Introduction: Cardiovascular disease represents a major public health burden worldwide. Research and management of risk factors contribute to the prevention of these diseases. The aim of this study was to assess the p...Introduction: Cardiovascular disease represents a major public health burden worldwide. Research and management of risk factors contribute to the prevention of these diseases. The aim of this study was to assess the prevalence of dyslipidemia in the biochemistry unit of the Charles De Gaulle Pediatric University Hospital (CHUP-CDG) in Ouagadougou. Material and Methods: This was a descriptive and analytical cross-sectional study, with retrospective data collection from January 1, 2020 to December 31, 2022. Patients of all ages who performed a lipid panel in the CHUP-CDG biochemistry unit during the study period have been included. Results: A total of 2872 patients have been included. The mean age of the study population was 27.72 ± 19.51 years and the M/F sex ratio was 0.81. Among the patients, 22.84% had at least one dyslipidemia. The prevalences of hypercholesterolemia, hypo-HDL cholesterolemia and hyper-LDL cholesterolemia were 11.57%, 49.19% and 57.50% respectively. Hypertriglyceridemia and mixed hyperlipidemia were present in 9.04% and 2.08% of patients. Hypercholesterolemia was significantly more frequent in the female sex (p = 0.0077);hyper-LDL cholesterolemia (p = 0.0255) and mixed hyperlipidemia (p Conclusion: The relatively high prevalence of dyslipidemia in the study indicates a worrying situation. It would therefore appear essential to extend the search for risk factors nationwide, particularly those that can be modified, in order to reduce morbidity and mortality linked to cardiovascular disease.展开更多
Introduction: The Six Sigma methodology is an opportunity for a better understanding of the performance of analytical methods and for a better adaptation of the quality control management policy of the medical biology...Introduction: The Six Sigma methodology is an opportunity for a better understanding of the performance of analytical methods and for a better adaptation of the quality control management policy of the medical biology laboratory. Using the sigma metric, this study assessed the performance of the Biochemistry analytical system of a medical biology laboratory in Côte d'Ivoire. Methods: Six Sigma methodology was applied to 3 analytes (alanine aminotransferase, glucose and creatinine). Performance indicators such as measurement imprecision and bias were determined based on the results of internal and external quality controls. The sigma number was calculated using the total allowable error values proposed by Ricos et al. Results: For both control levels, ALT had a sigma number greater than 6 (7.6 for normal control and 7.9 for pathological control). However, low sigma numbers, less than or equal to 2 for creatinine (1.4 for normal control and 2 for pathological control) and less than 1 for glucose were found. Conclusion: This study revealed good analytical performance of ALT from the point of view of 6 sigma analysis. However, modifications to the overall quality control procedure for glucose and creatinine are needed to improve their analytical performance. The study should be extended to the entire laboratory’s analytes in order to modify the strategies of quality control procedures based on metric analysis for an overall improvement in analytical performance.展开更多
Background: Exclusive breastfeeding is globally promoted as a preventive health measure. However, an increasing incidence of jaundice among exclusively breastfed neonates has been observed. In Jos, Nigeria, anecdotal ...Background: Exclusive breastfeeding is globally promoted as a preventive health measure. However, an increasing incidence of jaundice among exclusively breastfed neonates has been observed. In Jos, Nigeria, anecdotal evidence suggests a rise in jaundice cases among breastfed infants during their first week of life. This study investigates the relationship between neonatal jaundice and the biochemical composition of maternal breast milk in Jos, Nigeria. Objective: To evaluate the role of maternal milk protein status and other milk constituents in the development of neonatal jaundice among exclusively breastfed full-term infants. Methods: This cross-sectional study involved 152 participants, comprising of 76 neonates (38 jaundiced and 38 healthy controls) and their corresponding 76 mothers at Jos University Teaching Hospital. Biochemical analyses were conducted on maternal breast milk (albumin, proteins, casein, fat, lactose, enzymes) and infant serum (bilirubin, albumin, proteins, enzymes). Statistical analysis was performed using Mann-Whitney tests with significance set at p ≤ 0.05. Results: Maternal breast milk from mothers of jaundiced infants showed significantly lower protein (0.73 ± 0.07 g/100ml), albumin (0.62 ± 0.04 g/100ml), and casein (1.6 ± 0.12 g/100ml) levels compared to controls (p Conclusion: The study highlights a potential link between lower maternal milk protein levels and the occurrence of neonatal jaundice. Interventions aimed at enhancing maternal nutrition and promoting more frequent breastfeeding may mitigate the risk. Further research should explore additional maternal and neonatal factors contributing to this condition.展开更多
Introduction: Multiple myeloma (MM) is characterized by the abnormal proliferation of a plasma cell clone invading the bone marrow, with secretion of a monoclonal immunoglobulin (Ig), detectable by serum protein elect...Introduction: Multiple myeloma (MM) is characterized by the abnormal proliferation of a plasma cell clone invading the bone marrow, with secretion of a monoclonal immunoglobulin (Ig), detectable by serum protein electrophoresis. The aim of our work was to study the electrophoretic profile of patients with MM. Methods: This is a retrospective descriptive and analytical study including 76 patients with MM, whose serum samples were received at the Biochemistry Department of the Dalal Jamm National Hospital during the period from January 1, 2021 to April 30, 2023. For each patient, we studied epidemiological data (age, sex, service) and biochemical variables (proteinemia, electrophoresis and serum protein immunofixation). Results: The mean age of our patients was 58 ± 10.24 years, with a sex ratio of 0.9, with a female predominance (52.6%). The majority of cohort (71.1%) were consulted as outpatients. Hyperproteinemia was observed in 27.6% of patients, with a mean average of 91.2 ± 25.2 g/L, while hypoalbuminemia was found in 43.4% of patients. A monoclonal peak was noted at the Serum protein electrophoresis (SPEP) in all patients in our series, 75% of whom were in the gamma zone and 22.4% in the beta zone. Immunofixation had objectified kappa-type IgG myeloma in the majority of patients (77.8%). Conclusion: Among the biological markers of MM, serum protein electrophoresis remains the most characteristic for detecting monoclonal immunoglobulin.展开更多
