The rapid advancement of the bioeconomy imposes increasingly stringent demands on bioengineering education.Drawing on data from the 2025 Chinese Undergraduate Employment Report and related sources,this study revealed ...The rapid advancement of the bioeconomy imposes increasingly stringent demands on bioengineering education.Drawing on data from the 2025 Chinese Undergraduate Employment Report and related sources,this study revealed that while employment placement rates for bioengineering graduates remain stable,starting salaries exhibit limited growth and career trajectories lack clarity.These challenges originate from a curriculum lagging behind technological progress,inadequate practical training,and a mismatch between student competencies and industry expectations.To address these issues,this paper proposed a strategic framework grounded in"demand-driven design,industry-education integration,and competence-centered development".Key strategies include dynamic curriculum renewal,collaborative university-industry training,holistic competency development,and personalized student support,which collectively aim at enhancing graduates employment competitiveness and long-term professional sustainability.展开更多
Plasma treatment is necessary to optimize the performance of biomaterial surfaces.It enhances and regulates the performance of biomaterial su rfaces,creating an effective interface with the human body.Plasma treatment...Plasma treatment is necessary to optimize the performance of biomaterial surfaces.It enhances and regulates the performance of biomaterial su rfaces,creating an effective interface with the human body.Plasma treatments have the ability to modify the chemical com position and physical structu re of a surface while leaving its properties unaffected.They possess the ability to modify material su rfaces,eliminate contaminants,conduct investigations on cancer therapy,and facilitate wound healing.The subject of study in question involves the integration of plasma science and technology with biology and medicine.Using a helium plasma jet source,applying up to 18 kV,with an average power of 10 W,polymer foils were treated for 60 s.Plasma treatment has the ability to alter the chemical composition and physical structure of a su rface while maintaining its quality.This investigation involved the application of helium plasma at atmospheric pressure to polyamide 6 and polyethylene terephthalate sheets.The inquiry involves monitoring and assessing the plasma source and polymer materials,as well as analyzing the impacts of plasma therapy.Calculating the mean power of the discharge aids in assessing the economic efficacy of the plasma source.Electric discharge in helium at atmospheric pressure has beneficial effects in technology,where it increases the surface free energy of polymer materials.In biomedicine,it is used to investigate cytotoxicity and cell survival,particularly in direct blood exposure situations that can expedite coagulation.Comprehending the specific parameters that influence the plasma source in the desired manner for the intended application is of utmost im portance.展开更多
This study aimed to investigate the effect of varying pyrite(Py)content on copper(Cu)in the presence of different regrinding conditions,which were altered using different types of grinding media:iron,ceramic balls,and...This study aimed to investigate the effect of varying pyrite(Py)content on copper(Cu)in the presence of different regrinding conditions,which were altered using different types of grinding media:iron,ceramic balls,and their mixture,followed by flotation in the cleaner stage.The flotation performance of rough Cu concentrate can be improved by changing the regrinding conditions based on the Py content.Scanning electron microscopy,X-ray spectrometry,ethylenediaminetetraacetic acid disodium salt extraction,and X-ray photoelectron spectroscopy studies illustrated that when the Py content was high,the use of iron media in regrinding promoted the generation of hydrophilic Fe OOH on the surface of Py and improved the Cu grade.The ceramic medium with a low Py content prevented excessive Fe OOH from covering the surface of chalcopyrite(Cpy).Electrochemical studies further showed that the galvanic corrosion current of Cpy-Py increased with the addition of Py and became stronger with the participation of iron media.展开更多
A tunable oxidization and reduction strategy was proposed to directly regenerate spent LiFePO_(4)/C cathode materials by oxidizing excessive carbon powders with the addition of FePO_(4).Experimental results indicate t...A tunable oxidization and reduction strategy was proposed to directly regenerate spent LiFePO_(4)/C cathode materials by oxidizing excessive carbon powders with the addition of FePO_(4).Experimental results indicate that spent LiFePO_(4)/C cathode materials with good performance can be regenerated by roasting at 650℃ for 11 h with the addition ofLi_(2)CO_(3),FePO_(4),V_(2)O_(5),and glucose.V_(2)O_(5) is added to improve the cycle performance of regenerated cathode materials.Glucose is used to revitalize the carbon layers on the surface of spent LiFePO_(4)/C particles for improving their conductivity.The regenerated V-doped LiFePO_(4)/C shows an excellent electrochemical performance with the discharge specific capacity of 161.36 mA·h/g at 0.2C,under which the capacity retention is 97.85%after 100 cycles.展开更多
Many fields,such as neuroscience,are experiencing the vast prolife ration of cellular data,underscoring the need fo r organizing and interpreting large datasets.A popular approach partitions data into manageable subse...Many fields,such as neuroscience,are experiencing the vast prolife ration of cellular data,underscoring the need fo r organizing and interpreting large datasets.A popular approach partitions data into manageable subsets via hierarchical clustering,but objective methods to determine the appropriate classification granularity are missing.We recently introduced a technique to systematically identify when to stop subdividing clusters based on the fundamental principle that cells must differ more between than within clusters.Here we present the corresponding protocol to classify cellular datasets by combining datadriven unsupervised hierarchical clustering with statistical testing.These general-purpose functions are applicable to any cellular dataset that can be organized as two-dimensional matrices of numerical values,including molecula r,physiological,and anatomical datasets.We demonstrate the protocol using cellular data from the Janelia MouseLight project to chara cterize morphological aspects of neurons.展开更多
Addressing the global challenge of uranium(U)-contaminated groundwater requires innovative bioremediation strategies.This study investigates Desulfovibrio desulfuricans,a neutrophilic and mesophilic sulfate-reducing b...Addressing the global challenge of uranium(U)-contaminated groundwater requires innovative bioremediation strategies.This study investigates Desulfovibrio desulfuricans,a neutrophilic and mesophilic sulfate-reducing bacteria(SRB)strain optimized for lowtemperature(15℃)and acidic(initial pH 4)conditions,to validate its bioaugmentation potential for uranium decontamination in groundwater.Our research aimed to assess its efficacy in treating U-contaminated groundwater and elucidate the optimal growth conditions for this strain in acidic and sulfate-enriched environments.We found that D.desulfuricans was phylogenetically distinct from the native microbial community in acidic Ucontaminated groundwater,while it maintained appreciable activity in sulfate reduction under contaminated groundwater conditions after accumulation.Acid-tolerant D.desulfuricans removed 75.87%of uranium and 30.64%of sulfate from acidic U-contaminated groundwater(pH 4.0)at 15℃ within 14 days.Furthermore,we explored the optimal sulfate concentration for bacterial growth,which was found to be 2000 mg/L,and an elevated Fe^(2+) concentration from 100 to 1000 mg/L increasingly stimulated sulfate-reducing activity.These findings provide a novel insight into the application of neutrophilic and mesophilic SRB in bioremediation of acidic and low-temperature groundwater after accumulation and underscore the feasibility of bioremediation by using exogenously pure SRB.展开更多
