80%),validation(10%),and testing(10%)subsets,with performance evaluated using accuracy,precision,recall,and F1-score metrics.Our CNN model achieved a magnification-independent accuracy of 97.72%,with specific accuracies of 97.50%at 40×,97.61%at 100×,99.06%at 200×,and 97.25%at 400×magnification levels.These results demonstrate the model’s superior performance relative to existing methods.The integration of CNNs in diagnostic workflows can potentially reduce pathologist workload,minimize interpretation errors,and increase the availability of diagnostic testing,thereby improving BC management and patient survival rates.This study highlights the effectiveness of deep learning in automating BC histopathological classification and underscores the potential for AI-driven diagnostic solutions to improve patient care.
基金provided by the Bursa Technical University Scientific Research Project(Project no:211N010)College of Agriculture at Purdue University。
文摘Ciprofloxacin(CIP)is a commonly used antibiotic in the fluoroquinolone group and is widely used in medical and veterinary medicine disciplines to treat bacterial infections.When CIP is discharged into the sewage system,it cannot be removed by a conventional wastewater treatment plant because of its recalcitrant characteristics.In this study,boron-doped diamond anode and persulfate were used to degrade CIP in an aquatic solution by creating an electrochemically activated persulfate(EAP)process.Ironwas added to the system as a coactivator and the process was called EAP+Fe.The effects of independent variables,including pH,Fe^(2+),persulfate concentration,and electrolysis time on the systemwere optimized using the response surface methodology.The results showed that the EAP+Fe process removed 94%of CIP under the following optimum conditions:A pH of 3,persulfate/Fe^(2+)concentration of 0.4 mmol/L,initial CIP concentration 30 mg/L,and electrolysis time of 12.64 min.CIP removal efficiency was increased from 65.10%to 94.35%by adding Fe^(2+)as a transition metal.CIP degradation products,7 pathways,and 78 intermediates of CIP were studied,and three of those intermediates(m/z 298,498,and 505)were reported.The toxicological analysis based on toxicity estimation software results indicated that some degradation products of CIP were toxic to targeted animals,including fathead minnow,Daphnia magna,Tetrahymena pyriformis,and rats.The optimumoperation costswere similar in EAP and EAP+Fe processes,approximately 0.54€/m^(3).
文摘Soil is a significant carbon reservoir with the capacity to store carbon twice as much as the atmosphere or plants. Given the significant potential of soil to capture and store atmospheric CO2, it presents a viable solution for mitigating the present and future impacts of climate change. However, due to its high susceptibility to global environmental issues like land degradation, loss of biodiversity, and climate change, monitoring and protecting soil carbon pools is a complex challenge. Intensive agricultural operations have detrimental effects on the soil, including the rapid breakdown of soil organic carbon, which releases excess carbon into the air, causing increased atmospheric CO2 levels and a depletion of the soil carbon reserves. The diversity and abundance of soil microbial communities play a crucial role in controlling essential ecosystem processes, including the decomposition of organic matter and nutrient cycling, including carbon. Heterotrophic soil microorganisms facilitate the soil organic matter turnover to obtain the nutrients and energy required for their growth and maintenance. Therefore, the microbial residues and exudates have up to 80% carbon in the stable soil organic matter fractions. This overview attempts to summarize the information on various carbon pools, soil carbon interaction with microbes, impacts on environmental changes, and strategies to enhance the storage of belowground carbon.
