Introduction: Cardiovascular disease represents a major public health burden worldwide. Research and management of risk factors contribute to the prevention of these diseases. The aim of this study was to assess the p...Introduction: Cardiovascular disease represents a major public health burden worldwide. Research and management of risk factors contribute to the prevention of these diseases. The aim of this study was to assess the prevalence of dyslipidemia in the biochemistry unit of the Charles De Gaulle Pediatric University Hospital (CHUP-CDG) in Ouagadougou. Material and Methods: This was a descriptive and analytical cross-sectional study, with retrospective data collection from January 1, 2020 to December 31, 2022. Patients of all ages who performed a lipid panel in the CHUP-CDG biochemistry unit during the study period have been included. Results: A total of 2872 patients have been included. The mean age of the study population was 27.72 ± 19.51 years and the M/F sex ratio was 0.81. Among the patients, 22.84% had at least one dyslipidemia. The prevalences of hypercholesterolemia, hypo-HDL cholesterolemia and hyper-LDL cholesterolemia were 11.57%, 49.19% and 57.50% respectively. Hypertriglyceridemia and mixed hyperlipidemia were present in 9.04% and 2.08% of patients. Hypercholesterolemia was significantly more frequent in the female sex (p = 0.0077);hyper-LDL cholesterolemia (p = 0.0255) and mixed hyperlipidemia (p Conclusion: The relatively high prevalence of dyslipidemia in the study indicates a worrying situation. It would therefore appear essential to extend the search for risk factors nationwide, particularly those that can be modified, in order to reduce morbidity and mortality linked to cardiovascular disease.展开更多
Introduction: The Six Sigma methodology is an opportunity for a better understanding of the performance of analytical methods and for a better adaptation of the quality control management policy of the medical biology...Introduction: The Six Sigma methodology is an opportunity for a better understanding of the performance of analytical methods and for a better adaptation of the quality control management policy of the medical biology laboratory. Using the sigma metric, this study assessed the performance of the Biochemistry analytical system of a medical biology laboratory in Côte d'Ivoire. Methods: Six Sigma methodology was applied to 3 analytes (alanine aminotransferase, glucose and creatinine). Performance indicators such as measurement imprecision and bias were determined based on the results of internal and external quality controls. The sigma number was calculated using the total allowable error values proposed by Ricos et al. Results: For both control levels, ALT had a sigma number greater than 6 (7.6 for normal control and 7.9 for pathological control). However, low sigma numbers, less than or equal to 2 for creatinine (1.4 for normal control and 2 for pathological control) and less than 1 for glucose were found. Conclusion: This study revealed good analytical performance of ALT from the point of view of 6 sigma analysis. However, modifications to the overall quality control procedure for glucose and creatinine are needed to improve their analytical performance. The study should be extended to the entire laboratory’s analytes in order to modify the strategies of quality control procedures based on metric analysis for an overall improvement in analytical performance.展开更多
Background: Exclusive breastfeeding is globally promoted as a preventive health measure. However, an increasing incidence of jaundice among exclusively breastfed neonates has been observed. In Jos, Nigeria, anecdotal ...Background: Exclusive breastfeeding is globally promoted as a preventive health measure. However, an increasing incidence of jaundice among exclusively breastfed neonates has been observed. In Jos, Nigeria, anecdotal evidence suggests a rise in jaundice cases among breastfed infants during their first week of life. This study investigates the relationship between neonatal jaundice and the biochemical composition of maternal breast milk in Jos, Nigeria. Objective: To evaluate the role of maternal milk protein status and other milk constituents in the development of neonatal jaundice among exclusively breastfed full-term infants. Methods: This cross-sectional study involved 152 participants, comprising of 76 neonates (38 jaundiced and 38 healthy controls) and their corresponding 76 mothers at Jos University Teaching Hospital. Biochemical analyses were conducted on maternal breast milk (albumin, proteins, casein, fat, lactose, enzymes) and infant serum (bilirubin, albumin, proteins, enzymes). Statistical analysis was performed using Mann-Whitney tests with significance set at p ≤ 0.05. Results: Maternal breast milk from mothers of jaundiced infants showed significantly lower protein (0.73 ± 0.07 g/100ml), albumin (0.62 ± 0.04 g/100ml), and casein (1.6 ± 0.12 g/100ml) levels compared to controls (p Conclusion: The study highlights a potential link between lower maternal milk protein levels and the occurrence of neonatal jaundice. Interventions aimed at enhancing maternal nutrition and promoting more frequent breastfeeding may mitigate the risk. Further research should explore additional maternal and neonatal factors contributing to this condition.展开更多
Introduction: Multiple myeloma (MM) is characterized by the abnormal proliferation of a plasma cell clone invading the bone marrow, with secretion of a monoclonal immunoglobulin (Ig), detectable by serum protein elect...Introduction: Multiple myeloma (MM) is characterized by the abnormal proliferation of a plasma cell clone invading the bone marrow, with secretion of a monoclonal immunoglobulin (Ig), detectable by serum protein electrophoresis. The aim of our work was to study the electrophoretic profile of patients with MM. Methods: This is a retrospective descriptive and analytical study including 76 patients with MM, whose serum samples were received at the Biochemistry Department of the Dalal Jamm National Hospital during the period from January 1, 2021 to April 30, 2023. For each patient, we studied epidemiological data (age, sex, service) and biochemical variables (proteinemia, electrophoresis and serum protein immunofixation). Results: The mean age of our patients was 58 ± 10.24 years, with a sex ratio of 0.9, with a female predominance (52.6%). The majority of cohort (71.1%) were consulted as outpatients. Hyperproteinemia was observed in 27.6% of patients, with a mean average of 91.2 ± 25.2 g/L, while hypoalbuminemia was found in 43.4% of patients. A monoclonal peak was noted at the Serum protein electrophoresis (SPEP) in all patients in our series, 75% of whom were in the gamma zone and 22.4% in the beta zone. Immunofixation had objectified kappa-type IgG myeloma in the majority of patients (77.8%). Conclusion: Among the biological markers of MM, serum protein electrophoresis remains the most characteristic for detecting monoclonal immunoglobulin.展开更多
