Moderate to severe perinatal hypoxic-ischemic encephalopathy occurs in~1 to 3/1000 live births in high-income countries and is associated with a significant risk of death or neurodevelopmental disability.Detailed asse...Moderate to severe perinatal hypoxic-ischemic encephalopathy occurs in~1 to 3/1000 live births in high-income countries and is associated with a significant risk of death or neurodevelopmental disability.Detailed assessment is important to help identify highrisk infants,to help families,and to support appropriate interventions.A wide range of monitoring tools is available to assess changes over time,including urine and blood biomarkers,neurological examination,and electroencephalography.At present,magnetic resonance imaging is unique as although it is expensive and not suited to monitoring the early evolution of hypoxic-ischemic encephalopathy by a week of life it can provide direct insight into the anatomical changes in the brain after hypoxic-ischemic encephalopathy and so offers strong prognostic information on the long-term outcome after hypoxic-ischemic encephalopathy.This review investigated the temporal dynamics of neonatal hypoxic-ischemic encephalopathy injuries,with a particular emphasis on exploring the correlation between the prognostic implications of magnetic resonance imaging scans in the first week of life and their relationship to long-term outcome prediction,particularly for infants treated with therapeutic hypothermia.A comprehensive literature search,from 2016 to 2024,identified 20 pertinent articles.This review highlights that while the optimal timing of magnetic resonance imaging scans is not clear,overall,it suggests that magnetic resonance imaging within the first week of life provides strong prognostic accuracy.Many challenges limit the timing consistency,particularly the need for intensive care and clinical monitoring.Conversely,although most reports examined the prognostic value of scans taken between 4 and 10 days after birth,there is evidence from small numbers of cases that,at times,brain injury may continue to evolve for weeks after birth.This suggests that in the future it will be important to explore a wider range of times after hypoxic-ischemic encephalopathy to fully understand the optimal timing for predicting long-term outcomes.展开更多
Using a photosensitizer(PS),light,and oxygen,photodynamic therapy creates cytotoxic reactive oxygen species,such as singlet oxygen(1O2),that kill cancer cells.Many cancer cell lines have up to 300 times more folic aci...Using a photosensitizer(PS),light,and oxygen,photodynamic therapy creates cytotoxic reactive oxygen species,such as singlet oxygen(1O2),that kill cancer cells.Many cancer cell lines have up to 300 times more folic acid receptors than healthy cells.Therefore,folic acid is often used to improve selectivity of PSs.Photobleaching poses a disadvantage for PSs.In this paper,we have studied the photoinduced changes of meso-substituted cationic pyridyl porphyrins in the presence of folic acid using uorescence and absorption spectroscopy.In this work,it was demonstrated that L-histidine,which is a 1O2 quencher,and D-mannitol,which is a hydroxyl radical quencher,can reduce photobleaching of cationic porphyrins and their interaction products with FA.This implies both singlet oxygen and hydroxyl radicals are involved in photobleaching.Additionally,our study revealed certain important features of the photobleaching of cationic porphyrins in the presence of folic acid.展开更多
As we navigate the transition from the Fourth to the Fifth Industrial Revolution,the emerging fields of biomanufacturing and biofabrication are transforming life sciences and healthcare.These sectors are benefiting fr...As we navigate the transition from the Fourth to the Fifth Industrial Revolution,the emerging fields of biomanufacturing and biofabrication are transforming life sciences and healthcare.These sectors are benefiting from a synergy of synthetic and engineering biology,sustainable manufacturing,and integrated design principles.Advanced techniques such as 3D bioprinting,tissue engineering,directed assembly,and self-assembly are instrumental in creating biomimetic scaffolds,tissues,organoids,medical devices,and biohybrid systems.The field of biofabrication in the United Kingdom and Ireland is emerging as a pivotal force in bioscience and healthcare,propelled by cutting-edge research and development.Concentrating on the production of biologically functional products for use in drug delivery,in vitro models,and tissue engineering,research institutions across these regions are dedicated to innovating healthcare solutions that adhere to ethical standards while prioritising sustainability,affordability,and healthcare system benefits.展开更多
Studies were carried out on the extraction characters of trivalent rare earths from chloride solutions using organophosphorus acids 2-ethylhexylphosphonic acid mono-(2-ethylhexyl) ester (HEHEHP) combined with [di-...Studies were carried out on the extraction characters of trivalent rare earths from chloride solutions using organophosphorus acids 2-ethylhexylphosphonic acid mono-(2-ethylhexyl) ester (HEHEHP) combined with [di-(2-ethylhexyl)-phosphoric acid (HDEHP),isopropylphosphonic acid 1-hexyl-4-ethyloctyl ester (HHEOIPP),bis(2,4,4-trimethylpentyl)-phosphinic acid (Cyanex 272),bis(2,4,4-trimethypentyl)-monothiophosphinic acid (Cyanex 302) or bis(2,4,4-trimethypentyl)-dithiophosphinic acid (Cyanex 301)] as extractants. The effect of the equilibrium aqueous acidity on the extraction was studied. According to the corresponding separation factors for adjacent pairs of rare earths,it could be concluded that HEHEHP and Cyanex 272 could be employed for the separation of Tm(Ⅲ),Yb(Ⅲ),Lu(Ⅲ) from the other rare earths. Taking Yb(Ⅲ) as an example,based on the different stripping acid,the potential of the stripping was estimated.展开更多