文摘提出了利用可见/近红外高光谱成像技术检测高温障碍胁迫下番茄叶片色差的方法。首先采集380~1 023nm波段范围内60个高温障碍胁迫和60个健康番茄叶片的高光谱图像,同时获取全部叶片的色差值(L*,a*和b*),然后提取所有样本的高光谱图像中感兴趣区域(region of interest,ROI)的光谱反射率值。基于不同预处理方法建立偏最小二乘(partial least squares,PLS)预测模型,再利用连续投影算法(successive projections algorithm,SPA)提取特征波长并建立SPA-PLS预测模型。最后分别基于全波段和特征波段建立偏最小二乘-判别分析(partial least squares-discriminant analysis,PLS-DA)模型。结果显示,全波段中基于原始光谱信息建立的模型效果最好,3个色差值的预测集决定系数(determination coefficient,R2)分别是0.818,0.109和0.896;基于特征波长建立的模型预测集R2分别是0.591,0.244和0.673;所有模型预测集的总体识别率均大于77.50%。结果表明,可见/近红外高光谱成像技术检测番茄叶片色差值(L*和b*)和识别高温障碍样本是可行的。
文摘Objective To evaluate the toxic and carcinogenic potential of ozone alone or in combination with 4-(N-methyl-N-nitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and/or dibutyl phthalate (DBP). Methods Male and female B6C3F1 mice were exposed, through inhalation, intravenous administration and diet, to 0.5 ppm of ozone, 1.0 mg/kg of NNK and 5000 ppm of DBP, individually and in combination for 16 and 32 weeks. Results No treatment-related death was seen, but significant differences in body and organ weights between control and treated mice were observed during the study. No incidence of lung tumor incidence was recorded in mice exposed to either ozone alone or combined treatment. Oviductal carcinomas were observed in female mice exposed to ozone or DBP alone for 16 weeks and ozone in combination with NNK and DBP for 32 weeks. Conclusion Although ozone alone and in conjunction with NNK and/or DBP does not induce lung cancer under our experimental conditions, they induce oviductal carcinomas in B6C3F1 mice.
基金supported by the National Natural Science Foundation of China (No. 41271363)
文摘Application of biochar to agricultural soils is effective to sequester atmospheric carbon and improve soil quality, but current pyrolysis and transportation costs are high, making biochar too costly to be used at the field scale. This study developed a new in-situ technique, burning and soil covering(B-SC), which can be used by farmers for production of biochar with crop residue. In this study,the air-dried feedstocks, elephant grass and corn residue, were burnt in situ for biochar production in the field. After approximately 90% of the leaves were combusted, the burning process was dramatically slowed down by covering the feedstock with soil. The biochar yield averaged 18.0 ± 1.3(n = 15) and 13.7 ± 1.3(n = 10) kg per 100 kg air-dried feedstock for the elephant grass and corn residue,respectively. The biochar properties were suitable for soil improvement. The inputs for biochar production of the B-SC process only included low labor force, open field, feedstock(e.g., grass and crop residue), and simple tools. The operation time for processing 10 kg of the corn residue by an individual farmer was 24.4 ± 4.1 min(n = 10). As compared with the conventional field burning process, the B-SC process drastically shortened the time for biomass burning and generated a significantly lower emission of smoke and thermal energy. This simple technique can be particularly practical and effective for farmers to improve the soils of poor quality in China.
基金support by Northwestern University through a gift from Dr.Warren Haug is greatly appreciated
文摘Vapor phase catalytic hydrogen peroxide production by oxidation of water is possible by coupling the reaction with oxidation of an organic sacrificial reductant. It is potentially a safer process than direct synthesis from H2 and O2. Based on mechanistic information available mostly for liquid phase catalytic processes, feasible reaction mechanisms for such coupled reactions are proposed based on which desirable catalyst properties are identified. It is found that the surface-adsorbed oxygen bond is an important parameter for identifying desirable catalysts. Thermodynamics can be used to identify the types of organic oxidation reactions that can couple with water oxidation such that H2O2 formation becomes thermodynamically favorable. Reactions such as epoxidation of alkenes and selective oxidation of alkanes to alcohols cannot provide sufficient thermodynamic driving force, whereas oxidation of alcohols to aldehydes and to acids can. Finally, further research is suggested to identify catalytic properties important for H2O2 decomposition and for coupling selective oxidation of organic compounds to oxidation of H2O in order to facilitate development of H2O2 production coupled with selective organic oxidation.
基金Supported by the National Natural Science Foundation of China(Nos.20671011,20331010,90406002and90406024)the 111 Project(No.B07012)the Key Laboratory of Structural Chemistry Foundation(No.060017).