The rapid advancement of AI technology has significantly impacted higher education,presenting both opportunities and challenges for teaching and learning.Although students can benefit from AI,many remain unaware of it...The rapid advancement of AI technology has significantly impacted higher education,presenting both opportunities and challenges for teaching and learning.Although students can benefit from AI,many remain unaware of its potential utility.Moreover,concerns regarding the accuracy and reliability of AI complicate its proper use.This study incorporated an AI teaching assistant,called Blueink,into a biochemistry course at a medical university in China.The researchers assessed the alterations in individuals’knowledge,AI use,and critical thinking skills by conducting a review before and after the training.This was done to furnish valuable information for academics and specialists.The findings presented that the participating college students perceived AI as increasingly essential for contemporary learning and excelled at discovering significant facts using AI techniques.However,their confidence in AI responses and their habits and preferences for posing inquiries remained unchanged after the training.The study indicates that AI tools not only enhance students’skill acquisition but require greater clarity and proficiency.Collaborating with diverse specialists can yield superior AI tools for education.展开更多
Adult neurogenesis is a highly dynamic process that leads to the production of new neurons from a population of quiescent neural stem cells(NSCs).In response to specific endogenous and/or external stimuli,NSCs enter a...Adult neurogenesis is a highly dynamic process that leads to the production of new neurons from a population of quiescent neural stem cells(NSCs).In response to specific endogenous and/or external stimuli,NSCs enter a state of mitotic activation,initiating proliferation and differentiation pathways.Throughout this process,NSCs give rise to neural progenitors,which undergo multiple replicative and differentiative steps,each governed by precise molecular pathways that coordinate cellular changes and signals from the surrounding neurogenic niche.展开更多
Microglia are the resident macrophages of the central nervous system.They act as the first line of defense against pathogens and play essential roles in neuroinflammation and tissue repair after brain insult or in neu...Microglia are the resident macrophages of the central nervous system.They act as the first line of defense against pathogens and play essential roles in neuroinflammation and tissue repair after brain insult or in neurodegenerative and demyelinating diseases(Borst et al.,2021).Together with infiltrating monocyte-derived macrophages,microglia also play a critical role for brain tumor development,since immunosuppressive interactions between tumor cells and tumor-associated microglia and macrophages(TAM)are linked to malignant progression.This mechanism is of particular relevance in glioblastoma(GB),the deadliest form of brain cancer with a median overall survival of less than 15 months(Khan et al.,2023).Therefore,targeting microglia and macrophage activation is a promising strategy for therapeutic interference in brain disease.展开更多
Gastric cancer(GC)is the fifth most prevalent malignancy worldwide and remains a leading cause of cancer-related mortality.Major risk factors for GC include Helicobacter pylori infection,increasing age,high dietary sa...Gastric cancer(GC)is the fifth most prevalent malignancy worldwide and remains a leading cause of cancer-related mortality.Major risk factors for GC include Helicobacter pylori infection,increasing age,high dietary salt intake,and diets deficient in vegetables and fruits.Due to the often subtle and nonspecific early symptoms,coupled with the lack of routine screening programs,a significant proportion of GC cases are diagnosed at advanced stages.The etiology of GC is multifactorial,and diagnosis is confirmed histologically through endoscopic biopsy,followed by staging via computed tomography,positron emission tomography,staging laparoscopy,and endoscopic ultrasound.Treatment strategies typically involve a multidisciplinary approach including chemotherapy,surgical resection,radiotherapy,and emerging immunotherapeutic options.Despite advances in diagnostic and therapeutic modalities,the prognosis of advanced GC remains poor,with high rates of recurrence and metastasis.In recent years,increasing attention has been given to the role of tight junction(TJ)proteins in the pathogenesis and progression of GC.TJ proteins,critical components of epithelial barrier function,have been implicated in various stages of gastric carcinogenesis,from intestinal metaplasia to invasion and metastasis.Infection and inflammation,particularly due to Helicobacter pylori,disrupt TJ integrity,compromising the gastric mucosal barrier and facilitating neoplastic transformation.This review synthesizes current evidence from PubMed,EMBASE,Google Scholar,ScienceDirect,SpringerLink,and other reputable databases to provide a comprehensive overview of the involvement of TJ proteins in GC.By elucidating the molecular interplay between TJ dysregulation and gastric tumorigenesis,this work aims to highlight the potential of TJ proteins as novel diagnostic biomarkers and therapeutic targets in GC management.展开更多
In this editorial,we comment on the study of the Yu et al on psychological distress in patients with hepatobiliary and pancreatic malignancies.Hepatobiliary and pancreatic malignancies include hepatocellular carcinoma...In this editorial,we comment on the study of the Yu et al on psychological distress in patients with hepatobiliary and pancreatic malignancies.Hepatobiliary and pancreatic malignancies include hepatocellular carcinoma,cholangiocarcinoma,gallbladder cancer and pancreatic cancer.These cancers are among the most aggressive and difficult to treat.Although improvements in surgery,drug treatments and palliative care have led to better survival rates and quality of life,the significant psychological impact on patients remains underrecognized.Anxiety and depression are prevalent at every stage of the disease,from the initial diagnosis to treatment,recurrence and end-of-life care.However,these issues often take a backseat to the urgent need to manage physical symptoms.Mental health challenges can greatly affect how well patients follow treatment plans,recover and their overall outlook.Yu et al explore the causes of psychological distress in hepatobiliary and pancreatic cancers,including disease severity,symptom burden,financial stress and fears about life and death.We highlight the importance of regular mental health screenings,psychological support and teamwork in oncology care.By focusing on emotional health alongside physical treatment,doctors can build resilience,improve outcomes and address a frequently ignored aspect of cancer care.展开更多
Colorectal cancer remains one of the leading causes of morbidity and mortality worldwide.Despite notable advances in early detection and therapeutic strategies,the molecular mechanisms underlying tumor survival,chemot...Colorectal cancer remains one of the leading causes of morbidity and mortality worldwide.Despite notable advances in early detection and therapeutic strategies,the molecular mechanisms underlying tumor survival,chemotherapy resistance,and metastasis are not yet fully understood.MicroRNAs(miRNAs)have emerged as pivotal regulators of cancer development,as they modulate gene expression and orchestrate key signaling pathways.However,the epigenetic mechanisms that control miRNA expression and their downstream gene targets remain largely unclear.In this review,we highlight the critical role of the colorectal cancer microenvironment in influencing miRNA expression and discuss how this regulation contributes to tumorigenesis.A better understanding of these processes may lead to the identification of novel therapeutic targets and strategies to prevent recurrence.展开更多