To investigate the Fe^2+ effects on root tips in rice plant, experiments were carried out using border cells in vitro. The border cells were pre-planted in aeroponic culture and detached from root tips. Most border c...To investigate the Fe^2+ effects on root tips in rice plant, experiments were carried out using border cells in vitro. The border cells were pre-planted in aeroponic culture and detached from root tips. Most border cells have a long elliptical shape. The number and the viability of border cells in situ reached the maxima of 1600 and 97.5%, respectively, at 20---25 mm root length. This mortality was more pronounced at the first 1-12 h exposure to 250 mg/L Fe^2+ than at the last 12-36 h. After 36 h, the cell viability exposed to 250 mg/L Fe^2+ decreased to nought, whereas it was 46.5% at 0 mg/L Fe^2+. Increased Fe^2+ dosage stimulated the death of detached border cells from rice cultivars. After 4 h Fe^2+ treatment, the cell viabilities were _〉80% at 0 and 50 mg/L Fe^2+ treatment and were 〈62% at 150, 250 and 350 mg/L Fe^2+ treatment; The viability of border cells decreased by 10% when the Fe^2+ concentration increased by 100 mg/L. After 24 h Fe^2+ treatment, the viabilities of border cells at all the Fe^2+ levels were 〈65%; The viability of border cells decreased by 20% when the Fee+ concentration increased by 100 mg/L. The decreased viabilities of border cells indicated that Fe^2+ dosage and treatment time would cause deadly effect on the border cells. The increased cell death could protect the root tips from toxic harm. Therefore, it may protect root from the damage caused by harmful iron toxicity.展开更多
Bacillus megaterium BM302 bred by ion-beam implantation produces L-sorbose dehydrogenase accelerative protein (SAP) to accelerate the activity of L-sorbose dehydrogenase (SDH) of Gluconobacter oxydans in the 2-ket...Bacillus megaterium BM302 bred by ion-beam implantation produces L-sorbose dehydrogenase accelerative protein (SAP) to accelerate the activity of L-sorbose dehydrogenase (SDH) of Gluconobacter oxydans in the 2-keto-L-gulonic acid (2KLG) fermentation from L-sorbose by the mixed culture of B. megaterium BM302 and G. oxydans. The SAP purified by three chromatographic steps gave 35-fold purification with a yield of 13% and a specific activity of 5.21 units/mg protein. The molecular weight of the purified SAP was about 58 kDa. The SDH accelerative activity of SAP at pH 7 and 50℃ was the highest. Additionally, it retained 60% activity at a pH range of 6.5 ~ 10 and was stable at 20℃ ~ 60℃. After 0.32-unit SAP was added to the single cultured G. oxydans strains, the SDH activity was apparently accelerated and the 2KLG yield of GO29, GO112, GO and GI13 was enhanced 2.1, 3.3, 3.5 and 2.9 folds respectively over that of the strains without the addition of SAP.展开更多
It is found that the drugs for nourishing yin to reduce pathogenic fire can significantly down-regulate,and the drugs for tonifying the kidney to replenish essence can up-regulate mRNA expression of the hypothalamic G...It is found that the drugs for nourishing yin to reduce pathogenic fire can significantly down-regulate,and the drugs for tonifying the kidney to replenish essence can up-regulate mRNA expression of the hypothalamic GnRH,pituitary FSH,LH and osteoblastic BGP,indicating that the Chinese drugs for tonifying the kidney can regulate gene expression of the hypothalamic GnRH,pituitary FSH,LH,and osteoblastic BGP,which is possibly one of the main mechanisms of the Chinese drug for tonifying the kidney,regulating ephebic development process and improving skeletal development in sexual precocity children.展开更多
One of the major aims of the International Union of Physiological Sciences (IUPS) Physiome Project is to develop multiscale mathematical and computer models that can be used to help understand human health. We present...One of the major aims of the International Union of Physiological Sciences (IUPS) Physiome Project is to develop multiscale mathematical and computer models that can be used to help understand human health. We present here a small facet of this broad plan that applies to the gastrointestinal system. Specifically, we present an anatomically and physiologically based modelling framework that is capable of simulating normal and pathological electrical activity within the stomach and small intestine. The continuum models used within this framework have been created using anatomical information derived from common medical imaging modalities and data from the Visible Human Project. These models explicitly incorporate the various smooth muscle layers and networks of interstitial cells of Cajal (ICC) that are known to exist within the walls of the stomach and small bowel. Electrical activity within individual ICCs and smooth muscle cells is simulated using a previously published simplified representation of the cell level electrical activity. This simulated cell level activity is incorporated into a bidomain representation of the tissue, allowing electrical activity of the entire stomach or intestine to be simulated in the anatomically derived models. This electrical modelling framework successfully replicates many of the qualitative features of the slow wave activity within the stomach and intestine and has also been used to investigate activity associated with functional uncoupling of the stomach.展开更多