文摘A novel flower-like hydrated magnesium carbonate hydroxide, Mg5 (CO3 )4 (OH)2·4H2O, with micro-structure composed of individual thin nano-sheets was synthesized using a facile solution route without the use of template or organic surfactant. Reaction time has an important effect on the final morphology of the product. The micro-structure and morphology of Mg5 (CO3)4 (OH)2·4H2O were characterized by means of X-ray diffractometry (XRD), fieldemission scanning electron microscopy(FE-SEM). Brunauer-Emmett-Teller(BET) surface areas of the samples were also measured. The probable formation mechanism of flower-like micro-structure was discussed. It was found that Mg5 (CO3)4( OH)2·4H2O with flower-like micro-structure was a novel and efficient catalyst for the synthesis of diphenyl carbonate (DPC) by transesterification of dimethyl carbonate (DMC) with phenol.
文摘Electrocatalytic reduction of oxygen is a growing synthetic technique for the sustainable production of hydrogen peroxide(H_(2)O_(2)).The current challenges concern seeking low-cost,highly active,and selective electrocatalysts.Cobalt-nitrogen-doped carbon containing catalytically active cobalt-nitrogen(Co-N_(x))sites is an emerging class of materials that can promote the electrochemical generation of H_(2)O_(2).Here,we report a straightforward method for the preparation of cobalt-nitrogen-doped carbon composed of a number of Co-N_(x)moieties using low-energy dry-state ball milling,followed by controlled pyrolysis.This scalable method uses inexpensive materials containing cobalt acetate,2-methylimidazole,and Ketjenblack EC-600JD as the metal,nitrogen,and carbon precursors,respectively.Electrochemical measurements in an acidic medium show the present material exhibits a significant increase in the oxygen reduction reaction current density,accompanied by shifting the onset potential into the positive direction.The current catalyst has also demonstrated an approximate 90%selectivity towards H_(2)O_(2)across a wide range of potential.The H_(2)O_(2)production rate,as measured by H_(2)O_(2)bulk electrolysis,has reached 100 mmol g_(cat).^(–1)h^(–1)with high H_(2)O_(2)faradaic efficiency close to 85%(for 2 h at 0.3 V vs.RHE).Lastly,the catalyst durability has been tested(for 6 h at 0.3 V vs.RHE).The catalyst has shown relatively consistent performance,while the overall faradic efficiency reaches approximate 85%throughout the test cycle indicating the promising catalyst durability for practical applications.The formed Co-N_(x)moieties,along with other parameters,including the acidic environment and the applied potential,likely are the primary reasons for such high activity and selectivity to H_(2)O_(2)production.
基金Supported by the research foundation by the U.S.Cotton Research and Promotion Program,U.S.Department of Agriculture and the Project of Combination of Industry,Education and Research of Ministry of Education of Guangdong Province,China(2011B090400358)
文摘The traditional method to refine crude cottonseed oil is time-consuming and expensive.This study evaluates the effectiveness of coagulation–flocculation–sedimentation process using quaternary polyamine-based polymers in refining crude cottonseed oil.Flocculated by four commercial polyamine-based cationic polymers(SL2700,SL3000,SL4500 and SL5000)with varied molecular weight(MW)and charge density(CD)and followed by coagulation with sodium hydroxide,crude cottonseed oil can be effectively purified.Free fatty acids,gossypol,pigments and trace elements are all effectively and sufficiently removed by the four polymers in a MW-and CDdependent manner.Our results suggest that the use of polyamine-based cationic polymers may offer an effective and feasible alternative to the traditional method for crude cottonseed oil refining.