Unwarranted death of neurons is a major cause of neurodegenerative diseases.Since mature neurons are postmitotic and do not replicate,their death usually constitutes an irreversible step in pathology.A logical strateg...Unwarranted death of neurons is a major cause of neurodegenerative diseases.Since mature neurons are postmitotic and do not replicate,their death usually constitutes an irreversible step in pathology.A logical strategy to prevent neurodegeneration would then be to save all neurons that are still alive,i.e.protecting the ones that are still healthy as well as trying to rescue the ones that are damaged and in the process of dying.Regarding the latter,recent experiments have indicated that the possibility of reversing the cell death process and rescuing dying cells is more significant than previously anticipated.In many situations,the elimination of the cell death trigger alone enables dying cells to spontaneously repair their damage,recover,and survive.In this review,we explore the factors,which determine the fate of neurons engaged in the cell death process.A deeper insight into cell death mechanisms and the intrinsic capacity of cells to recover could pave the way for novel therapeutic approaches to neurodegenerative diseases.展开更多
Foliar uptake of airborne metal(loid)s plays a crucial role in metal(loid)accumulation in plant organs and is influ-enced by the size and emission sources of aerosols.Given the high enrichment of toxic metal(loid)s in...Foliar uptake of airborne metal(loid)s plays a crucial role in metal(loid)accumulation in plant organs and is influ-enced by the size and emission sources of aerosols.Given the high enrichment of toxic metal(loid)s in submicron-scale particulates(PM1),this study established a PM1 exposure system to examine airborne metal(loid)accu-mulation and foliar physiological responses in Oryza sativa L.The results showed that the concentrations of Cu,Zn,As,Pb,and Cd in the leaves and grains were influenced not only by the airborne metal(loid)levels but also by the specific nature of the PM1 particles.The quantitative model for PM1-associated Pb entry into leaf tissue indicated that foliar Pb accumulation was primarily driven by particle adhesion,followed by hydrophilic pene-tration and trans-stomatal liquid film migration,accounting for 87%–89%of the total accumulation.The strong hygroscopicity and high Pb activity of PM1 emitted from waste incineration(WI)increased the Pb absorption coefficient via the hydrophilic and liquid film migration pathway.In contrast,the high hydrophobicity of PM1 from coal burning(CB)led to greater retention of Pb on leaf surfaces.Both foliar reactive oxygen metabolism and photosynthesis indices were sensitive to air pollution.Foliar metal(loid)accumulation and airborne PM1 concentration accounted for the variance in physiological responses in rice leaves.Our results also indicated that Pb was the key element in PM1 emissions from both coal burning(CB)and waste incineration(WI)responsible for significant physiological changes in rice leaves.展开更多
Objective:To evaluate the effects of a piceatannol-loaded self-nanoemulsifying drug delivery system(PIC-SNEDDS)on wound healing in diabetic rats and its mechanisms of wound healing action.Methods:Diabetes was induced ...Objective:To evaluate the effects of a piceatannol-loaded self-nanoemulsifying drug delivery system(PIC-SNEDDS)on wound healing in diabetic rats and its mechanisms of wound healing action.Methods:Diabetes was induced in rats using streptozotocin,after which full-thickness excisional wounds were created.Piceatannol was administered topically either as a raw hydrogel or formulated into a PIC-SNEDDS,which was prepared using an optimized oil-surfactant mixture and incorporated into a hydrogel for application.Wound healing activity was assessed through measurements of wound contraction,oxidative stress biomarkers,and collagen content,along with histological and immunohistochemical evaluation of inflammatory,angiogenic,and remodeling markers.Results:PIC-SNEDDS markedly enhanced diabetic wound healing by promoting epithelial regeneration,granulation tissue formation,epidermal proliferation,and keratinization.The formulation also reduced the expression of pro-inflammatory markers(interleukin-6,nuclear factor-kappa B,and tumor necrosis factor-α)while increasingα-smooth muscle actin,transforming growth factor-β1,vascular endothelial growth factor-A,and hydroxyproline levels.Additionally,it improved antioxidant status by lowering malondialdehyde levels and boosting superoxide dismutase and catalase activity,along with upregulation of COL1A1 mRNA expression.Conclusions:PIC-SNEDDS promotes the healing of diabetic wounds and exhibits anti-inflammatory,antioxidant,pro-collagen,and angiogenic properties.展开更多
The rapid growth of biomedical data,particularly multi-omics data including genomes,transcriptomics,proteomics,metabolomics,and epigenomics,medical research and clinical decision-making confront both new opportunities...The rapid growth of biomedical data,particularly multi-omics data including genomes,transcriptomics,proteomics,metabolomics,and epigenomics,medical research and clinical decision-making confront both new opportunities and obstacles.The huge and diversified nature of these datasets cannot always be managed using traditional data analysis methods.As a consequence,deep learning has emerged as a strong tool for analysing numerous omics data due to its ability to handle complex and non-linear relationships.This paper explores the fundamental concepts of deep learning and how they are used in multi-omics medical data mining.We demonstrate how autoencoders,variational autoencoders,multimodal models,attention mechanisms,transformers,and graph neural networks enable pattern analysis and recognition across all omics data.Deep learning has been found to be effective in illness classification,biomarker identification,gene network learning,and therapeutic efficacy prediction.We also consider critical problems like as data quality,model explainability,whether findings can be repeated,and computational power requirements.We now consider future elements of combining omics with clinical and imaging data,explainable AI,federated learning,and real-time diagnostics.Overall,this study emphasises the need of collaborating across disciplines to advance deep learning-based multi-omics research for precision medicine and comprehending complicated disorders.展开更多
Lysophosphatidic acid(LPA)is a pleiotropic lipid agonist essential for functions of the central nervous system(CNS).It is abundant in the developing and adult brain while its concentration in biological fluids,includi...Lysophosphatidic acid(LPA)is a pleiotropic lipid agonist essential for functions of the central nervous system(CNS).It is abundant in the developing and adult brain while its concentration in biological fluids,including cerebrospinal fluid,varies significantly(Figure 1Α;Yung et al.,2014).LPA actually corresponds to a variety of lipid species that include different stereoisomers with either saturated or unsaturated fatty acids bearing likely differentiated biological activities(Figure 1Α;Yung et al.,2014;Hernández-Araiza et al.,2018).展开更多