A novel rice lesion mimic mutant (LMM) was isolated from an ethane methyl sulfonate (EMS)-induced 02428 mutant bank. The mutant, tentatively designated as lmm6, develops necrotic lesions in the whole growth period alo...A novel rice lesion mimic mutant (LMM) was isolated from an ethane methyl sulfonate (EMS)-induced 02428 mutant bank. The mutant, tentatively designated as lmm6, develops necrotic lesions in the whole growth period along with changes in several important agronomic traits. We found that the initiation of the lesions was induced by light and cel death occurred in lmm6 accompanied with accumulation of reactive oxygen species (ROS). The lower chlorophyl content, soluble protein content and superoxide dismutase (SOD) activity, the higher malondialdehyde (MDA) content were detected in lmm6 than in the wild type (WT). Moreover, the observation by transmission electronic microscope (TEM) demonstrated that some organel es were damaged and the stroma lamel a of chloroplast was irregular and loose in mesophyl cel of lmm6. In addition, lmm6 was more resistant than WT to rice blast fungus Magnaporthe grisea infection, which was consistent with increased expression of four genes involved in the defense-related reaction. Genetic analysis showed that mutant trait of lmm6 is inherited as a monogenic recessive nuclear gene located on the long arm of chromosome 6. Using simple sequence repeat (SSR) markers, the target gene was ifnal y delimited to an interval of 80.8 kb between markers MM2359 and MM2370, containing 7 annotated genes. Taken together, our results provide the information to identify a new gene involved in rice lesion mimic, which wil be helpful in clarifying the mechanism of cel death and disease resistance in rice.展开更多
The effect of absence of lipoxygenase isoenzyme (LOX) on storage stability was investigated. Rice mutant 1297 without lipoxygenase isoenzyme-1 (LOX-1) or lipoxygenase isoenzyme-2 (LOX-2) generated by ion beam ir...The effect of absence of lipoxygenase isoenzyme (LOX) on storage stability was investigated. Rice mutant 1297 without lipoxygenase isoenzyme-1 (LOX-1) or lipoxygenase isoenzyme-2 (LOX-2) generated by ion beam irradiation from Wanjian2090 and reversion mutant RM1297 with LOX-1 and LOX-2 were subjected to an accelerated-aging experiment. Shanyou63 (with LOX-1 and LOX-2 ) served as control. Results showed that the germination and dehydrogenase activity decreased while the electrical conductivity and free fatty acid content increased in all varieties with accelerated aging. In 1297 that lacked LOX-1 and 2, there were slight changes in germination, dehydrogenase activity, membrane permeability and free fatty acid content during the thirty-day accelerated-aging experiment. But in varieties with LOX-1 and LOX-2, significant changes were observed, suggesting that LOX-1, 2 might be a definite factor which influenced seed lifespan. This study also indicates that ion beam irradiation may be used as mutagen to generate mutant and reversion mutants for biological study and could become a new direction in ion beam application.展开更多
With ion implantation (N+, energy 10 keV and dosage 1.56×1015 N+cm-2), a high xylanase-producing strain Aspergillus niger N212 was selected. Based on an orthogonal experiment, an optimal fermentation condition wa...With ion implantation (N+, energy 10 keV and dosage 1.56×1015 N+cm-2), a high xylanase-producing strain Aspergillus niger N212 was selected. Based on an orthogonal experiment, an optimal fermentation condition was designed for this high-yield strain. The suitable medium was composed of 8% corncob; 1.0% wheat bran; 0.1%TWEEN20; 0.5% (NH4)2SO4; 0.5%NaNO3; 0.5%FeSO4, 7.5 × 10-4; MnSO4·H2O, 2.5 × 10-4; ZnSO4, 2.0 × 10-4; CoCl2, 3.0 × 10-4. At present, under our experiment condition, xylanase activity of Aspergillus niger N212 reached a level of 600 IU/ml, almost increased by 100% in xylanase production and the time of yielding xylanase was largely reduced to 12 h at 28℃.展开更多
As a new mutagenetic method, low-energy ion implantation has been used widely in many research areas in recent years. In order to obtain some industrial strains with high xylanase yield, the wild type strain Aspergill...As a new mutagenetic method, low-energy ion implantation has been used widely in many research areas in recent years. In order to obtain some industrial strains with high xylanase yield, the wild type strain Aspergillus niger A3 was mutated by means of nitrogen ions implantation (10 keV, 2.6× 10^14 ~ 1.56 × 10^15 ions/cm^2) and a mutant N212 was isolated subsequently. However, it was found that the initial screening means of the high-yielding xylanase strains such as transparent halos was unfit for first screening. Compared with that of the wild type strain, xylanase production of the mutant N212 was increased from 320 IU/ml to 610 IU/ml, and the optimum fermentation temperature was increased from 28 ℃ to 30 ℃.展开更多
The hippocampus, an important part of the limbic system, is considered to be an important region of the brain for learning and memory functioning. Recent studies have demonstrated that synaptic plasticity is thought t...The hippocampus, an important part of the limbic system, is considered to be an important region of the brain for learning and memory functioning. Recent studies have demonstrated that synaptic plasticity is thought to be the basis of learning and memory functioning. A series of studies report that similar synaptic plasticity also exists in the spinal cord in the conduction pathway of pain sensation, which may contribute to hyperalgesia, abnormal pain, and analgesia. The synaptic plasticity of learning and memory functioning and that of the pain conduction pathway have similar mechanisms, which are related to the N-methyl-D-aspartic acid receptor. The hippocampus also has a role in pain modulation. As pain signals can reach the hippocampus, the precise correlation between synaptic plasticity of the pain pathway and that of learning and memory functioning deserves further investigation. The role of the hippocampus in processing pain information requires to be identified.展开更多