文摘Essential plant nutrients contained in residues and wastes generated during biofuel processing can be recovered for further production of bioenergy biomass. The objective of this study was to determine the relative agronomic efficiency of “processed” biofuel residual (PBR). Liquid biofuel residual was “processed” by precipitating phosphate and ammonium in the residual with magnesium into a struvite-like material. Then, in a series of greenhouse experiments, we evaluated the fertility potential of PBR, using sweet sorghum (Sorghum bicolor (L.) Moench), as a test bioenergy crop. We compared the agronomic effectiveness of PBR to inorganic commercial fertilizers, biosolids, and poultry manure as nutrient sources. The sources were either applied alone or in combination with supplemental essential plant nutrients (S, K, Mg, and micronutrients). In each of the greenhouse experiments, the crop was grown for 12 wk on soil of minimal native fertility. After each harvest, sufficient water was applied to the soil in each pot over a 6-wk period to yield ~2 L (~one pore volume) of leachate to assess potential total N and soluble reactive phosphorus (SRP) losses. Dry matter yields from the PBR treatment applied alone were significantly greater than yields from inorganic fertilizers, biosolids, and poultry manure treatments applied alone, and similar to yields obtained when the supplemental essential plant nutrients were added to the inorganic fertilizer, biosolids, and manure treatments. Leachate N and SRP concentrations from the PBR treatment were significantly lower than in the treatments with inorganic fertilizers, poultry manure, and biosolids. We conclude that PBR can substitute for inorganic fertilizers and other organic sources of plant nutrients to produce bioenergy biomass cheaply, without causing offsite N and P losses in vulnerable soils.
基金supported by the National Natural Science Foundation of China(21506181,21506179)Natural Science Foundation of Hunan Province(2020JJ3033,2019JJ40281,2018SK2027,2018RS3088,2019SK2112)+1 种基金Research Foundation of Education Bureau of Hunan Province(18B088)Hunan Key Laboratory of Environment Friendly Chemical Process Integration and Hunan 2011 Collaborative Innovation Center of Chemical Engineering&Technology with Environmental Benignity and Effective Resource Utilization,State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering(2020-KF-11).
文摘Carbon dioxide(CO2),the main gas emitted from fossil burning,is the primary contributor to global warming.Circulating fluidized bed reactor(CFBR)is proved as an energy-efficient method for post-combustion CO2 capture.The numerical simulation by computational fluid dynamics(CFD)is believed as a promising tool to study CO2 adsorption process in CFBR.Although three-dimensional(3D)simulations were proved to have better predicting performance with the experimental results,two-dimensional(2D)simulations have been widely reported for qualitative and quantitative studies on gas-solid behavior in CFBR for its higher computational efficiency recently.However,the discrepancies between 2D and 3D simulations have rarely been evaluated by detailed study.Considering that the differences between the 2D and 3D simulations will vary substantially with the changes of independent operating conditions,it is beneficial to lower computational costs to clarify the effects of dimensionality on the numerical CO2 adsorption runs under various operating conditions.In this work,the comparative analysis for CO2 adsorption in 2D and 3D simulations was conducted to enlighten the effects of dimensionality on the hydrodynamics and reaction behaviors,in which the separation rate,species distribution and hydrodynamic characteristics were comparatively studied for both model frames.With both accuracy and computational costs considered,the viable suggestions were provided in selecting appropriate model frame for the studies on optimization of operating conditions,which directly affect the capture and energy efficiencies of cyclic CO2 capture process in CFBR.