Hepatocellular carcinoma(HCC)remains one of the most prevalent and lethal malignancies worldwide.Long non-coding RNAs(lncRNAs)have emerged as crucial regulators of gene expression and cancer progression,yet the functi...Hepatocellular carcinoma(HCC)remains one of the most prevalent and lethal malignancies worldwide.Long non-coding RNAs(lncRNAs)have emerged as crucial regulators of gene expression and cancer progression,yet the functional diversity of RP11-derived lncRNAs—originally mapped to bacterial artificial chromosome(BAC)clones from the Roswell Park Cancer Institute—has only recently begun to be appreciated.This mini-review aims to systematically synthesize current findings on RP11-derived lncRNAs in HCC,outlining their genomic origins,molecular mechanisms,and biological significance.We highlight their roles in metabolic reprogramming,microRNA network modulation,and tumor progression,as well as their diagnostic and prognostic value in tissue and serum-based analyses.Finally,we discuss therapeutic opportunities and propose future directions to translate RP11-derived lncRNAs into clinically actionable biomarkers and targets for precision liver cancer therapy.展开更多
It was in the 1980s that research on somatostatin(SST)in Alzheimer’s disease(AD)truly gained traction,demonstrating consistent colocalization with amyloid-β(Aβ),along with massive SST/SST cell losses(Almeida,2024)....It was in the 1980s that research on somatostatin(SST)in Alzheimer’s disease(AD)truly gained traction,demonstrating consistent colocalization with amyloid-β(Aβ),along with massive SST/SST cell losses(Almeida,2024).Although the field already had some grasp over the neuroendocrine and hypothalamic functions of the peptide,very little was known about the GABAergic interneurons(SST-INs)that synthesize it in cortical/hippocampal regions.Quite excitingly,over 40 years later,research has grown effervescent.展开更多
The unfolded protein response is a cellular pathway activated to maintain proteostasis and prevent cell death when the endoplasmic reticulum is overwhelmed by unfolded proteins.However,if the unfolded protein response...The unfolded protein response is a cellular pathway activated to maintain proteostasis and prevent cell death when the endoplasmic reticulum is overwhelmed by unfolded proteins.However,if the unfolded protein response fails to restore endoplasmic reticulum homeostasis,it can trigger proinflammatory and pro-death signals,which are implicated in various malignancies and are currently being investigated for their role in retinal degenerative diseases.This paper reviews the role of the unfolded protein responsein addressing endoplasmic reticulumstress in retinal degenerative diseases.The accumulation of ubiquitylated misfolded proteins can lead to rapid destabilization of the proteome and cellular demise.Targeting endoplasmic reticulum stress to alleviate retinal pathologies involves multiple strategies,including the use of chemical chaperones such as 4-phenylbutyric acid and tauroursodeoxycholic acid,which enhance protein folding and reduce endoplasmic reticulum stress.Small molecule modulators that influence endoplasmic reticulum stress sensors,including those that increase the expression of the endoplasmic reticulum stress regulator X-box binding protein 1,are also potential therapeutic agents.Additionally,inhibitors of the RNAse activity of inositol-requiring transmembrane kinase/endoribonuclease 1,a key endoplasmic reticulum stress sensor,represent another class of drugs that could prevent the formation of toxic aggregates.The activation of nuclear receptors,such as PPAR and FXR,may also help mitigate ER stress.Furthermore,enhancing proteolysis through the induction of autophagy or the inhibition of deubiquitinating enzymes can assist in clearing misfolded proteins.Combination treatments that involve endoplasmicreticulum-stress-targeting drugs and gene therapies are also being explored.Despite these potential therapeutic strategies,significant challenges remain in targeting endoplasmic reticulum stress for the treatment of retinal degeneration,and further research is essential to elucidate the mechanisms underlying human retinal diseases and to develop effective,well-tolerated drugs.The use of existing drugs that target inositol-requiring transmembrane kinase/endoribonuclease 1 and X-box binding protein 1 has been associated with adverse side effects,which have hindered their clinical translation.Moreover,signaling pathways downstream of endoplasmic reticulum stress sensors can contribute to therapy resistance.Addressing these limitations is crucial for developing drugs that can be effectively used in treating retinal dystrophies.In conclusion,while the unfolded protein response is a promising therapeutic target in retinal degenerative diseases,additional research and development efforts are imperative to overcome the current limitations and improve patient outcomes.展开更多
Background:The medicinal material known as Os Draconis(Longgu)originates from fossilized remains of ancient mammals and is widely used in treating emotional and mental conditions.However,fossil resources are nonrenewa...Background:The medicinal material known as Os Draconis(Longgu)originates from fossilized remains of ancient mammals and is widely used in treating emotional and mental conditions.However,fossil resources are nonrenewable,and clinical demand is increasingly difficult to meet,leading to a proliferation of counterfeit products.During prolonged geological burial,static pressure from the surrounding strata severely compromises the microstructural integrity of osteons in Os Draconis,but Os Draconis still largely retains the structural features of mammalian bone.Methods:Using verified authentic Os Draconis samples over 10,000 years old as a baseline,this study summarizes the ultrastructural characteristics of genuine Os Draconis.Employing electron probe microanalysis and optical polarized light microscopy,we examined 28 batches of authentic Os Draconis and 31 batches of counterfeits to identify their ultrastructural differences.Key points for ultrastructural identification of Os Draconis were compiled,and a new identification approach was proposed based on these differences.Results:Authentic Os Draconis exhibited distinct ultrastructural markers:irregularly shaped osteons with traversing fissures,deformed/displaced Haversian canals,and secondary mineral infill(predominantly calcium carbonate).Counterfeits showed regular osteon arrangements,absent traversal fissures,and homogeneous hydroxyapatite composition.Lab-simulated samples lacked structural degradation features.EPMA confirmed calcium carbonate infill in fossilized Haversian canals,while elemental profiles differentiated lacunae types(void vs.mineral-packed).Conclusion:The study established ultrastructural criteria for authentic Os Draconis identification:osteon deformation,geological fissures penetrating bone units,and heterogenous mineral deposition.These features,unattainable in counterfeits or modern processed bones,provide a cost-effective,accurate identification method.This approach bridges gaps in TCM material standardization and supports quality control for clinical applications.展开更多