Ever since the low energy N+ ion beam has been accepted that the mutation effects of ionizing radiation are attributed mainly to direct or indirect damage to DNA. Evidences based on naked DNA irradiation in support of...Ever since the low energy N+ ion beam has been accepted that the mutation effects of ionizing radiation are attributed mainly to direct or indirect damage to DNA. Evidences based on naked DNA irradiation in support of a mutation spectrum appears to be consistent, but direct proof of such results in vivo are limited. Using mutS, dam and/or dcm defective Eschericha coli imitator strains, an preliminary experimental system on induction of in vivo mutation spectra of low energy N+ ion beam has been established in this study. It was observed that the mutation rates of rifampicin resistance induced by N+ implantation were quite high, ranging from 9.2 x 10~8 to 4.9× 10~5 at the dosage of 5.2×1014 ions/cm2. Strains all had more than 90-fold higher mutation rate than its spontaneous mutation rate determined by this method. It reveals that base substitutions involve in induction of mutation of low energy nitrogen ion beam implantation. The mutation rates of mutator strains were nearly 500-fold (GM2929), 400-fold (GM5864) and 6-fold larger than that of AB1157. The GM2929 and GM5864 both lose the ability of repair DNA mismatch damage by virtue of both dam and dcm pathways defective (GM2929) or failing to assemble the repair complex (GM5864) respectively. It may explain the both strains had a similar higher mutation rate than GM124 did. It indicated that DNA cytosine methylase might play an important role in mismatch repair of DNA damage induced by N+ implantation. The further related research were also discussed.展开更多
体内细胞受到含有化学和力学因素的生理和病理生理的刺激,故研究这些因素在细胞和器官水平如何调节功能就尤为重要。有关细胞和器官对化学因素的反应已开展诸多研究,而力学因素的影响却鲜有报道。近年来,荧光蛋白和显微镜技术的发展已...体内细胞受到含有化学和力学因素的生理和病理生理的刺激,故研究这些因素在细胞和器官水平如何调节功能就尤为重要。有关细胞和器官对化学因素的反应已开展诸多研究,而力学因素的影响却鲜有报道。近年来,荧光蛋白和显微镜技术的发展已成为阐明力传导过程的有用工具,先进的信号活细胞成像技术促进了力学生物学中分子机制的时空因素研究。本文综述荧光蛋白的基本知识以及其在生物学研究中的应用,特别讨论了以荧光共振能量迁移(fluorescence proteins and microscopy,FRET)技术为基础的生物传感器的发展和特征。基因编码的FRET生物传感器能够实现分子时空活动的成像和定量,使得活细胞中生物化学信号在力学刺激下的反应和传导可视化。同时,本文重点阐述分子水平力学刺激下的活细胞信号传导。展开更多
One of the biggest challenges in the biocompatibility of implantable metals is the prevention of the stress shielding effect,which is related to the coupling of the bone-metal mechanical properties.This stress shieldi...One of the biggest challenges in the biocompatibility of implantable metals is the prevention of the stress shielding effect,which is related to the coupling of the bone-metal mechanical properties.This stress shielding phenomenon provokes bone resorption and the consequent adverse effects on prosthesis fixation.However,it can be inhibited by adapting the stiffness of the implant material.Since the use of titanium(Ti)porous structures is a great alternative not only to inhibit this effect but also to improve the osteointegration of orthopedic and dental implants,a brief description of the techniques used for their manufacturing and a review of the current commercialized implants produced from porous Ti assemblies are compiled in this work.As powder metallurgy(PM)with space holder(SH)is a powerful technology used to produce porous Ti structures,it is here discussed its potential for the fabrication of medical devices from the perspectives of both design and manufacture.The most important parameters of the technique such as the size and shape of the initial metallic particles,the SH and binder type of materials,the compaction pressure of the green form,and in the sintering stage,the temperature,atmosphere,and time are reviewed according to the bibliography reported.Furthermore,the importance of the porosity and its types together with the influence of the mentioned parameters in the final porosity and,consequently,in the ultimate mechanical properties of the structure are discussed.Finally,a few examples of the PM-SH application for the manufacturing of orthopedic implants are presented.展开更多
Soil Olsen P level has a major influence on crop yield,efficient P utilization,and soil fertility.In this study,the optimum Olsen P range was determined from long-term(1990–2012)field experiments in three typical soi...Soil Olsen P level has a major influence on crop yield,efficient P utilization,and soil fertility.In this study,the optimum Olsen P range was determined from long-term(1990–2012)field experiments in three typical soil types of China under single cropping of maize or double cropping of maize and wheat.The critical soil Olsen P value for crop yield was evaluated using three different models,and the relationships among P use efficiency(PUE),Olsen P,and total P were analyzed.The agronomic critical soil Olsen P values obtained from the three models for the neutral soil of Gongzhuling and the calcareous soil of Zhengzhou were similar;however,the values from the linear-linear and linear-plateau models for both maize and wheat were substantially lower than those from the Mitscherlich model for the acidic soil of Qiyang.The PUE response change rates(linear equation slopes)under different soil Olsen P levels were small,indicating slight or no changes in the PUE as the soil Olsen P increased in all three soils.A comparison of the Olsen P levels that achieved the maximal PUE with the agronomic critical values derived from the three models indicated that the linear-plateau model exhibited the best performance.The regression equation coefficients of Olsen P response to total P decreased as follows:Zhengzhou(73 mg g-1)>Qiyang(65 mg g-1)>Gongzhuling(55 mg g-1).The Olsen P level increased as the total P increased,which may result in a decrease in PUE.To achieve a relatively high crop yield,PUE,and soil fertility,the optimum Olsen P range should be 13–40,10–40,and 29–40 mg kg-1 at Gongzhuling,Zhengzhou,and Qiyang,respectively.展开更多