文摘<span style="font-family:Verdana;">The eddy covariance technique is an accurate and direct tool to measure the Net Ecosystem Exchange (NEE) of carbon dioxide. However, sometimes conditions are not amenable to measurements using this technique. Thus, different methods have been developed to allow gap-filling and quality assessment of eddy covariance data sets. In this study first, two different Artificial Neural Networks (ANNs) approaches, the Multi-layer Perceptron (MLP) trained by the Back-Propagation (BP) algorithm, and the Radial Basis Function (RBF), were used to fill missing NEE data measured above rain-fed maize at the University of Nebraska-Lincoln Agricultural Research and Development Center near Mead, Nebraska. The gap-filled data were then compared by different statistical indices to gap-filled data obtained with the technique suggested by Suyker and Verma in 2005 [S&V method], and the ANN approach presented by Papale in 2003. The results showed that the RBF network was able to find better fits for missing values compared to the MLP (BP) network and S&V method. In addition, unlike the S&V method, which depends on different gap-filling procedures over the year;the structure of RBF and MLP (BP) networks was constant. However, data analysis indicated Papale’s approach gave better fits than the RBF and MLP (BP) methods. Thus, based on this work, Papale’s approach is the best method to estimate the missing data;though the applied statistical indices, which were used for model evaluation, show little difference between Papale’s approach and the RBF and MLP (BP).</span>
基金supported by the Pedometrics, Landscape Analysis, and GIS Laboratory, Soil and Water Sciences Department, University of Florida, USA
文摘The applicability, transferability, and scalability of visible/near-infrared(VNIR)-derived soil total carbon(TC) models are still poorly understood. The objectives of this study were to: i) compare models of three multivariate statistical methods, partial least squares regression(PLSR), support vector machine(SVM), and random forest methods, to predict soil logarithm-transformed TC(logTC) using five fields(local scale) and a pooled(regional-scale) VNIR spectral dataset(a total of 560 TC spectral datasets), ii)assess the model transferability among fields, and iii) evaluate their up-and downscaling behaviors in Florida, USA. The transferability and up-and downscaling of the models were limited by the following factors: i) the spectral data domain, ii) soil attribute domain,iii) methods that describe the internal model structure of VNIR-TC relationships, and iv) environmental domain space of attributes that control soil carbon dynamics. All soil logTC models showed excellent performance based on all three methods with R^2> 0.86,bias < 0.01%, root mean squared error(RMSE) = 0.09%, residual predication deviation(RPD) > 2.70%, and ratio of prediction error to interquartile range(RPIQ) > 4.54. The PLSR method performed substantially better than the SVM method to scale and transfer the TC models. This could be attributed to the tendency of SVM to overfit models, while the asset of the PLSR method was its robustness when the models were validated with independent datasets, transferred, and/or scaled. The upscaled soil TC models performed somewhat better in terms of model fit(R2), RPD, and RPIQ, whereas the downscaled models showed less bias and smaller RMSE based on PLSR. We found no universal trend indicating which of the four limiting factors mentioned above had the most impact that constrained the transferability and scalability of the models. Given that several factors can impinge on the empirically derived soil spectral prediction models, as demonstrated by this study, more focus on their applicability and scalability is needed.
基金Supported by US Department of Energy, Office of Science,Basic Energy Sciences,grant No . DE-FG02-01ER15184No. DE-FG02-03ER15457 for the NU Institute for Energy Catalysis
文摘Two approaches to synthesize silicon-based catalytic structures that aim at capturing the properties and functionalities of natural enzymes are described in this brief review:unit-by-unit synthesis of macromolecular units and templating/imprinting synthesis of nanocages. The unit-by-unit approach mimics the peptide synthesis method,offers atomic control of the structure,but is inefficient in synthesizing large structures such as nanocages. The templating/imprinting method is more suitable for nanocages at the sacrifice of atomic control,and the nanocages obtained are shown to possess properties exhibited by enzyme cavities.
基金Supported by the National Natural Science Foundation of China(Nos.20331010,20671011,90406024and90406002)the 111 Project(No.B07012)the Key Laboratory of Structural Chemistry Foundation(No.060017).
文摘β-Co(OH)2 and Mg(OH)2 nanoplates were synthesized via a facile template-free hydrothermal approach.The different conditions of preparation and catalytic properties of the products were studied and discussed.The products were characterized by X-ray diffraction,transmission electron microscopy,scanning electron microscopy,selected area electron diffraction(SAED),and gas chromatograph.