The rapid advancement of AI technology has significantly impacted higher education,presenting both opportunities and challenges for teaching and learning.Although students can benefit from AI,many remain unaware of it...The rapid advancement of AI technology has significantly impacted higher education,presenting both opportunities and challenges for teaching and learning.Although students can benefit from AI,many remain unaware of its potential utility.Moreover,concerns regarding the accuracy and reliability of AI complicate its proper use.This study incorporated an AI teaching assistant,called Blueink,into a biochemistry course at a medical university in China.The researchers assessed the alterations in individuals’knowledge,AI use,and critical thinking skills by conducting a review before and after the training.This was done to furnish valuable information for academics and specialists.The findings presented that the participating college students perceived AI as increasingly essential for contemporary learning and excelled at discovering significant facts using AI techniques.However,their confidence in AI responses and their habits and preferences for posing inquiries remained unchanged after the training.The study indicates that AI tools not only enhance students’skill acquisition but require greater clarity and proficiency.Collaborating with diverse specialists can yield superior AI tools for education.展开更多
Olfactory receptors are crucial for detecting odors and play a vital role in our sense of smell,influencing behaviors from food choices to emotional memories.These receptors also contribute to our perception of flavor...Olfactory receptors are crucial for detecting odors and play a vital role in our sense of smell,influencing behaviors from food choices to emotional memories.These receptors also contribute to our perception of flavor and have potential applications in medical diagnostics and environmental monitoring.The ability of the olfactory system to regenerate its sensory neurons provides a unique model to study neural regeneration,a phenomenon largely absent in the central nervous system.Insights gained from how olfactory neurons continuously replace themselves and reestablish functional connections can provide strategies to promote similar regenerative processes in the central nervous system,where damage often results in permanent deficits.Understanding the molecular and cellular mechanisms underpinning olfactory neuron regeneration could pave the way for developing therapeutic approaches to treat spinal co rd injuries and neurodegenerative diseases like Alzheimer's disease.Olfa ctory receptors are found in almost any cell of eve ry orga n/tissue of the mammalian body.This ectopic expression provides insights into the chemical structures that can activate olfactory receptors.In addition to odors,olfactory receptors in ectopic expression may respond to endogenous compounds and molecules produced by mucosal colonizing microbiota.The analysis of the function of olfactory receptors in ectopic expression provides valuable information on the signaling pathway engaged upon receptor activation and the receptor's role in proliferation and cell differentiation mechanisms.This review explo res the ectopic expression of olfa ctory receptors and the role they may play in neural regeneration within the central nervous system,with particular attention to compounds that can activate these receptors to initiate regenerative processes.Evidence suggests that olfactory receptors could serve as potential therapeutic targets for enhancing neural repair and recovery following central nervous system injuries.展开更多
Traumatic brain injury, chronic traumatic encephalopathy, and Alzheimer's disease are three distinct neurological disorders that share common pathophysiological mechanisms involving neuroinflammation. One sequela ...Traumatic brain injury, chronic traumatic encephalopathy, and Alzheimer's disease are three distinct neurological disorders that share common pathophysiological mechanisms involving neuroinflammation. One sequela of neuroinflammation includes the pathologic hyperphosphorylation of tau protein, an endogenous microtubule-associated protein that protects the integrity of neuronal cytoskeletons. Tau hyperphosphorylation results in protein misfolding and subsequent accumulation of tau tangles forming neurotoxic aggregates. These misfolded proteins are characteristic of traumatic brain injury, chronic traumatic encephalopathy, and Alzheimer's disease and can lead to downstream neuroinflammatory processes, including assembly and activation of the inflammasome complex. Inflammasomes refer to a family of multimeric protein units that, upon activation, release a cascade of signaling molecules resulting in caspase-induced cell death and inflammation mediated by the release of interleukin-1β cytokine. One specific inflammasome, the NOD-like receptor protein 3, has been proposed to be a key regulator of tau phosphorylation where it has been shown that prolonged NOD-like receptor protein 3 activation acts as a causal factor in pathological tau accumulation and spreading. This review begins by describing the epidemiology and pathophysiology of traumatic brain injury, chronic traumatic encephalopathy, and Alzheimer's disease. Next, we highlight neuroinflammation as an overriding theme and discuss the role of the NOD-like receptor protein 3 inflammasome in the formation of tau deposits and how such tauopathic entities spread throughout the brain. We then propose a novel framework linking traumatic brain injury, chronic traumatic encephalopathy, and Alzheimer's disease as inflammasomedependent pathologies that exist along a temporal continuum. Finally, we discuss potential therapeutic targets that may intercept this pathway and ultimately minimize long-term neurological decline.展开更多