基金supported by a grant from the Health Research New Zealand(HRC)22/559(to AJG and LB)。
文摘Moderate to severe perinatal hypoxic-ischemic encephalopathy occurs in~1 to 3/1000 live births in high-income countries and is associated with a significant risk of death or neurodevelopmental disability.Detailed assessment is important to help identify highrisk infants,to help families,and to support appropriate interventions.A wide range of monitoring tools is available to assess changes over time,including urine and blood biomarkers,neurological examination,and electroencephalography.At present,magnetic resonance imaging is unique as although it is expensive and not suited to monitoring the early evolution of hypoxic-ischemic encephalopathy by a week of life it can provide direct insight into the anatomical changes in the brain after hypoxic-ischemic encephalopathy and so offers strong prognostic information on the long-term outcome after hypoxic-ischemic encephalopathy.This review investigated the temporal dynamics of neonatal hypoxic-ischemic encephalopathy injuries,with a particular emphasis on exploring the correlation between the prognostic implications of magnetic resonance imaging scans in the first week of life and their relationship to long-term outcome prediction,particularly for infants treated with therapeutic hypothermia.A comprehensive literature search,from 2016 to 2024,identified 20 pertinent articles.This review highlights that while the optimal timing of magnetic resonance imaging scans is not clear,overall,it suggests that magnetic resonance imaging within the first week of life provides strong prognostic accuracy.Many challenges limit the timing consistency,particularly the need for intensive care and clinical monitoring.Conversely,although most reports examined the prognostic value of scans taken between 4 and 10 days after birth,there is evidence from small numbers of cases that,at times,brain injury may continue to evolve for weeks after birth.This suggests that in the future it will be important to explore a wider range of times after hypoxic-ischemic encephalopathy to fully understand the optimal timing for predicting long-term outcomes.
基金supported by the RA MESCS Science Committee and Belarusian Republican Foundation for Fundamental Research in the frames of the joint research project SC No.21SC-BRFFR-1F007 and BRFFR Grant No.21ARM-014 accordingly,as well as from the Ministry of Science and Higher Education of Russian Federation within the framework of a state assignment(project No.FSRR-2023-0007)。
文摘Using a photosensitizer(PS),light,and oxygen,photodynamic therapy creates cytotoxic reactive oxygen species,such as singlet oxygen(1O2),that kill cancer cells.Many cancer cell lines have up to 300 times more folic acid receptors than healthy cells.Therefore,folic acid is often used to improve selectivity of PSs.Photobleaching poses a disadvantage for PSs.In this paper,we have studied the photoinduced changes of meso-substituted cationic pyridyl porphyrins in the presence of folic acid using uorescence and absorption spectroscopy.In this work,it was demonstrated that L-histidine,which is a 1O2 quencher,and D-mannitol,which is a hydroxyl radical quencher,can reduce photobleaching of cationic porphyrins and their interaction products with FA.This implies both singlet oxygen and hydroxyl radicals are involved in photobleaching.Additionally,our study revealed certain important features of the photobleaching of cationic porphyrins in the presence of folic acid.
基金supported by the W.D.Armstrong Trust.YYSH is funded by the European Research Council(ERC-St G,758865)the UK Research and Innovations(UKRI)Biotechnology and Biological Sciences Research Council(BB/W014564/1)+9 种基金funding from a UKRI Future Leaders Fellowship(MR/V024965/1)supported by the BBSRC London Interdisciplinary Doctoral(LIDo)Programmethe funding support of EPSRC(EP/W004860/1,EP/X033686/1)and MRC(MR/V029827/1,MR/W030381/1)the European Research Council(Pro Li Cell,772462)for supportthe NIHR Nottingham Biomedical Research Centre,University of Nottingham,Nottingham,UK and the AO Foundation,AO CMF(AOCMF-21-04S)funding support from grant MR/W01470X/1the EPSRC(EP/W018977/1)for financial supportfunding from the EPSRC(EP/T020792/1)funding from Biomat DB+(Horizon Europe 101058779)funding received from Science Foundation Ireland(SFI)—Grant No.13/RC/2073_P2。
文摘As we navigate the transition from the Fourth to the Fifth Industrial Revolution,the emerging fields of biomanufacturing and biofabrication are transforming life sciences and healthcare.These sectors are benefiting from a synergy of synthetic and engineering biology,sustainable manufacturing,and integrated design principles.Advanced techniques such as 3D bioprinting,tissue engineering,directed assembly,and self-assembly are instrumental in creating biomimetic scaffolds,tissues,organoids,medical devices,and biohybrid systems.The field of biofabrication in the United Kingdom and Ireland is emerging as a pivotal force in bioscience and healthcare,propelled by cutting-edge research and development.Concentrating on the production of biologically functional products for use in drug delivery,in vitro models,and tissue engineering,research institutions across these regions are dedicated to innovating healthcare solutions that adhere to ethical standards while prioritising sustainability,affordability,and healthcare system benefits.