Axonal degeneration underlies many debilitating diseases including hereditary spastic paraplegia(HSP),a genetically and clinically diverse group of disorders characterized by spasticity and weakness of the lower extre...Axonal degeneration underlies many debilitating diseases including hereditary spastic paraplegia(HSP),a genetically and clinically diverse group of disorders characterized by spasticity and weakness of the lower extremities.HSP is one significant cause of chronic neurodisability due to the lack of effective treatments and a wide range of onset ages from early childhood to 70 years.展开更多
As the bed depth increases,sintering yield increases,but the productivity decreases.To reveal the reasons for the decrease in productivity and explore targeted solutions,the bed resistance of mixtures,wet zone,and com...As the bed depth increases,sintering yield increases,but the productivity decreases.To reveal the reasons for the decrease in productivity and explore targeted solutions,the bed resistance of mixtures,wet zone,and combustion zone was analyzed in the laboratory.The results showed that the decreased porosity of mixture resulted in the increased bed resistance by 160.56%when the bed depth increased from 600 to 1000 mm.After improving porosity of 1%by adding loosening bars with optimized size and distribution,the bed resistance decreased,and the productivity increased by 5%.The increase in bed depth increased the thickness of the wet zone from 120 to 680 mm and the resistance from 1.56 to 8.83 kPa.By using a three-stage intensive mixer and pre-adding water for granulation,the moisture of mixture was reduced by 0.6%,and the sintering productivity increased by 4%.Besides,the high bed resistance is mainly caused by the increase in the thickness of the combustion zone from 31.9 to 132.7 mm,and the bed resistance increased from 0.70 to 5.62 kPa.The bed resistance of the combustion zone at 900 mm was increased by 90.51%compared to 700 mm.After optimization of the distribution of coke breeze,the thickness of combustion zone at the lower layer decreased from 132.7 to 106.84 mm and permeability improved significantly.展开更多
Moderate to severe perinatal hypoxic-ischemic encephalopathy occurs in~1 to 3/1000 live births in high-income countries and is associated with a significant risk of death or neurodevelopmental disability.Detailed asse...Moderate to severe perinatal hypoxic-ischemic encephalopathy occurs in~1 to 3/1000 live births in high-income countries and is associated with a significant risk of death or neurodevelopmental disability.Detailed assessment is important to help identify highrisk infants,to help families,and to support appropriate interventions.A wide range of monitoring tools is available to assess changes over time,including urine and blood biomarkers,neurological examination,and electroencephalography.At present,magnetic resonance imaging is unique as although it is expensive and not suited to monitoring the early evolution of hypoxic-ischemic encephalopathy by a week of life it can provide direct insight into the anatomical changes in the brain after hypoxic-ischemic encephalopathy and so offers strong prognostic information on the long-term outcome after hypoxic-ischemic encephalopathy.This review investigated the temporal dynamics of neonatal hypoxic-ischemic encephalopathy injuries,with a particular emphasis on exploring the correlation between the prognostic implications of magnetic resonance imaging scans in the first week of life and their relationship to long-term outcome prediction,particularly for infants treated with therapeutic hypothermia.A comprehensive literature search,from 2016 to 2024,identified 20 pertinent articles.This review highlights that while the optimal timing of magnetic resonance imaging scans is not clear,overall,it suggests that magnetic resonance imaging within the first week of life provides strong prognostic accuracy.Many challenges limit the timing consistency,particularly the need for intensive care and clinical monitoring.Conversely,although most reports examined the prognostic value of scans taken between 4 and 10 days after birth,there is evidence from small numbers of cases that,at times,brain injury may continue to evolve for weeks after birth.This suggests that in the future it will be important to explore a wider range of times after hypoxic-ischemic encephalopathy to fully understand the optimal timing for predicting long-term outcomes.展开更多
The incidence of large bone defects caused by traumatic injury is increasing worldwide,and the tissue regeneration process requires a long recovery time due to limited self-healing capability.Endogenous bioelectrical ...The incidence of large bone defects caused by traumatic injury is increasing worldwide,and the tissue regeneration process requires a long recovery time due to limited self-healing capability.Endogenous bioelectrical phenomena have been well recognized as critical biophysical factors in bone remodeling and regeneration.Inspired by bioelectricity,electrical stimulation has been widely considered an external intervention to induce the osteogenic lineage of cells and enhance the synthesis of the extracellular matrix,thereby accelerating bone regeneration.With ongoing advances in biomaterials and energy-harvesting techniques,electroactive biomaterials and self-powered systems have been considered biomimetic approaches to ensure functional recovery by recapitulating the natural electrophysiological microenvironment of healthy bone tissue.In this review,we first introduce the role of bioelectricity and the endogenous electric field in bone tissue and summarize different techniques to electrically stimulate cells and tissue.Next,we highlight the latest progress in exploring electroactive hybrid biomaterials as well as self-powered systems such as triboelectric and piezoelectric-based nanogenerators and photovoltaic cell-based devices and their implementation in bone tissue engineering.Finally,we emphasize the significance of simulating the target tissue’s electrophysiological microenvironment and propose the opportunities and challenges faced by electroactive hybrid biomaterials and self-powered bioelectronics for bone repair strategies.展开更多