Skeletal muscles are essential for locomotion,posture,and metabolic regulation.To understand physiological processes,exercise adaptation,and muscle-related disorders,it is critical to understand the molecular pathways...Skeletal muscles are essential for locomotion,posture,and metabolic regulation.To understand physiological processes,exercise adaptation,and muscle-related disorders,it is critical to understand the molecular pathways that underlie skeletal muscle function.The process of muscle contra ction,orchestrated by a complex interplay of molecular events,is at the core of skeletal muscle function.Muscle contraction is initiated by an action potential and neuromuscular transmission requiring a neuromuscular junction.Within muscle fibers,calcium ions play a critical role in mediating the interaction between actin and myosin filaments that generate force.Regulation of calcium release from the sarcoplasmic reticulum plays a key role in excitation-contraction coupling.The development and growth of skeletal muscle are regulated by a network of molecular pathways collectively known as myogenesis.Myogenic regulators coordinate the diffe rentiation of myoblasts into mature muscle fibers.Signaling pathways regulate muscle protein synthesis and hypertrophy in response to mechanical stimuli and nutrient availability.Seve ral muscle-related diseases,including congenital myasthenic disorders,sarcopenia,muscular dystrophies,and metabolic myopathies,are underpinned by dys regulated molecular pathways in skeletal muscle.Therapeutic interventions aimed at preserving muscle mass and function,enhancing regeneration,and improving metabolic health hold promise by targeting specific molecular pathways.Other molecular signaling pathways in skeletal muscle include the canonical Wnt signaling pathway,a critical regulator of myogenesis,muscle regeneration,and metabolic function,and the Hippo signaling pathway.In recent years,more details have been uncovered about the role of these two pathways during myogenesis and in developing and adult skeletal muscle fibers,and at the neuromuscular junction.In fact,research in the last few years now suggests that these two signaling pathways are interconnected and that they jointly control physiological and pathophysiological processes in muscle fibers.In this review,we will summarize and discuss the data on these two pathways,focusing on their concerted action next to their contribution to skeletal muscle biology.However,an in-depth discussion of the noncanonical Wnt pathway,the fibro/a dipogenic precursors,or the mechanosensory aspects of these pathways is not the focus of this review.展开更多
Hepatocellular carcinoma(HCC)remains the third leading cause of cancer-related deaths worldwide;however,its therapeutic options are limited.Understanding the molecular mechanisms of HCC could provide insight into new ...Hepatocellular carcinoma(HCC)remains the third leading cause of cancer-related deaths worldwide;however,its therapeutic options are limited.Understanding the molecular mechanisms of HCC could provide insight into new therapies.Emerging studies indicate the important role of long-noncoding RNAs(lncRNAs)in the pathogenesis of HCC.The expression of the well-studied lncRNA taurine upregulated gene 1(TUG1)is upregulated in HCC tissues,but its transcriptomic effects in HCC cells remain unexplored.We established TUG1-knockdown and control HCC cells for RNA-seq experiments.KEGG analysis revealed glycolysis as the top enriched pathway upon TUG1 silencing.Accordingly,TUG1-depleted HCC cells showed impairments in glucose uptake,ATP synthesis,and lactate production.Clinical HCC tissue data revealed positive gene expression correlations between TUG1 and several glycolysis-related genes.To identify a molecular function of TUG1 in glycolysis,we explored the competing endogenous model and used bioinformatic tools to find the five microRNAs(miRNAs)that had the most binding sites for TUG1.Among these miRNAs,miR-122-5p exhibited an inverse correlation in gene expression with most TUG1-regulated glycolysis genes,including PKM,ALDOA,ENO2,and PFKM.Dual-luciferase assays demonstrated the direct interaction between TUG1 and miR-122-5p and between miR-122-5p and the 3ʹuntranslated regions of both PKM and ALDOA.We further showed that inhibition of miR-122-5p alleviated the suppression of glycolysis induced by TUG1 depletion.Together,our RNA-seq analysis of TUG1-depleted HCC cells,combined with clinical data,reveals a critical role of TUG1 in regulating glycolysis and provides new insight into its oncogenic function in HCC.展开更多
Artificial intelligence(AI)is significantly advancing precision medicine,particularly in the fields of immunogenomics,radiomics,and pathomics.In immunogenomics,AI can process vast amounts of genomic and multi-omic dat...Artificial intelligence(AI)is significantly advancing precision medicine,particularly in the fields of immunogenomics,radiomics,and pathomics.In immunogenomics,AI can process vast amounts of genomic and multi-omic data to identify biomarkers associated with immunotherapy responses and disease prognosis,thus providing strong support for personalized treatments.In radiomics,AI can analyze high-dimensional features from computed tomography(CT),magnetic resonance imaging(MRI),and positron emission tomography/computed tomography(PET/CT)images to discover imaging biomarkers associated with tumor heterogeneity,treatment response,and disease progression,thereby enabling non-invasive,real-time assessments for personalized therapy.Pathomics leverages AI for deep analysis of digital pathology images,and can uncover subtle changes in tissue microenvironments,cellular characteristics,and morphological features,and offer unique insights into immunotherapy response prediction and biomarker discovery.These AI-driven technologies not only enhance the speed,accuracy,and robustness of biomarker discovery but also significantly improve the precision,personalization,and effectiveness of clinical treatments,and are driving a shift from empirical to precision medicine.Despite challenges such as data quality,model interpretability,integration of multi-modal data,and privacy protection,the ongoing advancements in AI,coupled with interdisciplinary collaboration,are poised to further enhance AI’s roles in biomarker discovery and immunotherapy response prediction.These improvements are expected to lead to more accurate,personalized treatment strategies and ultimately better patient outcomes,marking a significant step forward in the evolution of precision medicine.展开更多