Background:Epidemiological studies have confirmed that longer exposure to insecticides like cypermethrin(CYP)significantly increases the risk of male reproductive toxicity.Crocus sativus L.has been recognized due to i...Background:Epidemiological studies have confirmed that longer exposure to insecticides like cypermethrin(CYP)significantly increases the risk of male reproductive toxicity.Crocus sativus L.has been recognized due to its therapeutic properties,but its exact role and molecular mechanisms in treatment of reproductive dysfunction remain unclear.Methods:During this study,36 rats were randomly divided into six groups(n=6):control,CYP-induced(60 mg/kg),standard(leuprolide 3 mg/kg)and three treatment groups receiving aqueous,ethanolic,and oil extracts(50 mg/kg or 20 mL/kg)for post-toxicity induction.Results:The finding represented that exposure of CYP significantly increased oxidative stress,disrupted testicular architecture,and markedly reduced testosterone levels(P<0.05).Importantly,Crocus sativus L.treatment alleviated these changes by increasing the expression of Nrf2(nuclear factor erythroid 2-related factor 2),restoring the activity of antioxidant enzymes,and enhancing testicular histomorphology.Surprisingly,molecular docking established a high binding affinity of Crocus sativus L.phytoconstituents such as gallic acid,cinnamic acid and quercetin to the Nrf2-Keap1 complex.It is worth noting that,Crocus sativus L.exhibited a high level of protection against reproductive toxicity caused by CYP in male rats,which was mediated by the activation of Nrf2 pathway,reduction of oxidative damage,and favorable ADMET characteristics.Conclusion:Notably,this research provides a more valid,safe,and effective method of developing new drugs for reproductive disorders,however,further investigation is needed to support the research findings and implement it in clinical practice.展开更多
文摘Introduction: Cardiovascular disease represents a major public health burden worldwide. Research and management of risk factors contribute to the prevention of these diseases. The aim of this study was to assess the prevalence of dyslipidemia in the biochemistry unit of the Charles De Gaulle Pediatric University Hospital (CHUP-CDG) in Ouagadougou. Material and Methods: This was a descriptive and analytical cross-sectional study, with retrospective data collection from January 1, 2020 to December 31, 2022. Patients of all ages who performed a lipid panel in the CHUP-CDG biochemistry unit during the study period have been included. Results: A total of 2872 patients have been included. The mean age of the study population was 27.72 ± 19.51 years and the M/F sex ratio was 0.81. Among the patients, 22.84% had at least one dyslipidemia. The prevalences of hypercholesterolemia, hypo-HDL cholesterolemia and hyper-LDL cholesterolemia were 11.57%, 49.19% and 57.50% respectively. Hypertriglyceridemia and mixed hyperlipidemia were present in 9.04% and 2.08% of patients. Hypercholesterolemia was significantly more frequent in the female sex (p = 0.0077);hyper-LDL cholesterolemia (p = 0.0255) and mixed hyperlipidemia (p Conclusion: The relatively high prevalence of dyslipidemia in the study indicates a worrying situation. It would therefore appear essential to extend the search for risk factors nationwide, particularly those that can be modified, in order to reduce morbidity and mortality linked to cardiovascular disease.
文摘Introduction: The Six Sigma methodology is an opportunity for a better understanding of the performance of analytical methods and for a better adaptation of the quality control management policy of the medical biology laboratory. Using the sigma metric, this study assessed the performance of the Biochemistry analytical system of a medical biology laboratory in Côte d'Ivoire. Methods: Six Sigma methodology was applied to 3 analytes (alanine aminotransferase, glucose and creatinine). Performance indicators such as measurement imprecision and bias were determined based on the results of internal and external quality controls. The sigma number was calculated using the total allowable error values proposed by Ricos et al. Results: For both control levels, ALT had a sigma number greater than 6 (7.6 for normal control and 7.9 for pathological control). However, low sigma numbers, less than or equal to 2 for creatinine (1.4 for normal control and 2 for pathological control) and less than 1 for glucose were found. Conclusion: This study revealed good analytical performance of ALT from the point of view of 6 sigma analysis. However, modifications to the overall quality control procedure for glucose and creatinine are needed to improve their analytical performance. The study should be extended to the entire laboratory’s analytes in order to modify the strategies of quality control procedures based on metric analysis for an overall improvement in analytical performance.
文摘Background: Exclusive breastfeeding is globally promoted as a preventive health measure. However, an increasing incidence of jaundice among exclusively breastfed neonates has been observed. In Jos, Nigeria, anecdotal evidence suggests a rise in jaundice cases among breastfed infants during their first week of life. This study investigates the relationship between neonatal jaundice and the biochemical composition of maternal breast milk in Jos, Nigeria. Objective: To evaluate the role of maternal milk protein status and other milk constituents in the development of neonatal jaundice among exclusively breastfed full-term infants. Methods: This cross-sectional study involved 152 participants, comprising of 76 neonates (38 jaundiced and 38 healthy controls) and their corresponding 76 mothers at Jos University Teaching Hospital. Biochemical analyses were conducted on maternal breast milk (albumin, proteins, casein, fat, lactose, enzymes) and infant serum (bilirubin, albumin, proteins, enzymes). Statistical analysis was performed using Mann-Whitney tests with significance set at p ≤ 0.05. Results: Maternal breast milk from mothers of jaundiced infants showed significantly lower protein (0.73 ± 0.07 g/100ml), albumin (0.62 ± 0.04 g/100ml), and casein (1.6 ± 0.12 g/100ml) levels compared to controls (p Conclusion: The study highlights a potential link between lower maternal milk protein levels and the occurrence of neonatal jaundice. Interventions aimed at enhancing maternal nutrition and promoting more frequent breastfeeding may mitigate the risk. Further research should explore additional maternal and neonatal factors contributing to this condition.
文摘Introduction: Multiple myeloma (MM) is characterized by the abnormal proliferation of a plasma cell clone invading the bone marrow, with secretion of a monoclonal immunoglobulin (Ig), detectable by serum protein electrophoresis. The aim of our work was to study the electrophoretic profile of patients with MM. Methods: This is a retrospective descriptive and analytical study including 76 patients with MM, whose serum samples were received at the Biochemistry Department of the Dalal Jamm National Hospital during the period from January 1, 2021 to April 30, 2023. For each patient, we studied epidemiological data (age, sex, service) and biochemical variables (proteinemia, electrophoresis and serum protein immunofixation). Results: The mean age of our patients was 58 ± 10.24 years, with a sex ratio of 0.9, with a female predominance (52.6%). The majority of cohort (71.1%) were consulted as outpatients. Hyperproteinemia was observed in 27.6% of patients, with a mean average of 91.2 ± 25.2 g/L, while hypoalbuminemia was found in 43.4% of patients. A monoclonal peak was noted at the Serum protein electrophoresis (SPEP) in all patients in our series, 75% of whom were in the gamma zone and 22.4% in the beta zone. Immunofixation had objectified kappa-type IgG myeloma in the majority of patients (77.8%). Conclusion: Among the biological markers of MM, serum protein electrophoresis remains the most characteristic for detecting monoclonal immunoglobulin.
基金supported by the Wuhan University Center for Digital and Intelligent Education Research and the Major Project on Teaching Reform in Higher Education of Shaanxi Province(Grant No.23BZO90).