In this editorial,we comment on the article by Mu et al,published in the recent issue of the World Journal of Gastrointestinal Oncology.We pay special attention to the immune tolerance mechanism caused by hepatitis B ...In this editorial,we comment on the article by Mu et al,published in the recent issue of the World Journal of Gastrointestinal Oncology.We pay special attention to the immune tolerance mechanism caused by hepatitis B virus(HBV)infection,the pathogenesis of hepatocellular carcinoma(HCC),and the role of antiviral therapy in treating HCC related to HBV infection.HBV infection leads to systemic innate immune tolerance by directly inhibiting pattern recognition receptor recognition and antiviral signaling pathways,as well as by inhibiting the immune functions of macrophages,natural killer cells and dendritic cells.In addition,HBV leads to an immunosuppressive cascade by expressing inhibitory molecules to induce exhaustion of HBV-specific cluster of differentiation 8+T cells,ultimately leading to long-term viral infection.The loss of immune cell function caused by HBV infection ultimately leads to HCC.Long-term antiviral therapy can improve the prognosis of patients with HCC and prevent tumor recurrence and metastasis.展开更多
Spinal muscular atrophy(SMA)is a genetic condition that results in selective lower motor neuron loss with concomitant muscle weakness and atrophy.The genetic cause of SMA was understood in 1995 when loss or impairment...Spinal muscular atrophy(SMA)is a genetic condition that results in selective lower motor neuron loss with concomitant muscle weakness and atrophy.The genetic cause of SMA was understood in 1995 when loss or impairment of the survival motor neuron 1(SMN1)gene was identified as the main contributing factor(Lefebvre et al.,1995).This,in combination with the discovery that humans have a“back-up”gene,SMN2,which can produce low levels(approximately 10%)of the full-length functional SMN protein,has led to the generation of SMA-specific gene therapies.SMA was traditionally classified according to age of symptom onset and developmental milestones achieved,with life expectancy and severity varying between individuals.Now,SMN2 copy number is used as a proxy for the prediction of disease severity,with higher SMN2 copy number typically being associated with reduced severity of SMA,although this relationship is not absolute:some individuals with low SMN2 copy number have less severe SMA phenotypes and vice versa.Additionally,the etiology of SMA is further complicated by other factors,such as non-typical nucleotide variants and SMN2-independent modifiers of disease severity.展开更多
This study aimed to investigate the effect of ultrasound-assisted alkaline extraction(UAE)(at 20 kHz and different powers of 0,200,300,400,500 and 600 W for 10 min)on the yield,structure and emulsifying properties of ...This study aimed to investigate the effect of ultrasound-assisted alkaline extraction(UAE)(at 20 kHz and different powers of 0,200,300,400,500 and 600 W for 10 min)on the yield,structure and emulsifying properties of chickpea protein isolate(CPI).Compared with the non-ultrasound group,ultrasound treatment at 400 W resulted in the largest increase in CPI yield,and both the particle size and turbidity decreased with increasing ultrasound power from 0 to 400 W.The scanning electron microscope results showed a uniform structural distribution of CPI.Moreover,itsα-helix content increased,β-sheet content decreased,and total sulfhydryl group content and endogenous fluorescence intensity rose,illustrating that UAE changed the secondary and tertiary structure of CPI.At 400 W,the solubility of the emulsion increased to 63.18%,and the best emulsifying properties were obtained;the emulsifying activity index(EAI)and emulsifying stability index(ESI)increased by 85.42%and 46.78%,respectively.Furthermore,the emulsion droplets formed were smaller and more uniform.In conclusion,proper UAE power conditions increased the extraction yield and protein content of CPI,and effectively improved its structure and emulsifying characteristics.展开更多
In dynamic scenarios,visual simultaneous localization and mapping(SLAM)algorithms often incorrectly incorporate dynamic points during camera pose computation,leading to reduced accuracy and robustness.This paper prese...In dynamic scenarios,visual simultaneous localization and mapping(SLAM)algorithms often incorrectly incorporate dynamic points during camera pose computation,leading to reduced accuracy and robustness.This paper presents a dynamic SLAM algorithm that leverages object detection and regional dynamic probability.Firstly,a parallel thread employs the YOLOX object detectionmodel to gather 2D semantic information and compensate for missed detections.Next,an improved K-means++clustering algorithm clusters bounding box regions,adaptively determining the threshold for extracting dynamic object contours as dynamic points change.This process divides the image into low dynamic,suspicious dynamic,and high dynamic regions.In the tracking thread,the dynamic point removal module assigns dynamic probability weights to the feature points in these regions.Combined with geometric methods,it detects and removes the dynamic points.The final evaluation on the public TUM RGB-D dataset shows that the proposed dynamic SLAM algorithm surpasses most existing SLAM algorithms,providing better pose estimation accuracy and robustness in dynamic environments.展开更多
Despite ongoing advancements in cancer treatment,the emergence of primary and acquired resistance poses a significant challenge for both traditional chemotherapy and immune checkpoint blockade therapies.The demand for...Despite ongoing advancements in cancer treatment,the emergence of primary and acquired resistance poses a significant challenge for both traditional chemotherapy and immune checkpoint blockade therapies.The demand for targeted therapeutics for multidrug-resistant cancer is more important than ever.Peptides,as emerging alternatives to current anticancer drugs,offer exquisite versatility in facilitating the design of novel oncology drugs,with the core superiorities of good biocompatibility and a low tendency to induce drug resistance.This review comprehensively introduces the pharmacological mechanisms of peptide-based drugs and strategies for overcoming multidrug resistance(MDR)in cancers,including inducing cell membrane lysis,targeting organelles,activating anticancer immune responses,enhancing drug uptake,targeting ATP-binding cassette(ABC)transporters,and targeting B-cell lymphoma-2(BCL-2)family proteins.Additionally,the current clinical applications of representative peptides in combating MDR cancers and their potential directions for medicinal chemistry research have been thoroughly discussed.This review offers essential insights into the novel treatment approaches for MDR cancers and highlights the trends and perspectives in this field.展开更多
Background:The prevalence,age of onset,and symptomatology of traumatic brain injury,stroke,and neurodegenerative diseases(such as Alzheimer’s disease(AD),Parkinson’s disease,amyotrophic lateral sclerosis,and Hunting...Background:The prevalence,age of onset,and symptomatology of traumatic brain injury,stroke,and neurodegenerative diseases(such as Alzheimer’s disease(AD),Parkinson’s disease,amyotrophic lateral sclerosis,and Huntington’s disease)differ substantially between males and females.The higher prevalence of these brain disorders has been attributed to females having a greater longevity compared with males.Since one of the greatest risk factors of acquired brain injury(such as stroke,traumatic brain injury caused by fall)and neurodegenerative disease is age.展开更多