Hepatocellular carcinoma(HCC)recurrence after liver transplantation(LT)presents a significant challenge,with recurrence rates ranging from 8%to 20%globally.Current biomarkers,such as alpha-fetoprotein(AFP)and des-gamm...Hepatocellular carcinoma(HCC)recurrence after liver transplantation(LT)presents a significant challenge,with recurrence rates ranging from 8%to 20%globally.Current biomarkers,such as alpha-fetoprotein(AFP)and des-gamma-carboxy prothrombin(DCP),lack specificity,limiting their utility in risk strati-fication.YKL-40,a glycoprotein involved in extracellular matrix remodeling,hepatic stellate cell activation,and immune modulation,has emerged as a promising biomarker for post-LT surveillance.Elevated serum levels of YKL-40 are associated with advanced liver disease,tumor progression,and poorer post-LT outcomes,highlighting its potential to address gaps in early detection and personalized management of HCC recurrence.This manuscript synthesizes clinical and mechanistic evidence to evaluate YKL-40’s predictive utility in post-LT care.While preliminary findings demonstrate its specificity for liver-related pathologies,challenges remain,including assay standardization,lack of pro-spective validation,and the need to distinguish between malignant and non-malignant causes of elevated levels.Integrating YKL-40 into multi-biomarker panels with AFP and DCP could enhance predictive accuracy and enable tailored therapeutic strategies.Future research should focus on multicenter studies to validate YKL-40’s clinical utility,address confounding factors like graft rejection and systemic inflammation,and explore its role in predictive models driven by emerging technologies such as artificial intelligence.YKL-40 holds transformative potential in reshaping post-LT care through precision medicine,providing a pathway for better outcomes and improved management of high-risk LT recipients.展开更多
Dear Editor,Lung cancer is a major global health concern,with 2.2 million patients diagnosed in 2020.Non-small cell lung cancer(NSCLC)accounts for 80%of these cases,primarily comprising two subtypes:lung adenocarcinom...Dear Editor,Lung cancer is a major global health concern,with 2.2 million patients diagnosed in 2020.Non-small cell lung cancer(NSCLC)accounts for 80%of these cases,primarily comprising two subtypes:lung adenocarcinoma(LUAD)and squamous cell carcinoma(LUSC)[1].Researchers use immunohisto-chemistry,next-generation sequencing,and single-cell RNA sequencing to study genetic alterations,tumor heterogeneity,and tumor microenvironments,aiming to identify potential therapeutic options for specific NSCLC subtypes[2].展开更多
Peripheral immunity forms the foundation of tumor immunity,while tumor immunity represents a more refined adaptation of peripheral immune responses.The tumor microenvironment(TME),a localized niche surrounding tumor c...Peripheral immunity forms the foundation of tumor immunity,while tumor immunity represents a more refined adaptation of peripheral immune responses.The tumor microenvironment(TME),a localized niche surrounding tumor cells,is inherently immunosuppressive(1,2).Effective tumor therapy necessitates the dismantling of this microenvironment,aiming to eradicate tumors from the host system.展开更多
Dear Editor,Local recurrence and cervical lymph node metastases are major causes of mortality in patients with head and neck squamous cell carcinoma(HNSCC).To date,none of the proposed strategies for predicting outcom...Dear Editor,Local recurrence and cervical lymph node metastases are major causes of mortality in patients with head and neck squamous cell carcinoma(HNSCC).To date,none of the proposed strategies for predicting outcomes in this disease have proven fully effective,and a comprehensive physical examination remains the primary method for early detection and monitoring of HNSCC.展开更多
Diabetic foot(DF)is a major public health concern.As evident from numerous previous studies,supervision of DF ulcer(DFU)is crucial,and a specific quality check-up is needed.Patients should be educated about glycaemic ...Diabetic foot(DF)is a major public health concern.As evident from numerous previous studies,supervision of DF ulcer(DFU)is crucial,and a specific quality check-up is needed.Patients should be educated about glycaemic management,DFUs,foot lesions,proper care for injuries,diet,and surgery.Certain reasonably priced treatments,such as hyperbaric oxygen and vacuum-assisted closure therapy,are also available for DFUs,along with modern wound care products and techniques.Nonetheless,DF care(cleaning,applying antimicrobial cream when wounded,and foot reflexology),blood glucose monitoring to control diabetes,and monthly or quarterly examinations in individuals with diabetes are effective in managing DFUs.Between 50%and 80%of DF infections are preventable.Regardless of the intensity of the lesion,it needs to be treated carefully and checked daily during infection.Tissue regeneration can be aided by cleaning,dressing,and application of topical medicines.The choice of shoes is also important because it affects blood circulation and nerve impulses.In general,regular check-ups,monitoring of the patient’s condition,measuring blood glucose levels,and providing frequent guidance regarding DFU care are crucial.Finally,this important clinical problem requires involvement of multiple professionals to properly manage it.展开更多
Angiogenesis,the expansion of pre-existing vascular networks,is crucial for normal organ growth and tissue repair,but is also involved in various pathologies,including inflammation,ischemia,diabetes,and cancer.In soli...Angiogenesis,the expansion of pre-existing vascular networks,is crucial for normal organ growth and tissue repair,but is also involved in various pathologies,including inflammation,ischemia,diabetes,and cancer.In solid tumors,angiogenesis supports growth,nutrient delivery,waste removal,and metastasis.Tumors can induce angiogenesis through proangiogenic factors including VEGF,FGF-2,PDGF,angiopoietins,HGF,TNF,IL-6,SCF,tryptase,and chymase.This balance is disrupted in tumors,and extracellular vesicles(EVs)contribute to this by transferring proangiogenic factors and increasing their expression in endothelial cells(ECs).Malignant melanoma,a particular type of skin cancer,accounts for only 1%of skin cancer cases but more than 75%of deaths.Its incidence has risen significantly,with a 40%increase between 2012 and 2022,especially in fair-skinned populations.Advanced metastatic stages have a high mortality due to delayed diagnosis.This review examines the molecular basis of angiogenesis in melanoma,focusing on melanoma-derived EVs and their possible use in new antiangiogenic therapies.展开更多