基金Supported by"Six Talents Peaks"Project in Jiangsu Province in 2015(NY-024)Project of Jiangsu Polytechnic College of Agriculture and Forestry(2014KJ28)
文摘[Objectives] To study the effect of different culture conditions on the growth of wild I. cicadae Miq. liquid strain. [Methods]The I. cicadae Miq. strain was inoculated into the liquid culture medium with different carbon sources,nitrogen sources,micronutrients and p H,cultured in the constant temperature shaking incubator with rotating speed of 120 r/min at 19℃,and the mycelium pellet diameter,density and weight were compared between different treatments. [Results] The results showed that the optimum components of I. cicadae Miq.strain liquid included soluble starch,milk powder and vitamin B_(12),and the optimum p H was 5. 0-6. 0. [Conclusions] Soluble starch was the most suitable carbon source for the culture medium of I. cicadae Miq. liquid strain; milk powder was the most suitable nitrogen source for the culture medium of I. cicadae Miq. liquid strain; the most suitable p H was 5. 0-9. 0 for the mycelial growth of I. cicadae Miq.; the formula and mixture ratio of the optimum culture medium for the growth of liquid strain were determined.
文摘Currently, the analysis of acetone-butanol-ethanol (ABE) broths is performed using both High Performance Liquid Chromatography (HPLC) and Gas Chromatography (GC) for each sample since GC cannot be used in quantifying sugars and HPLC methods are not yet efficient enough to detect all components separately. In this study, a novel method was developed to quantify all main components present in ABE model solutions (acetone, butanol, ethanol, butyric acid, acetic acid, glucose and xylose) using only HPLC. Although the HPLC operating conditions were optimized to obtain the best possible resolution in HPLC chromatograms, it was observed that the peaks for butyric acid, acetone and ethanol overlapped. The same trend was observed for glucose and xylose. Using the asymmetric Gaussian fit, a program was written in MATLAB to detect the overlapped peaks, deconvolute them and calculate the area of each separated peak. The concentrations of each component were then calculated using the areas and the calibration curves for each component. Experimental results show that this method works well for the ABE model solutions and can be used to quantify all components in the solution when there are some overlapped peaks in the HPLC chromatograms.
文摘This research aimed to combine 3 cell and tissue culture technologies to obtain mechanistic insights of cells in porous scaffolds. When cultivated on 2D (2-dimensional) surfaces, HDFs (human dermal fibroblasts) behaved individually and had no strict requirement on seeding density for proliferation; while HaCat cells relied heavily on initial densities for proliferation and colony formation, which was facilitated when co-cultured with HDFs. Experiments using a 3D CCIS (3-dimensional cell culture and imaging system) indicated that HDFs colonised openpores of varying sizes (125-420 ~tm) on modular substrates via bridge structures; while HaCat cells formed aperture structures and only colonised small pores (125 txm). When co-cultured, HDFs not only facilitated HaCat attachment on the substrates, but also coordinated with HaCat cells to colonise open pores of varying sizes via bridge and aperture structures. Based on these observations, a 2-stage strategy for the culture of HDFs and HaCat cells on porous scaffolds was proposed and applied successfully on a cellulosic scaffold. This research demonstrated that cell colonisation in scaffolds was dependent on multiple factors; while the integrated 2D&3D culture technologies and the 3D CCIS was an effective and efficient approach to obtain mechanistic insights of their influences on tissue regeneration.
文摘This study examined the effects of soil and switchgrass variety on sustainability and eco-friendliness of switchgrass-based ethanol production. Using the Agricultural Land Management Alternatives with Numerical Assessment Criteria (ALMANAC) model, switchgrass biomass yields were simulated for several scenarios of soils and varieties. The yields were fed to the Integrated Biomass Supply Analysis and Logistics (IBSAL) model to compute energy use and carbon emissions in the biomass supply chain, which then were used to compute Net Energy Value (NEV) and Carbon Credit Balance (CCB), the indicators of sustainability and eco-friendliness, respectively. The results showed that the values of these indicators increased in the direction of heavier to lighter soils and on the order of north-upland, south-upland, north-lowland, and south-lowland varieties. The values of NEV and CCB increased in the direction of dry to wet year. Gaps among the varieties were smaller in a dry year than in a wet year. From south to north, NEV and CCB decreased for lowland varieties but increased for upland ones. Thus, the differences among the varieties decreased in the direction of lower to higher latitudes. The study demonstrated that the sustainability and eco-friendliness of switchgrass-based ethanol production could be increased with alternative soil and variety options.