The xylitol dehydrogenase(XDH)is a crucial enzyme involved in the xylose utilization in pentose⁃catabolizing yeasts and fungi.In addition to producing xylulose,XDH can also be employed to develop a biosensor for monit...The xylitol dehydrogenase(XDH)is a crucial enzyme involved in the xylose utilization in pentose⁃catabolizing yeasts and fungi.In addition to producing xylulose,XDH can also be employed to develop a biosensor for monitoring xylitol concentration.In this study,the gene encoding the thermophilic fungus Talaromyces emersonii XDH(TeXDH)was heterologously expressed in Escherichia coli BL21(DE3)at 16℃in the soluble form.Recombinant TeXDH with high purity was purified by using a Ni⁃NTA affinity column.Size⁃exclusion chromatography and SDS⁃PAGE analysis demonstrated that the puri⁃fied recombinant TeXDH exists as a native trimer with a molecular mass of approximately 116 kD,and is composed of three identical subunits,each with a molecular weight of around 39 kD.The TeXDH strictly preferred NAD^(+)as a coenzyme to NADP^(+).The optimal temperature and pH of the TeXDH were 40℃and 10.0,respectively.After EDTA treatment,the enzyme activity of TeXDH decreased to 43.26%of the initial enzyme activity,while the divalent metal ions Mg^(2+)or Ca^(2+)could recover the enzyme activity of TeXDH,reaching 103.32%and 110.69%of the initial enzyme activity,respectively,making them the optimal divalent metal ion cofactors for TeXDH enzyme.However,the divalent metal ions of Mn^(2+),Ni^(2+),Cu^(2+),Zn^(2+),Co^(2+),and Cd^(2+)significantly inhibited the activity of TeXDH.ICP⁃MS and molecular doc⁃king studies revealed that 1 mol/L of TeXDH bound 2 mol/L Zn^(2+)ions and 1 mol/L Mg^(2+)ion.Further⁃more,TeXDH exhibited a high specificity for xylitol,laying the foundation for the development of future xylitol biosensors.展开更多
Numerous studies have demonstrated that the high expression of CXC motif chemokine ligand 16(CXCL16)in cancer correlates with poor prognosis,as well as tumor cell proliferation,migration,and invasion.While CXCL16 can ...Numerous studies have demonstrated that the high expression of CXC motif chemokine ligand 16(CXCL16)in cancer correlates with poor prognosis,as well as tumor cell proliferation,migration,and invasion.While CXCL16 can serve as a tumor biomarker,the underlying mechanism in modulating head and neck squamous cell carcinoma(HNSCC)remains unclear.In this study,the aimed was to investigate the CXCL16 expression in HNSCC and to uncover the potential underlying mechanism.Hereby,we determined the high expression of CXCL16 in The Cancer Genome Atlas(TCGA)database,as well as in tissue samples from patients with HNSCC at our central hospital and from HNSCC cell lines.The results showed that CXCL16 knockdown inhibited the proliferation,migration,and invasion of HNSCC cells.Mechanistically,transcriptome sequencing revealed that CXCL16 may affect HNSCC cell growth by regulating the antioxidant pathway of glutathione peroxidase 1(GPX1).The reactive oxygen species(ROS)levels were elevated in small interfering CXCL16(si-CXCL16)cells,which may contribute to the inhibition of cell proliferation,migration,and invasion.Moreover,treatment of cells with the GPX1 inhibitor eldecalcitol(ED-71)revealed that HNSCC cell growth was significantly inhibited in the synergistic group of si-CXCL16 and GPX1 inhibitor compared to the si-CXCL16 group.In conclusion,CXCL16 contributed to the development of HNSCC cells by modulating the GPX1-mediated antioxidant pathway.Thus,targeting cellular CXCL16 expression seems to be a promising strategy for treating HNSCC.展开更多
A zinc sulfate open framework matrix,[Zn(SO_4)(DMSO)](1),was synthesized by solvothermal evaporationusing dimethyl sulfoxide(DMSO)as the solvent.A compositeP@1,which exhibits fluorescence and room tempera-ture phospho...A zinc sulfate open framework matrix,[Zn(SO_4)(DMSO)](1),was synthesized by solvothermal evaporationusing dimethyl sulfoxide(DMSO)as the solvent.A compositeP@1,which exhibits fluorescence and room tempera-ture phosphorescence(RTP)properties,was prepared by doping 2,6-naphthalic acid(P)into matrix1at a low con-centration.P@1emitted a green RTP that was visible to the naked eye and lasted for approximately 2 s.P@1exhib-ited selective phosphorescence enhancement response towards Pb^(2+),with a detection limit of 2.52μmol·L^(-1).Themain detection mechanism is the Pb—O coordination-induced phosphorescence enhancement in the system.Inter-estingly,P@1also functioned as a dual-channel probe for the rapid detection of Fe^(3+)ions through fluorescencequenching with a detection limit of 0.038μmol·L^(-1).The recognition mechanism may be attributed to the competi-tive energy absorption betweenP@1and Fe^(3+)ions.CCDC:2388502,1.展开更多
The depression mechanism of sulfite ions on sphalerite and Pb^(2+)activated sphalerite in the flotation separation of galena from sphalerite still lacked in-depth insight.Therefore,the depression mechanism of sulfite ...The depression mechanism of sulfite ions on sphalerite and Pb^(2+)activated sphalerite in the flotation separation of galena from sphalerite still lacked in-depth insight.Therefore,the depression mechanism of sulfite ions on sphalerite and Pb^(2+)activated sphalerite in the flotation separation of galena from sphalerite was further systematically investigated with experiments and density functional theory(DFT)calculations.The X-ray photoelectric spectroscopy(XPS)results,DFT calculation results,and frontier molecular orbital analysis indicated that sulfite ions were difficult to be adsorbed on sphalerite surface,suggesting that sulfite ions achieved depression effects on sphalerite through other non-adsorption mechanisms.First,the oxygen content in the surface of sphalerite treated with sulfite ions in creased,which enhanced the hydrophilicity of the sphalerite and further increased the difference in hydrophilicity between sphalerite and galena.Then,sulfite ions were chelated with lead ions to form PbSO_(3)in solution.The hydrophilic PbSO_(3)was more easily adsorbed on sphalerite than galena.The interaction between sulfite ions and lead ions could effectively inhibit the activation of sphalerite.In addition the UV spectrum showed that after adding sulfite ions,the peak of perxanthate in the sphalerite treated xanthate solution was significantly stronger than that in the galena with xanthate solution,indicating that xanthate interacted more readily with sulfite ions and oxygen mo lecules within the sphalerite system,leading to the formation of perxanthate.However,sulfite ions hardly depressed the flotation of ga lena and could promote the flotation of galena to some extent.This study deepened the understanding of the depression mechanism o sulfite ions on sphalerite and Pb^(2+)activated sphalerite.展开更多
基金Supported by Undergraduate Education and Teaching Reform Research Project of Chengdu University(XJJG-20242025228)Sichuan Genuine Medicinal Materials and Traditional Chinese Medicine Innovation Team(SCCXTD-2025-19)Sichuan Science and Technology Program(2021YFYZ0012).
文摘The rapid advancement of the bioeconomy imposes increasingly stringent demands on bioengineering education.Drawing on data from the 2025 Chinese Undergraduate Employment Report and related sources,this study revealed that while employment placement rates for bioengineering graduates remain stable,starting salaries exhibit limited growth and career trajectories lack clarity.These challenges originate from a curriculum lagging behind technological progress,inadequate practical training,and a mismatch between student competencies and industry expectations.To address these issues,this paper proposed a strategic framework grounded in"demand-driven design,industry-education integration,and competence-centered development".Key strategies include dynamic curriculum renewal,collaborative university-industry training,holistic competency development,and personalized student support,which collectively aim at enhancing graduates employment competitiveness and long-term professional sustainability.