Stroke is classified as ischemic or hemorrhagic,and there are few effective treatments for either type.Immunologic mechanisms play a critical role in secondary brain injury following a stroke,which manifests as cytoki...Stroke is classified as ischemic or hemorrhagic,and there are few effective treatments for either type.Immunologic mechanisms play a critical role in secondary brain injury following a stroke,which manifests as cytokine release,blood–brain barrier disruption,neuronal cell death,and ultimately behavioral impairment.Suppressing the inflammatory response has been shown to mitigate this cascade of events in experimental stroke models.However,in clinical trials of anti-inflammatory agents,longterm immunosuppression has not demonstrated significant clinical benefits for patients.This may be attributable to the dichotomous roles of inflammation in both tissue injury and repair,as well as the complex pathophysiologic inflammatory processes in stroke.Inhibiting acute harmful inflammatory responses or inducing a phenotypic shift from a pro-inflammatory to an anti-inflammatory state at specific time points after a stroke are alternative and promising therapeutic strategies.Identifying agents that can modulate inflammation requires a detailed understanding of the inflammatory processes of stroke.Furthermore,epigenetic reprogramming plays a crucial role in modulating post-stroke inflammation and can potentially be exploited for stroke management.In this review,we summarize current findings on the epigenetic regulation of the inflammatory response in stroke,focusing on key signaling pathways including nuclear factor-kappa B,Janus kinase/signal transducer and activator of transcription,and mitogen-activated protein kinase as well as inflammasome activation.We also discuss promising molecular targets for stroke treatment.The evidence to date indicates that therapeutic targeting of the epigenetic regulation of inflammation can shift the balance from inflammation-induced tissue injury to repair following stroke,leading to improved post-stroke outcomes.展开更多
To treat cancer and inhibit its metastasis to the greatest extent,we proposed to develop an Au(III)agent to induce immunogenic cell death(ICD)and establish long-term immunity.To this end,we optimized a series of Au(II...To treat cancer and inhibit its metastasis to the greatest extent,we proposed to develop an Au(III)agent to induce immunogenic cell death(ICD)and establish long-term immunity.To this end,we optimized a series of Au(III)2-benzoylpyridine thiosemicarbazone complexes to obtain an Au(III)agent(5b)with excellent cytotoxicity to cancer.The results show that 5b effectively inhibits tumor growth and its metastasis in vivo.Interestingly,we revealed a new mechanism of 5b inhibiting tumor growth and metastasis:5b releases ICD-related damage-associated molecular patterns(DAMPs),such as calreticulin(CRT),ATP and high mobility group box 1(HMGB1)by inducing endoplasmic reticulum stress(ERS)and mitochondrial dysfunction,which then stimulated an antitumor CD8^(+)T cell response and Foxp^(3+)T cell depletion,thus establishing long-action antitumor immunity.展开更多
Parkinson's disease(PD),a chronic and com-mon neurodegenerative disease,is characterized by the progressive loss of dopaminergic neurons in the dense part of the substantia nigra and abnormal aggregation of alpha-...Parkinson's disease(PD),a chronic and com-mon neurodegenerative disease,is characterized by the progressive loss of dopaminergic neurons in the dense part of the substantia nigra and abnormal aggregation of alpha-synuclein.Type 2 diabetes mellitus(T2DM)is a metabolic disease characterized by chronic insulin resistance and deficiency in insulin secretion.Extensive evidence has con-firmed shared pathogenic mechanisms underlying PD and T2DM,such as oxidative stress caused by insulin resistance,mitochondrial dysfunction,inflammation,and disorders of energy metabolism.Conventional drugs for treating T2DM,such as metformin and glucagon-like peptide-1 receptor ago-nists,affect nerve repair.Even drugs for treating PD,such as levodopa,can affect insulin secretion.This review sum-marizes the relationship between PD and T2DM and related therapeutic drugs from the perspective of insulin signaling pathways in the brain.展开更多
文摘Introduction: Cardiovascular disease represents a major public health burden worldwide. Research and management of risk factors contribute to the prevention of these diseases. The aim of this study was to assess the prevalence of dyslipidemia in the biochemistry unit of the Charles De Gaulle Pediatric University Hospital (CHUP-CDG) in Ouagadougou. Material and Methods: This was a descriptive and analytical cross-sectional study, with retrospective data collection from January 1, 2020 to December 31, 2022. Patients of all ages who performed a lipid panel in the CHUP-CDG biochemistry unit during the study period have been included. Results: A total of 2872 patients have been included. The mean age of the study population was 27.72 ± 19.51 years and the M/F sex ratio was 0.81. Among the patients, 22.84% had at least one dyslipidemia. The prevalences of hypercholesterolemia, hypo-HDL cholesterolemia and hyper-LDL cholesterolemia were 11.57%, 49.19% and 57.50% respectively. Hypertriglyceridemia and mixed hyperlipidemia were present in 9.04% and 2.08% of patients. Hypercholesterolemia was significantly more frequent in the female sex (p = 0.0077);hyper-LDL cholesterolemia (p = 0.0255) and mixed hyperlipidemia (p Conclusion: The relatively high prevalence of dyslipidemia in the study indicates a worrying situation. It would therefore appear essential to extend the search for risk factors nationwide, particularly those that can be modified, in order to reduce morbidity and mortality linked to cardiovascular disease.