文摘The rapid advancement of AI technology has significantly impacted higher education,presenting both opportunities and challenges for teaching and learning.Although students can benefit from AI,many remain unaware of its potential utility.Moreover,concerns regarding the accuracy and reliability of AI complicate its proper use.This study incorporated an AI teaching assistant,called Blueink,into a biochemistry course at a medical university in China.The researchers assessed the alterations in individuals’knowledge,AI use,and critical thinking skills by conducting a review before and after the training.This was done to furnish valuable information for academics and specialists.The findings presented that the participating college students perceived AI as increasingly essential for contemporary learning and excelled at discovering significant facts using AI techniques.However,their confidence in AI responses and their habits and preferences for posing inquiries remained unchanged after the training.The study indicates that AI tools not only enhance students’skill acquisition but require greater clarity and proficiency.Collaborating with diverse specialists can yield superior AI tools for education.
文摘Adult neurogenesis is a highly dynamic process that leads to the production of new neurons from a population of quiescent neural stem cells(NSCs).In response to specific endogenous and/or external stimuli,NSCs enter a state of mitotic activation,initiating proliferation and differentiation pathways.Throughout this process,NSCs give rise to neural progenitors,which undergo multiple replicative and differentiative steps,each governed by precise molecular pathways that coordinate cellular changes and signals from the surrounding neurogenic niche.
基金Deutsche Forschungsgemeinschaft(DFG,German Research Foundation),project numbers 324633948 and 409784463(DFG grants Hi 678/9-3 and Hi 678/10-2,FOR2953)to HHBundesministerium für Bildung und Forschung-BMBF,project number 16LW0463K to HT.
文摘Microglia are the resident macrophages of the central nervous system.They act as the first line of defense against pathogens and play essential roles in neuroinflammation and tissue repair after brain insult or in neurodegenerative and demyelinating diseases(Borst et al.,2021).Together with infiltrating monocyte-derived macrophages,microglia also play a critical role for brain tumor development,since immunosuppressive interactions between tumor cells and tumor-associated microglia and macrophages(TAM)are linked to malignant progression.This mechanism is of particular relevance in glioblastoma(GB),the deadliest form of brain cancer with a median overall survival of less than 15 months(Khan et al.,2023).Therefore,targeting microglia and macrophage activation is a promising strategy for therapeutic interference in brain disease.
文摘Gastric cancer(GC)is the fifth most prevalent malignancy worldwide and remains a leading cause of cancer-related mortality.Major risk factors for GC include Helicobacter pylori infection,increasing age,high dietary salt intake,and diets deficient in vegetables and fruits.Due to the often subtle and nonspecific early symptoms,coupled with the lack of routine screening programs,a significant proportion of GC cases are diagnosed at advanced stages.The etiology of GC is multifactorial,and diagnosis is confirmed histologically through endoscopic biopsy,followed by staging via computed tomography,positron emission tomography,staging laparoscopy,and endoscopic ultrasound.Treatment strategies typically involve a multidisciplinary approach including chemotherapy,surgical resection,radiotherapy,and emerging immunotherapeutic options.Despite advances in diagnostic and therapeutic modalities,the prognosis of advanced GC remains poor,with high rates of recurrence and metastasis.In recent years,increasing attention has been given to the role of tight junction(TJ)proteins in the pathogenesis and progression of GC.TJ proteins,critical components of epithelial barrier function,have been implicated in various stages of gastric carcinogenesis,from intestinal metaplasia to invasion and metastasis.Infection and inflammation,particularly due to Helicobacter pylori,disrupt TJ integrity,compromising the gastric mucosal barrier and facilitating neoplastic transformation.This review synthesizes current evidence from PubMed,EMBASE,Google Scholar,ScienceDirect,SpringerLink,and other reputable databases to provide a comprehensive overview of the involvement of TJ proteins in GC.By elucidating the molecular interplay between TJ dysregulation and gastric tumorigenesis,this work aims to highlight the potential of TJ proteins as novel diagnostic biomarkers and therapeutic targets in GC management.
文摘In this editorial,we comment on the study of the Yu et al on psychological distress in patients with hepatobiliary and pancreatic malignancies.Hepatobiliary and pancreatic malignancies include hepatocellular carcinoma,cholangiocarcinoma,gallbladder cancer and pancreatic cancer.These cancers are among the most aggressive and difficult to treat.Although improvements in surgery,drug treatments and palliative care have led to better survival rates and quality of life,the significant psychological impact on patients remains underrecognized.Anxiety and depression are prevalent at every stage of the disease,from the initial diagnosis to treatment,recurrence and end-of-life care.However,these issues often take a backseat to the urgent need to manage physical symptoms.Mental health challenges can greatly affect how well patients follow treatment plans,recover and their overall outlook.Yu et al explore the causes of psychological distress in hepatobiliary and pancreatic cancers,including disease severity,symptom burden,financial stress and fears about life and death.We highlight the importance of regular mental health screenings,psychological support and teamwork in oncology care.By focusing on emotional health alongside physical treatment,doctors can build resilience,improve outcomes and address a frequently ignored aspect of cancer care.
文摘Colorectal cancer remains one of the leading causes of morbidity and mortality worldwide.Despite notable advances in early detection and therapeutic strategies,the molecular mechanisms underlying tumor survival,chemotherapy resistance,and metastasis are not yet fully understood.MicroRNAs(miRNAs)have emerged as pivotal regulators of cancer development,as they modulate gene expression and orchestrate key signaling pathways.However,the epigenetic mechanisms that control miRNA expression and their downstream gene targets remain largely unclear.In this review,we highlight the critical role of the colorectal cancer microenvironment in influencing miRNA expression and discuss how this regulation contributes to tumorigenesis.A better understanding of these processes may lead to the identification of novel therapeutic targets and strategies to prevent recurrence.
基金supported by the following foundations:“Stichting Oogfonds Nederland(No.2023-26)”the“Landelijke Stichting voor Blinden en Slechtzienden(No.2023-24)”that contributed through UitZicht,ZonMw grant(No.435005020)a grant of the Chinese Scholarship Council(No.201809110169)(to TGMFG,CPMR,and WY).
文摘Unwarranted death of neurons is a major cause of neurodegenerative diseases.Since mature neurons are postmitotic and do not replicate,their death usually constitutes an irreversible step in pathology.A logical strategy to prevent neurodegeneration would then be to save all neurons that are still alive,i.e.protecting the ones that are still healthy as well as trying to rescue the ones that are damaged and in the process of dying.Regarding the latter,recent experiments have indicated that the possibility of reversing the cell death process and rescuing dying cells is more significant than previously anticipated.In many situations,the elimination of the cell death trigger alone enables dying cells to spontaneously repair their damage,recover,and survive.In this review,we explore the factors,which determine the fate of neurons engaged in the cell death process.A deeper insight into cell death mechanisms and the intrinsic capacity of cells to recover could pave the way for novel therapeutic approaches to neurodegenerative diseases.