基金Project supported by the Science and Technology Research Project of Hubei Provincial Department of Education (B20094007)Wuhan Mu-nicipal Institutions of Scientific Project (2008K018)
文摘Studies were carried out on the extraction characters of trivalent rare earths from chloride solutions using organophosphorus acids 2-ethylhexylphosphonic acid mono-(2-ethylhexyl) ester (HEHEHP) combined with [di-(2-ethylhexyl)-phosphoric acid (HDEHP),isopropylphosphonic acid 1-hexyl-4-ethyloctyl ester (HHEOIPP),bis(2,4,4-trimethylpentyl)-phosphinic acid (Cyanex 272),bis(2,4,4-trimethypentyl)-monothiophosphinic acid (Cyanex 302) or bis(2,4,4-trimethypentyl)-dithiophosphinic acid (Cyanex 301)] as extractants. The effect of the equilibrium aqueous acidity on the extraction was studied. According to the corresponding separation factors for adjacent pairs of rare earths,it could be concluded that HEHEHP and Cyanex 272 could be employed for the separation of Tm(Ⅲ),Yb(Ⅲ),Lu(Ⅲ) from the other rare earths. Taking Yb(Ⅲ) as an example,based on the different stripping acid,the potential of the stripping was estimated.
基金Project (Nos. Y307535 and Y304185) supported by the Natural Science Foundation of Zhejiang Province,China
文摘To investigate the Fe^2+ effects on root tips in rice plant, experiments were carried out using border cells in vitro. The border cells were pre-planted in aeroponic culture and detached from root tips. Most border cells have a long elliptical shape. The number and the viability of border cells in situ reached the maxima of 1600 and 97.5%, respectively, at 20---25 mm root length. This mortality was more pronounced at the first 1-12 h exposure to 250 mg/L Fe^2+ than at the last 12-36 h. After 36 h, the cell viability exposed to 250 mg/L Fe^2+ decreased to nought, whereas it was 46.5% at 0 mg/L Fe^2+. Increased Fe^2+ dosage stimulated the death of detached border cells from rice cultivars. After 4 h Fe^2+ treatment, the cell viabilities were _〉80% at 0 and 50 mg/L Fe^2+ treatment and were 〈62% at 150, 250 and 350 mg/L Fe^2+ treatment; The viability of border cells decreased by 10% when the Fe^2+ concentration increased by 100 mg/L. After 24 h Fe^2+ treatment, the viabilities of border cells at all the Fe^2+ levels were 〈65%; The viability of border cells decreased by 20% when the Fee+ concentration increased by 100 mg/L. The decreased viabilities of border cells indicated that Fe^2+ dosage and treatment time would cause deadly effect on the border cells. The increased cell death could protect the root tips from toxic harm. Therefore, it may protect root from the damage caused by harmful iron toxicity.
基金the General Program of National Science Foundation of China(No.10375066)
文摘Bacillus megaterium BM302 bred by ion-beam implantation produces L-sorbose dehydrogenase accelerative protein (SAP) to accelerate the activity of L-sorbose dehydrogenase (SDH) of Gluconobacter oxydans in the 2-keto-L-gulonic acid (2KLG) fermentation from L-sorbose by the mixed culture of B. megaterium BM302 and G. oxydans. The SAP purified by three chromatographic steps gave 35-fold purification with a yield of 13% and a specific activity of 5.21 units/mg protein. The molecular weight of the purified SAP was about 58 kDa. The SDH accelerative activity of SAP at pH 7 and 50℃ was the highest. Additionally, it retained 60% activity at a pH range of 6.5 ~ 10 and was stable at 20℃ ~ 60℃. After 0.32-unit SAP was added to the single cultured G. oxydans strains, the SDH activity was apparently accelerated and the 2KLG yield of GO29, GO112, GO and GI13 was enhanced 2.1, 3.3, 3.5 and 2.9 folds respectively over that of the strains without the addition of SAP.
文摘It is found that the drugs for nourishing yin to reduce pathogenic fire can significantly down-regulate,and the drugs for tonifying the kidney to replenish essence can up-regulate mRNA expression of the hypothalamic GnRH,pituitary FSH,LH and osteoblastic BGP,indicating that the Chinese drugs for tonifying the kidney can regulate gene expression of the hypothalamic GnRH,pituitary FSH,LH,and osteoblastic BGP,which is possibly one of the main mechanisms of the Chinese drug for tonifying the kidney,regulating ephebic development process and improving skeletal development in sexual precocity children.
文摘One of the major aims of the International Union of Physiological Sciences (IUPS) Physiome Project is to develop multiscale mathematical and computer models that can be used to help understand human health. We present here a small facet of this broad plan that applies to the gastrointestinal system. Specifically, we present an anatomically and physiologically based modelling framework that is capable of simulating normal and pathological electrical activity within the stomach and small intestine. The continuum models used within this framework have been created using anatomical information derived from common medical imaging modalities and data from the Visible Human Project. These models explicitly incorporate the various smooth muscle layers and networks of interstitial cells of Cajal (ICC) that are known to exist within the walls of the stomach and small bowel. Electrical activity within individual ICCs and smooth muscle cells is simulated using a previously published simplified representation of the cell level electrical activity. This simulated cell level activity is incorporated into a bidomain representation of the tissue, allowing electrical activity of the entire stomach or intestine to be simulated in the anatomically derived models. This electrical modelling framework successfully replicates many of the qualitative features of the slow wave activity within the stomach and intestine and has also been used to investigate activity associated with functional uncoupling of the stomach.