文摘Introduction: The Six Sigma methodology is an opportunity for a better understanding of the performance of analytical methods and for a better adaptation of the quality control management policy of the medical biology laboratory. Using the sigma metric, this study assessed the performance of the Biochemistry analytical system of a medical biology laboratory in Côte d'Ivoire. Methods: Six Sigma methodology was applied to 3 analytes (alanine aminotransferase, glucose and creatinine). Performance indicators such as measurement imprecision and bias were determined based on the results of internal and external quality controls. The sigma number was calculated using the total allowable error values proposed by Ricos et al. Results: For both control levels, ALT had a sigma number greater than 6 (7.6 for normal control and 7.9 for pathological control). However, low sigma numbers, less than or equal to 2 for creatinine (1.4 for normal control and 2 for pathological control) and less than 1 for glucose were found. Conclusion: This study revealed good analytical performance of ALT from the point of view of 6 sigma analysis. However, modifications to the overall quality control procedure for glucose and creatinine are needed to improve their analytical performance. The study should be extended to the entire laboratory’s analytes in order to modify the strategies of quality control procedures based on metric analysis for an overall improvement in analytical performance.
文摘Background: Exclusive breastfeeding is globally promoted as a preventive health measure. However, an increasing incidence of jaundice among exclusively breastfed neonates has been observed. In Jos, Nigeria, anecdotal evidence suggests a rise in jaundice cases among breastfed infants during their first week of life. This study investigates the relationship between neonatal jaundice and the biochemical composition of maternal breast milk in Jos, Nigeria. Objective: To evaluate the role of maternal milk protein status and other milk constituents in the development of neonatal jaundice among exclusively breastfed full-term infants. Methods: This cross-sectional study involved 152 participants, comprising of 76 neonates (38 jaundiced and 38 healthy controls) and their corresponding 76 mothers at Jos University Teaching Hospital. Biochemical analyses were conducted on maternal breast milk (albumin, proteins, casein, fat, lactose, enzymes) and infant serum (bilirubin, albumin, proteins, enzymes). Statistical analysis was performed using Mann-Whitney tests with significance set at p ≤ 0.05. Results: Maternal breast milk from mothers of jaundiced infants showed significantly lower protein (0.73 ± 0.07 g/100ml), albumin (0.62 ± 0.04 g/100ml), and casein (1.6 ± 0.12 g/100ml) levels compared to controls (p Conclusion: The study highlights a potential link between lower maternal milk protein levels and the occurrence of neonatal jaundice. Interventions aimed at enhancing maternal nutrition and promoting more frequent breastfeeding may mitigate the risk. Further research should explore additional maternal and neonatal factors contributing to this condition.
文摘Introduction: Multiple myeloma (MM) is characterized by the abnormal proliferation of a plasma cell clone invading the bone marrow, with secretion of a monoclonal immunoglobulin (Ig), detectable by serum protein electrophoresis. The aim of our work was to study the electrophoretic profile of patients with MM. Methods: This is a retrospective descriptive and analytical study including 76 patients with MM, whose serum samples were received at the Biochemistry Department of the Dalal Jamm National Hospital during the period from January 1, 2021 to April 30, 2023. For each patient, we studied epidemiological data (age, sex, service) and biochemical variables (proteinemia, electrophoresis and serum protein immunofixation). Results: The mean age of our patients was 58 ± 10.24 years, with a sex ratio of 0.9, with a female predominance (52.6%). The majority of cohort (71.1%) were consulted as outpatients. Hyperproteinemia was observed in 27.6% of patients, with a mean average of 91.2 ± 25.2 g/L, while hypoalbuminemia was found in 43.4% of patients. A monoclonal peak was noted at the Serum protein electrophoresis (SPEP) in all patients in our series, 75% of whom were in the gamma zone and 22.4% in the beta zone. Immunofixation had objectified kappa-type IgG myeloma in the majority of patients (77.8%). Conclusion: Among the biological markers of MM, serum protein electrophoresis remains the most characteristic for detecting monoclonal immunoglobulin.
基金supported by the Wuhan University Center for Digital and Intelligent Education Research and the Major Project on Teaching Reform in Higher Education of Shaanxi Province(Grant No.23BZO90).
文摘The rapid advancement of AI technology has significantly impacted higher education,presenting both opportunities and challenges for teaching and learning.Although students can benefit from AI,many remain unaware of its potential utility.Moreover,concerns regarding the accuracy and reliability of AI complicate its proper use.This study incorporated an AI teaching assistant,called Blueink,into a biochemistry course at a medical university in China.The researchers assessed the alterations in individuals’knowledge,AI use,and critical thinking skills by conducting a review before and after the training.This was done to furnish valuable information for academics and specialists.The findings presented that the participating college students perceived AI as increasingly essential for contemporary learning and excelled at discovering significant facts using AI techniques.However,their confidence in AI responses and their habits and preferences for posing inquiries remained unchanged after the training.The study indicates that AI tools not only enhance students’skill acquisition but require greater clarity and proficiency.Collaborating with diverse specialists can yield superior AI tools for education.