基金supported by the National Natural Science Foundation of China(Nos.42077367 and 21677123).
文摘Foliar uptake of airborne metal(loid)s plays a crucial role in metal(loid)accumulation in plant organs and is influ-enced by the size and emission sources of aerosols.Given the high enrichment of toxic metal(loid)s in submicron-scale particulates(PM1),this study established a PM1 exposure system to examine airborne metal(loid)accu-mulation and foliar physiological responses in Oryza sativa L.The results showed that the concentrations of Cu,Zn,As,Pb,and Cd in the leaves and grains were influenced not only by the airborne metal(loid)levels but also by the specific nature of the PM1 particles.The quantitative model for PM1-associated Pb entry into leaf tissue indicated that foliar Pb accumulation was primarily driven by particle adhesion,followed by hydrophilic pene-tration and trans-stomatal liquid film migration,accounting for 87%–89%of the total accumulation.The strong hygroscopicity and high Pb activity of PM1 emitted from waste incineration(WI)increased the Pb absorption coefficient via the hydrophilic and liquid film migration pathway.In contrast,the high hydrophobicity of PM1 from coal burning(CB)led to greater retention of Pb on leaf surfaces.Both foliar reactive oxygen metabolism and photosynthesis indices were sensitive to air pollution.Foliar metal(loid)accumulation and airborne PM1 concentration accounted for the variance in physiological responses in rice leaves.Our results also indicated that Pb was the key element in PM1 emissions from both coal burning(CB)and waste incineration(WI)responsible for significant physiological changes in rice leaves.
基金funded by the Deanship of Scientific Research at King Abdulaziz University,Jeddah,under Grant No.G:534-140-1443.
文摘Objective:To evaluate the effects of a piceatannol-loaded self-nanoemulsifying drug delivery system(PIC-SNEDDS)on wound healing in diabetic rats and its mechanisms of wound healing action.Methods:Diabetes was induced in rats using streptozotocin,after which full-thickness excisional wounds were created.Piceatannol was administered topically either as a raw hydrogel or formulated into a PIC-SNEDDS,which was prepared using an optimized oil-surfactant mixture and incorporated into a hydrogel for application.Wound healing activity was assessed through measurements of wound contraction,oxidative stress biomarkers,and collagen content,along with histological and immunohistochemical evaluation of inflammatory,angiogenic,and remodeling markers.Results:PIC-SNEDDS markedly enhanced diabetic wound healing by promoting epithelial regeneration,granulation tissue formation,epidermal proliferation,and keratinization.The formulation also reduced the expression of pro-inflammatory markers(interleukin-6,nuclear factor-kappa B,and tumor necrosis factor-α)while increasingα-smooth muscle actin,transforming growth factor-β1,vascular endothelial growth factor-A,and hydroxyproline levels.Additionally,it improved antioxidant status by lowering malondialdehyde levels and boosting superoxide dismutase and catalase activity,along with upregulation of COL1A1 mRNA expression.Conclusions:PIC-SNEDDS promotes the healing of diabetic wounds and exhibits anti-inflammatory,antioxidant,pro-collagen,and angiogenic properties.
文摘The rapid growth of biomedical data,particularly multi-omics data including genomes,transcriptomics,proteomics,metabolomics,and epigenomics,medical research and clinical decision-making confront both new opportunities and obstacles.The huge and diversified nature of these datasets cannot always be managed using traditional data analysis methods.As a consequence,deep learning has emerged as a strong tool for analysing numerous omics data due to its ability to handle complex and non-linear relationships.This paper explores the fundamental concepts of deep learning and how they are used in multi-omics medical data mining.We demonstrate how autoencoders,variational autoencoders,multimodal models,attention mechanisms,transformers,and graph neural networks enable pattern analysis and recognition across all omics data.Deep learning has been found to be effective in illness classification,biomarker identification,gene network learning,and therapeutic efficacy prediction.We also consider critical problems like as data quality,model explainability,whether findings can be repeated,and computational power requirements.We now consider future elements of combining omics with clinical and imaging data,explainable AI,federated learning,and real-time diagnostics.Overall,this study emphasises the need of collaborating across disciplines to advance deep learning-based multi-omics research for precision medicine and comprehending complicated disorders.
基金supported by the Hellenic Foundation for Research and Innovation,HFRI,“2nd Call for HFRI Research Projects to support Faculty Members&Researchers”Project 02667 to GL.
文摘Lysophosphatidic acid(LPA)is a pleiotropic lipid agonist essential for functions of the central nervous system(CNS).It is abundant in the developing and adult brain while its concentration in biological fluids,including cerebrospinal fluid,varies significantly(Figure 1Α;Yung et al.,2014).LPA actually corresponds to a variety of lipid species that include different stereoisomers with either saturated or unsaturated fatty acids bearing likely differentiated biological activities(Figure 1Α;Yung et al.,2014;Hernández-Araiza et al.,2018).
基金supported by the National Research Foundation of Korea(NRF),funded by the Ministry of Science and ICT(MSIT),Republic of Korea(grant numbers:RS-2022-NR070489 and RS-2023-00210847)the Korea Health Technology R&D Project through the Korea Health Industry Development Institute(KHIDI),funded by the Ministry of Health and Welfare,Republic of Korea(grant number HR21C1003).
文摘Hepatocellular carcinoma(HCC)remains one of the most prevalent and lethal malignancies worldwide.Long non-coding RNAs(lncRNAs)have emerged as crucial regulators of gene expression and cancer progression,yet the functional diversity of RP11-derived lncRNAs—originally mapped to bacterial artificial chromosome(BAC)clones from the Roswell Park Cancer Institute—has only recently begun to be appreciated.This mini-review aims to systematically synthesize current findings on RP11-derived lncRNAs in HCC,outlining their genomic origins,molecular mechanisms,and biological significance.We highlight their roles in metabolic reprogramming,microRNA network modulation,and tumor progression,as well as their diagnostic and prognostic value in tissue and serum-based analyses.Finally,we discuss therapeutic opportunities and propose future directions to translate RP11-derived lncRNAs into clinically actionable biomarkers and targets for precision liver cancer therapy.