基金financially supported by UEFISCDI,PNCDI III,project PN-III-P1-1.1-TE-2021(No.150/09.06.2022)supported by COST(European Cooperation in Science and Technology,available online:https://www.cost.eu,accessed on 20 November 2023)。
文摘Plasma treatment is necessary to optimize the performance of biomaterial surfaces.It enhances and regulates the performance of biomaterial su rfaces,creating an effective interface with the human body.Plasma treatments have the ability to modify the chemical com position and physical structu re of a surface while leaving its properties unaffected.They possess the ability to modify material su rfaces,eliminate contaminants,conduct investigations on cancer therapy,and facilitate wound healing.The subject of study in question involves the integration of plasma science and technology with biology and medicine.Using a helium plasma jet source,applying up to 18 kV,with an average power of 10 W,polymer foils were treated for 60 s.Plasma treatment has the ability to alter the chemical composition and physical structure of a su rface while maintaining its quality.This investigation involved the application of helium plasma at atmospheric pressure to polyamide 6 and polyethylene terephthalate sheets.The inquiry involves monitoring and assessing the plasma source and polymer materials,as well as analyzing the impacts of plasma therapy.Calculating the mean power of the discharge aids in assessing the economic efficacy of the plasma source.Electric discharge in helium at atmospheric pressure has beneficial effects in technology,where it increases the surface free energy of polymer materials.In biomedicine,it is used to investigate cytotoxicity and cell survival,particularly in direct blood exposure situations that can expedite coagulation.Comprehending the specific parameters that influence the plasma source in the desired manner for the intended application is of utmost im portance.
基金financially supported by the National Key Research and Development Plan of China(No.2022YFC2904603)the National Natural Science Foundation of China(No.52174268)。
文摘This study aimed to investigate the effect of varying pyrite(Py)content on copper(Cu)in the presence of different regrinding conditions,which were altered using different types of grinding media:iron,ceramic balls,and their mixture,followed by flotation in the cleaner stage.The flotation performance of rough Cu concentrate can be improved by changing the regrinding conditions based on the Py content.Scanning electron microscopy,X-ray spectrometry,ethylenediaminetetraacetic acid disodium salt extraction,and X-ray photoelectron spectroscopy studies illustrated that when the Py content was high,the use of iron media in regrinding promoted the generation of hydrophilic Fe OOH on the surface of Py and improved the Cu grade.The ceramic medium with a low Py content prevented excessive Fe OOH from covering the surface of chalcopyrite(Cpy).Electrochemical studies further showed that the galvanic corrosion current of Cpy-Py increased with the addition of Py and became stronger with the participation of iron media.
基金National Natural Science Foundation of China(Nos.52174269,52374293)Science and Technology Innovation Program of Hunan Province,China(Nos.2024CK1009,2022RC1123)。
文摘A tunable oxidization and reduction strategy was proposed to directly regenerate spent LiFePO_(4)/C cathode materials by oxidizing excessive carbon powders with the addition of FePO_(4).Experimental results indicate that spent LiFePO_(4)/C cathode materials with good performance can be regenerated by roasting at 650℃ for 11 h with the addition ofLi_(2)CO_(3),FePO_(4),V_(2)O_(5),and glucose.V_(2)O_(5) is added to improve the cycle performance of regenerated cathode materials.Glucose is used to revitalize the carbon layers on the surface of spent LiFePO_(4)/C particles for improving their conductivity.The regenerated V-doped LiFePO_(4)/C shows an excellent electrochemical performance with the discharge specific capacity of 161.36 mA·h/g at 0.2C,under which the capacity retention is 97.85%after 100 cycles.
基金supported in part by NIH grants R01NS39600,U01MH114829RF1MH128693(to GAA)。
文摘Many fields,such as neuroscience,are experiencing the vast prolife ration of cellular data,underscoring the need fo r organizing and interpreting large datasets.A popular approach partitions data into manageable subsets via hierarchical clustering,but objective methods to determine the appropriate classification granularity are missing.We recently introduced a technique to systematically identify when to stop subdividing clusters based on the fundamental principle that cells must differ more between than within clusters.Here we present the corresponding protocol to classify cellular datasets by combining datadriven unsupervised hierarchical clustering with statistical testing.These general-purpose functions are applicable to any cellular dataset that can be organized as two-dimensional matrices of numerical values,including molecula r,physiological,and anatomical datasets.We demonstrate the protocol using cellular data from the Janelia MouseLight project to chara cterize morphological aspects of neurons.
基金supported by the Centralized R&D Project of China National Nuclear Corporation(CNNC[2021]No.144)the Key Research and Development Program of Hunan Province(Nos.2022SK2076 and 2020WK2022)+2 种基金the Natural Science Foundation of Changsha(No.kq2202089)the Postdoctoral Fellowship Program of CPSF(No.BX20230437)the Natural Science Foundation of Hunan Province(No.2023JJ30658).
文摘Addressing the global challenge of uranium(U)-contaminated groundwater requires innovative bioremediation strategies.This study investigates Desulfovibrio desulfuricans,a neutrophilic and mesophilic sulfate-reducing bacteria(SRB)strain optimized for lowtemperature(15℃)and acidic(initial pH 4)conditions,to validate its bioaugmentation potential for uranium decontamination in groundwater.Our research aimed to assess its efficacy in treating U-contaminated groundwater and elucidate the optimal growth conditions for this strain in acidic and sulfate-enriched environments.We found that D.desulfuricans was phylogenetically distinct from the native microbial community in acidic Ucontaminated groundwater,while it maintained appreciable activity in sulfate reduction under contaminated groundwater conditions after accumulation.Acid-tolerant D.desulfuricans removed 75.87%of uranium and 30.64%of sulfate from acidic U-contaminated groundwater(pH 4.0)at 15℃ within 14 days.Furthermore,we explored the optimal sulfate concentration for bacterial growth,which was found to be 2000 mg/L,and an elevated Fe^(2+) concentration from 100 to 1000 mg/L increasingly stimulated sulfate-reducing activity.These findings provide a novel insight into the application of neutrophilic and mesophilic SRB in bioremediation of acidic and low-temperature groundwater after accumulation and underscore the feasibility of bioremediation by using exogenously pure SRB.