文摘Olfactory receptors are crucial for detecting odors and play a vital role in our sense of smell,influencing behaviors from food choices to emotional memories.These receptors also contribute to our perception of flavor and have potential applications in medical diagnostics and environmental monitoring.The ability of the olfactory system to regenerate its sensory neurons provides a unique model to study neural regeneration,a phenomenon largely absent in the central nervous system.Insights gained from how olfactory neurons continuously replace themselves and reestablish functional connections can provide strategies to promote similar regenerative processes in the central nervous system,where damage often results in permanent deficits.Understanding the molecular and cellular mechanisms underpinning olfactory neuron regeneration could pave the way for developing therapeutic approaches to treat spinal co rd injuries and neurodegenerative diseases like Alzheimer's disease.Olfa ctory receptors are found in almost any cell of eve ry orga n/tissue of the mammalian body.This ectopic expression provides insights into the chemical structures that can activate olfactory receptors.In addition to odors,olfactory receptors in ectopic expression may respond to endogenous compounds and molecules produced by mucosal colonizing microbiota.The analysis of the function of olfactory receptors in ectopic expression provides valuable information on the signaling pathway engaged upon receptor activation and the receptor's role in proliferation and cell differentiation mechanisms.This review explo res the ectopic expression of olfa ctory receptors and the role they may play in neural regeneration within the central nervous system,with particular attention to compounds that can activate these receptors to initiate regenerative processes.Evidence suggests that olfactory receptors could serve as potential therapeutic targets for enhancing neural repair and recovery following central nervous system injuries.
文摘Traumatic brain injury, chronic traumatic encephalopathy, and Alzheimer's disease are three distinct neurological disorders that share common pathophysiological mechanisms involving neuroinflammation. One sequela of neuroinflammation includes the pathologic hyperphosphorylation of tau protein, an endogenous microtubule-associated protein that protects the integrity of neuronal cytoskeletons. Tau hyperphosphorylation results in protein misfolding and subsequent accumulation of tau tangles forming neurotoxic aggregates. These misfolded proteins are characteristic of traumatic brain injury, chronic traumatic encephalopathy, and Alzheimer's disease and can lead to downstream neuroinflammatory processes, including assembly and activation of the inflammasome complex. Inflammasomes refer to a family of multimeric protein units that, upon activation, release a cascade of signaling molecules resulting in caspase-induced cell death and inflammation mediated by the release of interleukin-1β cytokine. One specific inflammasome, the NOD-like receptor protein 3, has been proposed to be a key regulator of tau phosphorylation where it has been shown that prolonged NOD-like receptor protein 3 activation acts as a causal factor in pathological tau accumulation and spreading. This review begins by describing the epidemiology and pathophysiology of traumatic brain injury, chronic traumatic encephalopathy, and Alzheimer's disease. Next, we highlight neuroinflammation as an overriding theme and discuss the role of the NOD-like receptor protein 3 inflammasome in the formation of tau deposits and how such tauopathic entities spread throughout the brain. We then propose a novel framework linking traumatic brain injury, chronic traumatic encephalopathy, and Alzheimer's disease as inflammasomedependent pathologies that exist along a temporal continuum. Finally, we discuss potential therapeutic targets that may intercept this pathway and ultimately minimize long-term neurological decline.
基金supported by the German Research Council(Deutsche Forschungsgemeinschaft,HA3309/3-1/2,HA3309/6-1,HA3309/7-1)。
文摘Skeletal muscles are essential for locomotion,posture,and metabolic regulation.To understand physiological processes,exercise adaptation,and muscle-related disorders,it is critical to understand the molecular pathways that underlie skeletal muscle function.The process of muscle contra ction,orchestrated by a complex interplay of molecular events,is at the core of skeletal muscle function.Muscle contraction is initiated by an action potential and neuromuscular transmission requiring a neuromuscular junction.Within muscle fibers,calcium ions play a critical role in mediating the interaction between actin and myosin filaments that generate force.Regulation of calcium release from the sarcoplasmic reticulum plays a key role in excitation-contraction coupling.The development and growth of skeletal muscle are regulated by a network of molecular pathways collectively known as myogenesis.Myogenic regulators coordinate the diffe rentiation of myoblasts into mature muscle fibers.Signaling pathways regulate muscle protein synthesis and hypertrophy in response to mechanical stimuli and nutrient availability.Seve ral muscle-related diseases,including congenital myasthenic disorders,sarcopenia,muscular dystrophies,and metabolic myopathies,are underpinned by dys regulated molecular pathways in skeletal muscle.Therapeutic interventions aimed at preserving muscle mass and function,enhancing regeneration,and improving metabolic health hold promise by targeting specific molecular pathways.Other molecular signaling pathways in skeletal muscle include the canonical Wnt signaling pathway,a critical regulator of myogenesis,muscle regeneration,and metabolic function,and the Hippo signaling pathway.In recent years,more details have been uncovered about the role of these two pathways during myogenesis and in developing and adult skeletal muscle fibers,and at the neuromuscular junction.In fact,research in the last few years now suggests that these two signaling pathways are interconnected and that they jointly control physiological and pathophysiological processes in muscle fibers.In this review,we will summarize and discuss the data on these two pathways,focusing on their concerted action next to their contribution to skeletal muscle biology.However,an in-depth discussion of the noncanonical Wnt pathway,the fibro/a dipogenic precursors,or the mechanosensory aspects of these pathways is not the focus of this review.
基金supported by the Thailand Science Research and Innovation Fund Chulalongkorn University(Grant No.HEAF67300078)the 90th Anniversary Scholarship,Chulalongkorn University Ratchadapisek Sompoch Fund(Grant No.Batch#55,T.Boonto)the Center of Excellence in Hepatitis and Liver Cancer,Faculty of Medicine,Chulalongkorn University.T.Boonto was supported by the scholarship from the Graduate School,Chulalongkorn University,to commemorate the 72^(nd) anniversary of His Majesty King Bhumibol Adulyadej(Grant No.Batch#22).