文摘It was in the 1980s that research on somatostatin(SST)in Alzheimer’s disease(AD)truly gained traction,demonstrating consistent colocalization with amyloid-β(Aβ),along with massive SST/SST cell losses(Almeida,2024).Although the field already had some grasp over the neuroendocrine and hypothalamic functions of the peptide,very little was known about the GABAergic interneurons(SST-INs)that synthesize it in cortical/hippocampal regions.Quite excitingly,over 40 years later,research has grown effervescent.
基金supported by the Natural Science Foundation of Shaanxi Province(Key Program),No.2021JZ-60(to HZ)。
文摘The unfolded protein response is a cellular pathway activated to maintain proteostasis and prevent cell death when the endoplasmic reticulum is overwhelmed by unfolded proteins.However,if the unfolded protein response fails to restore endoplasmic reticulum homeostasis,it can trigger proinflammatory and pro-death signals,which are implicated in various malignancies and are currently being investigated for their role in retinal degenerative diseases.This paper reviews the role of the unfolded protein responsein addressing endoplasmic reticulumstress in retinal degenerative diseases.The accumulation of ubiquitylated misfolded proteins can lead to rapid destabilization of the proteome and cellular demise.Targeting endoplasmic reticulum stress to alleviate retinal pathologies involves multiple strategies,including the use of chemical chaperones such as 4-phenylbutyric acid and tauroursodeoxycholic acid,which enhance protein folding and reduce endoplasmic reticulum stress.Small molecule modulators that influence endoplasmic reticulum stress sensors,including those that increase the expression of the endoplasmic reticulum stress regulator X-box binding protein 1,are also potential therapeutic agents.Additionally,inhibitors of the RNAse activity of inositol-requiring transmembrane kinase/endoribonuclease 1,a key endoplasmic reticulum stress sensor,represent another class of drugs that could prevent the formation of toxic aggregates.The activation of nuclear receptors,such as PPAR and FXR,may also help mitigate ER stress.Furthermore,enhancing proteolysis through the induction of autophagy or the inhibition of deubiquitinating enzymes can assist in clearing misfolded proteins.Combination treatments that involve endoplasmicreticulum-stress-targeting drugs and gene therapies are also being explored.Despite these potential therapeutic strategies,significant challenges remain in targeting endoplasmic reticulum stress for the treatment of retinal degeneration,and further research is essential to elucidate the mechanisms underlying human retinal diseases and to develop effective,well-tolerated drugs.The use of existing drugs that target inositol-requiring transmembrane kinase/endoribonuclease 1 and X-box binding protein 1 has been associated with adverse side effects,which have hindered their clinical translation.Moreover,signaling pathways downstream of endoplasmic reticulum stress sensors can contribute to therapy resistance.Addressing these limitations is crucial for developing drugs that can be effectively used in treating retinal dystrophies.In conclusion,while the unfolded protein response is a promising therapeutic target in retinal degenerative diseases,additional research and development efforts are imperative to overcome the current limitations and improve patient outcomes.
基金supported by the Scientific and Technological Innovation Project of the China Academy of Chinese Medical Sciences(CI2021A04013)the National Natural Science Foundation of China(82204610)+1 种基金the Qihang Talent Program(L2022046)the Fundamental Research Funds for the Central Public Welfare Research Institutes(ZZ15-YQ-041 and L2021029).
文摘Background:The medicinal material known as Os Draconis(Longgu)originates from fossilized remains of ancient mammals and is widely used in treating emotional and mental conditions.However,fossil resources are nonrenewable,and clinical demand is increasingly difficult to meet,leading to a proliferation of counterfeit products.During prolonged geological burial,static pressure from the surrounding strata severely compromises the microstructural integrity of osteons in Os Draconis,but Os Draconis still largely retains the structural features of mammalian bone.Methods:Using verified authentic Os Draconis samples over 10,000 years old as a baseline,this study summarizes the ultrastructural characteristics of genuine Os Draconis.Employing electron probe microanalysis and optical polarized light microscopy,we examined 28 batches of authentic Os Draconis and 31 batches of counterfeits to identify their ultrastructural differences.Key points for ultrastructural identification of Os Draconis were compiled,and a new identification approach was proposed based on these differences.Results:Authentic Os Draconis exhibited distinct ultrastructural markers:irregularly shaped osteons with traversing fissures,deformed/displaced Haversian canals,and secondary mineral infill(predominantly calcium carbonate).Counterfeits showed regular osteon arrangements,absent traversal fissures,and homogeneous hydroxyapatite composition.Lab-simulated samples lacked structural degradation features.EPMA confirmed calcium carbonate infill in fossilized Haversian canals,while elemental profiles differentiated lacunae types(void vs.mineral-packed).Conclusion:The study established ultrastructural criteria for authentic Os Draconis identification:osteon deformation,geological fissures penetrating bone units,and heterogenous mineral deposition.These features,unattainable in counterfeits or modern processed bones,provide a cost-effective,accurate identification method.This approach bridges gaps in TCM material standardization and supports quality control for clinical applications.
文摘Background:Epidemiological studies have confirmed that longer exposure to insecticides like cypermethrin(CYP)significantly increases the risk of male reproductive toxicity.Crocus sativus L.has been recognized due to its therapeutic properties,but its exact role and molecular mechanisms in treatment of reproductive dysfunction remain unclear.Methods:During this study,36 rats were randomly divided into six groups(n=6):control,CYP-induced(60 mg/kg),standard(leuprolide 3 mg/kg)and three treatment groups receiving aqueous,ethanolic,and oil extracts(50 mg/kg or 20 mL/kg)for post-toxicity induction.Results:The finding represented that exposure of CYP significantly increased oxidative stress,disrupted testicular architecture,and markedly reduced testosterone levels(P<0.05).Importantly,Crocus sativus L.treatment alleviated these changes by increasing the expression of Nrf2(nuclear factor erythroid 2-related factor 2),restoring the activity of antioxidant enzymes,and enhancing testicular histomorphology.Surprisingly,molecular docking established a high binding affinity of Crocus sativus L.phytoconstituents such as gallic acid,cinnamic acid and quercetin to the Nrf2-Keap1 complex.It is worth noting that,Crocus sativus L.exhibited a high level of protection against reproductive toxicity caused by CYP in male rats,which was mediated by the activation of Nrf2 pathway,reduction of oxidative damage,and favorable ADMET characteristics.Conclusion:Notably,this research provides a more valid,safe,and effective method of developing new drugs for reproductive disorders,however,further investigation is needed to support the research findings and implement it in clinical practice.