基金supported by the NIH grant(RO1 NS118066)the Blazer Foundation(to XJL)。
文摘Axonal degeneration underlies many debilitating diseases including hereditary spastic paraplegia(HSP),a genetically and clinically diverse group of disorders characterized by spasticity and weakness of the lower extremities.HSP is one significant cause of chronic neurodisability due to the lack of effective treatments and a wide range of onset ages from early childhood to 70 years.
基金supported by the Basic Science Center Project for the National Natural Science Foundation of China(No.72088101)the S&T Program of Hebei(No.23564101D).
文摘As the bed depth increases,sintering yield increases,but the productivity decreases.To reveal the reasons for the decrease in productivity and explore targeted solutions,the bed resistance of mixtures,wet zone,and combustion zone was analyzed in the laboratory.The results showed that the decreased porosity of mixture resulted in the increased bed resistance by 160.56%when the bed depth increased from 600 to 1000 mm.After improving porosity of 1%by adding loosening bars with optimized size and distribution,the bed resistance decreased,and the productivity increased by 5%.The increase in bed depth increased the thickness of the wet zone from 120 to 680 mm and the resistance from 1.56 to 8.83 kPa.By using a three-stage intensive mixer and pre-adding water for granulation,the moisture of mixture was reduced by 0.6%,and the sintering productivity increased by 4%.Besides,the high bed resistance is mainly caused by the increase in the thickness of the combustion zone from 31.9 to 132.7 mm,and the bed resistance increased from 0.70 to 5.62 kPa.The bed resistance of the combustion zone at 900 mm was increased by 90.51%compared to 700 mm.After optimization of the distribution of coke breeze,the thickness of combustion zone at the lower layer decreased from 132.7 to 106.84 mm and permeability improved significantly.
基金supported by a grant from the Health Research New Zealand(HRC)22/559(to AJG and LB)。
文摘Moderate to severe perinatal hypoxic-ischemic encephalopathy occurs in~1 to 3/1000 live births in high-income countries and is associated with a significant risk of death or neurodevelopmental disability.Detailed assessment is important to help identify highrisk infants,to help families,and to support appropriate interventions.A wide range of monitoring tools is available to assess changes over time,including urine and blood biomarkers,neurological examination,and electroencephalography.At present,magnetic resonance imaging is unique as although it is expensive and not suited to monitoring the early evolution of hypoxic-ischemic encephalopathy by a week of life it can provide direct insight into the anatomical changes in the brain after hypoxic-ischemic encephalopathy and so offers strong prognostic information on the long-term outcome after hypoxic-ischemic encephalopathy.This review investigated the temporal dynamics of neonatal hypoxic-ischemic encephalopathy injuries,with a particular emphasis on exploring the correlation between the prognostic implications of magnetic resonance imaging scans in the first week of life and their relationship to long-term outcome prediction,particularly for infants treated with therapeutic hypothermia.A comprehensive literature search,from 2016 to 2024,identified 20 pertinent articles.This review highlights that while the optimal timing of magnetic resonance imaging scans is not clear,overall,it suggests that magnetic resonance imaging within the first week of life provides strong prognostic accuracy.Many challenges limit the timing consistency,particularly the need for intensive care and clinical monitoring.Conversely,although most reports examined the prognostic value of scans taken between 4 and 10 days after birth,there is evidence from small numbers of cases that,at times,brain injury may continue to evolve for weeks after birth.This suggests that in the future it will be important to explore a wider range of times after hypoxic-ischemic encephalopathy to fully understand the optimal timing for predicting long-term outcomes.
基金support of the National Natural Science Foundation of China(Grant No.52205593)Shaanxi Natural Science Foundation Project(2024JC-YBMS-711).
文摘The incidence of large bone defects caused by traumatic injury is increasing worldwide,and the tissue regeneration process requires a long recovery time due to limited self-healing capability.Endogenous bioelectrical phenomena have been well recognized as critical biophysical factors in bone remodeling and regeneration.Inspired by bioelectricity,electrical stimulation has been widely considered an external intervention to induce the osteogenic lineage of cells and enhance the synthesis of the extracellular matrix,thereby accelerating bone regeneration.With ongoing advances in biomaterials and energy-harvesting techniques,electroactive biomaterials and self-powered systems have been considered biomimetic approaches to ensure functional recovery by recapitulating the natural electrophysiological microenvironment of healthy bone tissue.In this review,we first introduce the role of bioelectricity and the endogenous electric field in bone tissue and summarize different techniques to electrically stimulate cells and tissue.Next,we highlight the latest progress in exploring electroactive hybrid biomaterials as well as self-powered systems such as triboelectric and piezoelectric-based nanogenerators and photovoltaic cell-based devices and their implementation in bone tissue engineering.Finally,we emphasize the significance of simulating the target tissue’s electrophysiological microenvironment and propose the opportunities and challenges faced by electroactive hybrid biomaterials and self-powered bioelectronics for bone repair strategies.
基金Supported by the Natural Science Foundation of China,No.81970529the Natural Science Foundation of Jilin Province,No.20230508074RC and No.YDZJ202401218ZYTS.
文摘In this editorial,we comment on the article by Mu et al,published in the recent issue of the World Journal of Gastrointestinal Oncology.We pay special attention to the immune tolerance mechanism caused by hepatitis B virus(HBV)infection,the pathogenesis of hepatocellular carcinoma(HCC),and the role of antiviral therapy in treating HCC related to HBV infection.HBV infection leads to systemic innate immune tolerance by directly inhibiting pattern recognition receptor recognition and antiviral signaling pathways,as well as by inhibiting the immune functions of macrophages,natural killer cells and dendritic cells.In addition,HBV leads to an immunosuppressive cascade by expressing inhibitory molecules to induce exhaustion of HBV-specific cluster of differentiation 8+T cells,ultimately leading to long-term viral infection.The loss of immune cell function caused by HBV infection ultimately leads to HCC.Long-term antiviral therapy can improve the prognosis of patients with HCC and prevent tumor recurrence and metastasis.
基金supported by the Faculty Research Fund(Faculty of Medicine&Health Science,Keele University)Career Development Award–(April 2022)(to SJB)。
文摘Spinal muscular atrophy(SMA)is a genetic condition that results in selective lower motor neuron loss with concomitant muscle weakness and atrophy.The genetic cause of SMA was understood in 1995 when loss or impairment of the survival motor neuron 1(SMN1)gene was identified as the main contributing factor(Lefebvre et al.,1995).This,in combination with the discovery that humans have a“back-up”gene,SMN2,which can produce low levels(approximately 10%)of the full-length functional SMN protein,has led to the generation of SMA-specific gene therapies.SMA was traditionally classified according to age of symptom onset and developmental milestones achieved,with life expectancy and severity varying between individuals.Now,SMN2 copy number is used as a proxy for the prediction of disease severity,with higher SMN2 copy number typically being associated with reduced severity of SMA,although this relationship is not absolute:some individuals with low SMN2 copy number have less severe SMA phenotypes and vice versa.Additionally,the etiology of SMA is further complicated by other factors,such as non-typical nucleotide variants and SMN2-independent modifiers of disease severity.