基金supported by the Major Special Foundation of Transgenic Plants in China (2013ZX001-003 and 2014ZX08009-15B)
文摘A novel rice lesion mimic mutant (LMM) was isolated from an ethane methyl sulfonate (EMS)-induced 02428 mutant bank. The mutant, tentatively designated as lmm6, develops necrotic lesions in the whole growth period along with changes in several important agronomic traits. We found that the initiation of the lesions was induced by light and cel death occurred in lmm6 accompanied with accumulation of reactive oxygen species (ROS). The lower chlorophyl content, soluble protein content and superoxide dismutase (SOD) activity, the higher malondialdehyde (MDA) content were detected in lmm6 than in the wild type (WT). Moreover, the observation by transmission electronic microscope (TEM) demonstrated that some organel es were damaged and the stroma lamel a of chloroplast was irregular and loose in mesophyl cel of lmm6. In addition, lmm6 was more resistant than WT to rice blast fungus Magnaporthe grisea infection, which was consistent with increased expression of four genes involved in the defense-related reaction. Genetic analysis showed that mutant trait of lmm6 is inherited as a monogenic recessive nuclear gene located on the long arm of chromosome 6. Using simple sequence repeat (SSR) markers, the target gene was ifnal y delimited to an interval of 80.8 kb between markers MM2359 and MM2370, containing 7 annotated genes. Taken together, our results provide the information to identify a new gene involved in rice lesion mimic, which wil be helpful in clarifying the mechanism of cel death and disease resistance in rice.
基金supported by the Knowledge Innovative Program of the Chinese Academy of Sciences(No.KSCX-SW-32)
文摘The effect of absence of lipoxygenase isoenzyme (LOX) on storage stability was investigated. Rice mutant 1297 without lipoxygenase isoenzyme-1 (LOX-1) or lipoxygenase isoenzyme-2 (LOX-2) generated by ion beam irradiation from Wanjian2090 and reversion mutant RM1297 with LOX-1 and LOX-2 were subjected to an accelerated-aging experiment. Shanyou63 (with LOX-1 and LOX-2 ) served as control. Results showed that the germination and dehydrogenase activity decreased while the electrical conductivity and free fatty acid content increased in all varieties with accelerated aging. In 1297 that lacked LOX-1 and 2, there were slight changes in germination, dehydrogenase activity, membrane permeability and free fatty acid content during the thirty-day accelerated-aging experiment. But in varieties with LOX-1 and LOX-2, significant changes were observed, suggesting that LOX-1, 2 might be a definite factor which influenced seed lifespan. This study also indicates that ion beam irradiation may be used as mutagen to generate mutant and reversion mutants for biological study and could become a new direction in ion beam application.
文摘With ion implantation (N+, energy 10 keV and dosage 1.56×1015 N+cm-2), a high xylanase-producing strain Aspergillus niger N212 was selected. Based on an orthogonal experiment, an optimal fermentation condition was designed for this high-yield strain. The suitable medium was composed of 8% corncob; 1.0% wheat bran; 0.1%TWEEN20; 0.5% (NH4)2SO4; 0.5%NaNO3; 0.5%FeSO4, 7.5 × 10-4; MnSO4·H2O, 2.5 × 10-4; ZnSO4, 2.0 × 10-4; CoCl2, 3.0 × 10-4. At present, under our experiment condition, xylanase activity of Aspergillus niger N212 reached a level of 600 IU/ml, almost increased by 100% in xylanase production and the time of yielding xylanase was largely reduced to 12 h at 28℃.
基金the National Key Technologies R & D Program of China during the 10th Five-Year Plan(No.2001BA302B)
文摘As a new mutagenetic method, low-energy ion implantation has been used widely in many research areas in recent years. In order to obtain some industrial strains with high xylanase yield, the wild type strain Aspergillus niger A3 was mutated by means of nitrogen ions implantation (10 keV, 2.6× 10^14 ~ 1.56 × 10^15 ions/cm^2) and a mutant N212 was isolated subsequently. However, it was found that the initial screening means of the high-yielding xylanase strains such as transparent halos was unfit for first screening. Compared with that of the wild type strain, xylanase production of the mutant N212 was increased from 320 IU/ml to 610 IU/ml, and the optimum fermentation temperature was increased from 28 ℃ to 30 ℃.
文摘The hippocampus, an important part of the limbic system, is considered to be an important region of the brain for learning and memory functioning. Recent studies have demonstrated that synaptic plasticity is thought to be the basis of learning and memory functioning. A series of studies report that similar synaptic plasticity also exists in the spinal cord in the conduction pathway of pain sensation, which may contribute to hyperalgesia, abnormal pain, and analgesia. The synaptic plasticity of learning and memory functioning and that of the pain conduction pathway have similar mechanisms, which are related to the N-methyl-D-aspartic acid receptor. The hippocampus also has a role in pain modulation. As pain signals can reach the hippocampus, the precise correlation between synaptic plasticity of the pain pathway and that of learning and memory functioning deserves further investigation. The role of the hippocampus in processing pain information requires to be identified.