文摘This study aimed to investigate the effect of ultrasound-assisted alkaline extraction(UAE)(at 20 kHz and different powers of 0,200,300,400,500 and 600 W for 10 min)on the yield,structure and emulsifying properties of chickpea protein isolate(CPI).Compared with the non-ultrasound group,ultrasound treatment at 400 W resulted in the largest increase in CPI yield,and both the particle size and turbidity decreased with increasing ultrasound power from 0 to 400 W.The scanning electron microscope results showed a uniform structural distribution of CPI.Moreover,itsα-helix content increased,β-sheet content decreased,and total sulfhydryl group content and endogenous fluorescence intensity rose,illustrating that UAE changed the secondary and tertiary structure of CPI.At 400 W,the solubility of the emulsion increased to 63.18%,and the best emulsifying properties were obtained;the emulsifying activity index(EAI)and emulsifying stability index(ESI)increased by 85.42%and 46.78%,respectively.Furthermore,the emulsion droplets formed were smaller and more uniform.In conclusion,proper UAE power conditions increased the extraction yield and protein content of CPI,and effectively improved its structure and emulsifying characteristics.
基金the National Natural Science Foundation of China(No.62063006)to the Guangxi Natural Science Foundation under Grant(Nos.2023GXNSFAA026025,AA24010001)+3 种基金to the Innovation Fund of Chinese Universities Industry-University-Research(ID:2023RY018)to the Special Guangxi Industry and Information Technology Department,Textile and Pharmaceutical Division(ID:2021 No.231)to the Special Research Project of Hechi University(ID:2021GCC028)to the Key Laboratory of AI and Information Processing,Education Department of Guangxi Zhuang Autonomous Region(Hechi University),No.2024GXZDSY009。
文摘In dynamic scenarios,visual simultaneous localization and mapping(SLAM)algorithms often incorrectly incorporate dynamic points during camera pose computation,leading to reduced accuracy and robustness.This paper presents a dynamic SLAM algorithm that leverages object detection and regional dynamic probability.Firstly,a parallel thread employs the YOLOX object detectionmodel to gather 2D semantic information and compensate for missed detections.Next,an improved K-means++clustering algorithm clusters bounding box regions,adaptively determining the threshold for extracting dynamic object contours as dynamic points change.This process divides the image into low dynamic,suspicious dynamic,and high dynamic regions.In the tracking thread,the dynamic point removal module assigns dynamic probability weights to the feature points in these regions.Combined with geometric methods,it detects and removes the dynamic points.The final evaluation on the public TUM RGB-D dataset shows that the proposed dynamic SLAM algorithm surpasses most existing SLAM algorithms,providing better pose estimation accuracy and robustness in dynamic environments.
基金supported by the Science and Technology Innovation Program of Hunan Province(No.2022RC1168)National Natural Science Foundation of China(Nos.82322073,82173846,82304533)+12 种基金CAMS Innovation Fund for Medical Sciences(CIFMS)(No.2023-I2M-3-009)Key project at central government level:The ability establishment of sustainable use for valuable Chinese medicine resources(No.2060302)China Postdoctoral Science Foundation(No.2021M702215)Oriental Scholars of Shanghai Universities(No.TP2022081)Jiangxi Province Thousand Talents Program(No.jxsq2023102168)Young Talent Lifting Project of China Association of Chinese Medicine(No.CACM-(2021-QNRC2-A08))Shanghai Rising-Star Program(No.22QA1409100)Shanghai Sailing Program(No.22YF1445000)2021 Shanghai Science and Technology Innovation Action Plan(No.21S11902800)Three-year Action Plan for Shanghai TCM Development and Inheritance Program(Nos.ZY(2021-2023)-0208,ZY(2021-2023)-0401)High level Key Discipline of National Administration of Traditional Chinese Medicine(No.71)Innovation Team and Talents Cultivation Program of National Administration of Traditional Chinese Medicine(No.ZYYCXTD-D-202004)Innovation team of high-level local universities in Shanghai:Strategic Innovation Team of TCM Chemical Biology。
文摘Despite ongoing advancements in cancer treatment,the emergence of primary and acquired resistance poses a significant challenge for both traditional chemotherapy and immune checkpoint blockade therapies.The demand for targeted therapeutics for multidrug-resistant cancer is more important than ever.Peptides,as emerging alternatives to current anticancer drugs,offer exquisite versatility in facilitating the design of novel oncology drugs,with the core superiorities of good biocompatibility and a low tendency to induce drug resistance.This review comprehensively introduces the pharmacological mechanisms of peptide-based drugs and strategies for overcoming multidrug resistance(MDR)in cancers,including inducing cell membrane lysis,targeting organelles,activating anticancer immune responses,enhancing drug uptake,targeting ATP-binding cassette(ABC)transporters,and targeting B-cell lymphoma-2(BCL-2)family proteins.Additionally,the current clinical applications of representative peptides in combating MDR cancers and their potential directions for medicinal chemistry research have been thoroughly discussed.This review offers essential insights into the novel treatment approaches for MDR cancers and highlights the trends and perspectives in this field.
基金supported by NIH/NICHD RO1HD109157supported by his American Heart AssociationAward Career Development Award (932980)National Science Foundation CAREER award (NSF2401215)
文摘Background:The prevalence,age of onset,and symptomatology of traumatic brain injury,stroke,and neurodegenerative diseases(such as Alzheimer’s disease(AD),Parkinson’s disease,amyotrophic lateral sclerosis,and Huntington’s disease)differ substantially between males and females.The higher prevalence of these brain disorders has been attributed to females having a greater longevity compared with males.Since one of the greatest risk factors of acquired brain injury(such as stroke,traumatic brain injury caused by fall)and neurodegenerative disease is age.
基金湖南省教育厅基金优秀青年项目(No.22B0482)湖南科技大学博士启动基金(No.E51992 and E51993)资助。
文摘The xylitol dehydrogenase(XDH)is a crucial enzyme involved in the xylose utilization in pentose⁃catabolizing yeasts and fungi.In addition to producing xylulose,XDH can also be employed to develop a biosensor for monitoring xylitol concentration.In this study,the gene encoding the thermophilic fungus Talaromyces emersonii XDH(TeXDH)was heterologously expressed in Escherichia coli BL21(DE3)at 16℃in the soluble form.Recombinant TeXDH with high purity was purified by using a Ni⁃NTA affinity column.Size⁃exclusion chromatography and SDS⁃PAGE analysis demonstrated that the puri⁃fied recombinant TeXDH exists as a native trimer with a molecular mass of approximately 116 kD,and is composed of three identical subunits,each with a molecular weight of around 39 kD.The TeXDH strictly preferred NAD^(+)as a coenzyme to NADP^(+).The optimal temperature and pH of the TeXDH were 40℃and 10.0,respectively.After EDTA treatment,the enzyme activity of TeXDH decreased to 43.26%of the initial enzyme activity,while the divalent metal ions Mg^(2+)or Ca^(2+)could recover the enzyme activity of TeXDH,reaching 103.32%and 110.69%of the initial enzyme activity,respectively,making them the optimal divalent metal ion cofactors for TeXDH enzyme.However,the divalent metal ions of Mn^(2+),Ni^(2+),Cu^(2+),Zn^(2+),Co^(2+),and Cd^(2+)significantly inhibited the activity of TeXDH.ICP⁃MS and molecular doc⁃king studies revealed that 1 mol/L of TeXDH bound 2 mol/L Zn^(2+)ions and 1 mol/L Mg^(2+)ion.Further⁃more,TeXDH exhibited a high specificity for xylitol,laying the foundation for the development of future xylitol biosensors.
基金supported by the Scientific Research Fund of the National Health Commission-Zhejiang Provincial Health Major Science and Technology Plan Project(No.WKJ-ZJ-2415)the Key Research and Development Program of Zhejiang Province(No.2024C03166)+1 种基金the Traditional Chinese Medicine Science and Technology Project of Zhejiang Province(No.2022ZB020)the Zhejiang Provincial Natural Science Foundation of China(No.LY21H160049).
文摘Numerous studies have demonstrated that the high expression of CXC motif chemokine ligand 16(CXCL16)in cancer correlates with poor prognosis,as well as tumor cell proliferation,migration,and invasion.While CXCL16 can serve as a tumor biomarker,the underlying mechanism in modulating head and neck squamous cell carcinoma(HNSCC)remains unclear.In this study,the aimed was to investigate the CXCL16 expression in HNSCC and to uncover the potential underlying mechanism.Hereby,we determined the high expression of CXCL16 in The Cancer Genome Atlas(TCGA)database,as well as in tissue samples from patients with HNSCC at our central hospital and from HNSCC cell lines.The results showed that CXCL16 knockdown inhibited the proliferation,migration,and invasion of HNSCC cells.Mechanistically,transcriptome sequencing revealed that CXCL16 may affect HNSCC cell growth by regulating the antioxidant pathway of glutathione peroxidase 1(GPX1).The reactive oxygen species(ROS)levels were elevated in small interfering CXCL16(si-CXCL16)cells,which may contribute to the inhibition of cell proliferation,migration,and invasion.Moreover,treatment of cells with the GPX1 inhibitor eldecalcitol(ED-71)revealed that HNSCC cell growth was significantly inhibited in the synergistic group of si-CXCL16 and GPX1 inhibitor compared to the si-CXCL16 group.In conclusion,CXCL16 contributed to the development of HNSCC cells by modulating the GPX1-mediated antioxidant pathway.Thus,targeting cellular CXCL16 expression seems to be a promising strategy for treating HNSCC.
文摘A zinc sulfate open framework matrix,[Zn(SO_4)(DMSO)](1),was synthesized by solvothermal evaporationusing dimethyl sulfoxide(DMSO)as the solvent.A compositeP@1,which exhibits fluorescence and room tempera-ture phosphorescence(RTP)properties,was prepared by doping 2,6-naphthalic acid(P)into matrix1at a low con-centration.P@1emitted a green RTP that was visible to the naked eye and lasted for approximately 2 s.P@1exhib-ited selective phosphorescence enhancement response towards Pb^(2+),with a detection limit of 2.52μmol·L^(-1).Themain detection mechanism is the Pb—O coordination-induced phosphorescence enhancement in the system.Inter-estingly,P@1also functioned as a dual-channel probe for the rapid detection of Fe^(3+)ions through fluorescencequenching with a detection limit of 0.038μmol·L^(-1).The recognition mechanism may be attributed to the competi-tive energy absorption betweenP@1and Fe^(3+)ions.CCDC:2388502,1.
基金financially supported by the National Natural Science Foundation of China(No.52074356)Open Foundation of State Key Laboratory of Mineral Processing(No.BGRIMM-KJSKL-2023-06)+5 种基金the National Key R&D Program of China(No.2022YFC2904500)the Science and Technology Innovation Program of Hunan Province,China(No.2022RC1183)Changsha Science and Technology Project,China(Outstanding Innovative Youth Training Program)Innovation driven program of Central South University(No.2023CXQD002)National 111 Project(No.B14034)the Fundamental Research Funds for the Central Universities of Central South University Project(No.50621747)。
文摘The depression mechanism of sulfite ions on sphalerite and Pb^(2+)activated sphalerite in the flotation separation of galena from sphalerite still lacked in-depth insight.Therefore,the depression mechanism of sulfite ions on sphalerite and Pb^(2+)activated sphalerite in the flotation separation of galena from sphalerite was further systematically investigated with experiments and density functional theory(DFT)calculations.The X-ray photoelectric spectroscopy(XPS)results,DFT calculation results,and frontier molecular orbital analysis indicated that sulfite ions were difficult to be adsorbed on sphalerite surface,suggesting that sulfite ions achieved depression effects on sphalerite through other non-adsorption mechanisms.First,the oxygen content in the surface of sphalerite treated with sulfite ions in creased,which enhanced the hydrophilicity of the sphalerite and further increased the difference in hydrophilicity between sphalerite and galena.Then,sulfite ions were chelated with lead ions to form PbSO_(3)in solution.The hydrophilic PbSO_(3)was more easily adsorbed on sphalerite than galena.The interaction between sulfite ions and lead ions could effectively inhibit the activation of sphalerite.In addition the UV spectrum showed that after adding sulfite ions,the peak of perxanthate in the sphalerite treated xanthate solution was significantly stronger than that in the galena with xanthate solution,indicating that xanthate interacted more readily with sulfite ions and oxygen mo lecules within the sphalerite system,leading to the formation of perxanthate.However,sulfite ions hardly depressed the flotation of ga lena and could promote the flotation of galena to some extent.This study deepened the understanding of the depression mechanism o sulfite ions on sphalerite and Pb^(2+)activated sphalerite.