基金The project supported by the National Nature Science Foundation of China (No. 19890300)
文摘Ever since the low energy N+ ion beam has been accepted that the mutation effects of ionizing radiation are attributed mainly to direct or indirect damage to DNA. Evidences based on naked DNA irradiation in support of a mutation spectrum appears to be consistent, but direct proof of such results in vivo are limited. Using mutS, dam and/or dcm defective Eschericha coli imitator strains, an preliminary experimental system on induction of in vivo mutation spectra of low energy N+ ion beam has been established in this study. It was observed that the mutation rates of rifampicin resistance induced by N+ implantation were quite high, ranging from 9.2 x 10~8 to 4.9× 10~5 at the dosage of 5.2×1014 ions/cm2. Strains all had more than 90-fold higher mutation rate than its spontaneous mutation rate determined by this method. It reveals that base substitutions involve in induction of mutation of low energy nitrogen ion beam implantation. The mutation rates of mutator strains were nearly 500-fold (GM2929), 400-fold (GM5864) and 6-fold larger than that of AB1157. The GM2929 and GM5864 both lose the ability of repair DNA mismatch damage by virtue of both dam and dcm pathways defective (GM2929) or failing to assemble the repair complex (GM5864) respectively. It may explain the both strains had a similar higher mutation rate than GM124 did. It indicated that DNA cytosine methylase might play an important role in mismatch repair of DNA damage induced by N+ implantation. The further related research were also discussed.
文摘体内细胞受到含有化学和力学因素的生理和病理生理的刺激,故研究这些因素在细胞和器官水平如何调节功能就尤为重要。有关细胞和器官对化学因素的反应已开展诸多研究,而力学因素的影响却鲜有报道。近年来,荧光蛋白和显微镜技术的发展已成为阐明力传导过程的有用工具,先进的信号活细胞成像技术促进了力学生物学中分子机制的时空因素研究。本文综述荧光蛋白的基本知识以及其在生物学研究中的应用,特别讨论了以荧光共振能量迁移(fluorescence proteins and microscopy,FRET)技术为基础的生物传感器的发展和特征。基因编码的FRET生物传感器能够实现分子时空活动的成像和定量,使得活细胞中生物化学信号在力学刺激下的反应和传导可视化。同时,本文重点阐述分子水平力学刺激下的活细胞信号传导。
基金the Ministry of Science and Innovation of Spain for financial support(Nos.RTI2018098075-B-C21 and RTI2018-098075-B-C22)the EU through the European Regional Development Funds(No.MINECO-FEDER,EU)+1 种基金Generalitat de Catalunya(No.2017SGR-1165)the KTT Excellence Program,funded by the European Union through the European Regional Development Fund(EDF),the Government of Catalonia and the UPC。
文摘One of the biggest challenges in the biocompatibility of implantable metals is the prevention of the stress shielding effect,which is related to the coupling of the bone-metal mechanical properties.This stress shielding phenomenon provokes bone resorption and the consequent adverse effects on prosthesis fixation.However,it can be inhibited by adapting the stiffness of the implant material.Since the use of titanium(Ti)porous structures is a great alternative not only to inhibit this effect but also to improve the osteointegration of orthopedic and dental implants,a brief description of the techniques used for their manufacturing and a review of the current commercialized implants produced from porous Ti assemblies are compiled in this work.As powder metallurgy(PM)with space holder(SH)is a powerful technology used to produce porous Ti structures,it is here discussed its potential for the fabrication of medical devices from the perspectives of both design and manufacture.The most important parameters of the technique such as the size and shape of the initial metallic particles,the SH and binder type of materials,the compaction pressure of the green form,and in the sintering stage,the temperature,atmosphere,and time are reviewed according to the bibliography reported.Furthermore,the importance of the porosity and its types together with the influence of the mentioned parameters in the final porosity and,consequently,in the ultimate mechanical properties of the structure are discussed.Finally,a few examples of the PM-SH application for the manufacturing of orthopedic implants are presented.
基金supported by the National Natural Science Foundation of China(Nos.41977103 and 41471249)
文摘Soil Olsen P level has a major influence on crop yield,efficient P utilization,and soil fertility.In this study,the optimum Olsen P range was determined from long-term(1990–2012)field experiments in three typical soil types of China under single cropping of maize or double cropping of maize and wheat.The critical soil Olsen P value for crop yield was evaluated using three different models,and the relationships among P use efficiency(PUE),Olsen P,and total P were analyzed.The agronomic critical soil Olsen P values obtained from the three models for the neutral soil of Gongzhuling and the calcareous soil of Zhengzhou were similar;however,the values from the linear-linear and linear-plateau models for both maize and wheat were substantially lower than those from the Mitscherlich model for the acidic soil of Qiyang.The PUE response change rates(linear equation slopes)under different soil Olsen P levels were small,indicating slight or no changes in the PUE as the soil Olsen P increased in all three soils.A comparison of the Olsen P levels that achieved the maximal PUE with the agronomic critical values derived from the three models indicated that the linear-plateau model exhibited the best performance.The regression equation coefficients of Olsen P response to total P decreased as follows:Zhengzhou(73 mg g-1)>Qiyang(65 mg g-1)>Gongzhuling(55 mg g-1).The Olsen P level increased as the total P increased,which may result in a decrease in PUE.To achieve a relatively high crop yield,PUE,and soil fertility,the optimum Olsen P range should be 13–40,10–40,and 29–40 mg kg-1 at Gongzhuling,Zhengzhou,and Qiyang,respectively.