文摘Hepatocellular carcinoma(HCC)remains the third leading cause of cancer-related deaths worldwide;however,its therapeutic options are limited.Understanding the molecular mechanisms of HCC could provide insight into new therapies.Emerging studies indicate the important role of long-noncoding RNAs(lncRNAs)in the pathogenesis of HCC.The expression of the well-studied lncRNA taurine upregulated gene 1(TUG1)is upregulated in HCC tissues,but its transcriptomic effects in HCC cells remain unexplored.We established TUG1-knockdown and control HCC cells for RNA-seq experiments.KEGG analysis revealed glycolysis as the top enriched pathway upon TUG1 silencing.Accordingly,TUG1-depleted HCC cells showed impairments in glucose uptake,ATP synthesis,and lactate production.Clinical HCC tissue data revealed positive gene expression correlations between TUG1 and several glycolysis-related genes.To identify a molecular function of TUG1 in glycolysis,we explored the competing endogenous model and used bioinformatic tools to find the five microRNAs(miRNAs)that had the most binding sites for TUG1.Among these miRNAs,miR-122-5p exhibited an inverse correlation in gene expression with most TUG1-regulated glycolysis genes,including PKM,ALDOA,ENO2,and PFKM.Dual-luciferase assays demonstrated the direct interaction between TUG1 and miR-122-5p and between miR-122-5p and the 3ʹuntranslated regions of both PKM and ALDOA.We further showed that inhibition of miR-122-5p alleviated the suppression of glycolysis induced by TUG1 depletion.Together,our RNA-seq analysis of TUG1-depleted HCC cells,combined with clinical data,reveals a critical role of TUG1 in regulating glycolysis and provides new insight into its oncogenic function in HCC.
基金supported by grants from the National Natural Science Foundation of China(Grant No.82272008)The Science&Technology Development Fund of Tianjin Education Commission for Higher Education(Grant No.2021KJ194)Tianjin Key Medical Discipline(Specialty)Construction Project(Grant No.TJYXZDXK-009A).
文摘Artificial intelligence(AI)is significantly advancing precision medicine,particularly in the fields of immunogenomics,radiomics,and pathomics.In immunogenomics,AI can process vast amounts of genomic and multi-omic data to identify biomarkers associated with immunotherapy responses and disease prognosis,thus providing strong support for personalized treatments.In radiomics,AI can analyze high-dimensional features from computed tomography(CT),magnetic resonance imaging(MRI),and positron emission tomography/computed tomography(PET/CT)images to discover imaging biomarkers associated with tumor heterogeneity,treatment response,and disease progression,thereby enabling non-invasive,real-time assessments for personalized therapy.Pathomics leverages AI for deep analysis of digital pathology images,and can uncover subtle changes in tissue microenvironments,cellular characteristics,and morphological features,and offer unique insights into immunotherapy response prediction and biomarker discovery.These AI-driven technologies not only enhance the speed,accuracy,and robustness of biomarker discovery but also significantly improve the precision,personalization,and effectiveness of clinical treatments,and are driving a shift from empirical to precision medicine.Despite challenges such as data quality,model interpretability,integration of multi-modal data,and privacy protection,the ongoing advancements in AI,coupled with interdisciplinary collaboration,are poised to further enhance AI’s roles in biomarker discovery and immunotherapy response prediction.These improvements are expected to lead to more accurate,personalized treatment strategies and ultimately better patient outcomes,marking a significant step forward in the evolution of precision medicine.
文摘Hepatocellular carcinoma(HCC)recurrence after liver transplantation(LT)presents a significant challenge,with recurrence rates ranging from 8%to 20%globally.Current biomarkers,such as alpha-fetoprotein(AFP)and des-gamma-carboxy prothrombin(DCP),lack specificity,limiting their utility in risk strati-fication.YKL-40,a glycoprotein involved in extracellular matrix remodeling,hepatic stellate cell activation,and immune modulation,has emerged as a promising biomarker for post-LT surveillance.Elevated serum levels of YKL-40 are associated with advanced liver disease,tumor progression,and poorer post-LT outcomes,highlighting its potential to address gaps in early detection and personalized management of HCC recurrence.This manuscript synthesizes clinical and mechanistic evidence to evaluate YKL-40’s predictive utility in post-LT care.While preliminary findings demonstrate its specificity for liver-related pathologies,challenges remain,including assay standardization,lack of pro-spective validation,and the need to distinguish between malignant and non-malignant causes of elevated levels.Integrating YKL-40 into multi-biomarker panels with AFP and DCP could enhance predictive accuracy and enable tailored therapeutic strategies.Future research should focus on multicenter studies to validate YKL-40’s clinical utility,address confounding factors like graft rejection and systemic inflammation,and explore its role in predictive models driven by emerging technologies such as artificial intelligence.YKL-40 holds transformative potential in reshaping post-LT care through precision medicine,providing a pathway for better outcomes and improved management of high-risk LT recipients.
基金support through Manipal University Jaipur for the Enhanced Seed Grant under the Endowment Fund(Grant No.E3/2023-24/QE-04-05).
文摘Dear Editor,Lung cancer is a major global health concern,with 2.2 million patients diagnosed in 2020.Non-small cell lung cancer(NSCLC)accounts for 80%of these cases,primarily comprising two subtypes:lung adenocarcinoma(LUAD)and squamous cell carcinoma(LUSC)[1].Researchers use immunohisto-chemistry,next-generation sequencing,and single-cell RNA sequencing to study genetic alterations,tumor heterogeneity,and tumor microenvironments,aiming to identify potential therapeutic options for specific NSCLC subtypes[2].
文摘Peripheral immunity forms the foundation of tumor immunity,while tumor immunity represents a more refined adaptation of peripheral immune responses.The tumor microenvironment(TME),a localized niche surrounding tumor cells,is inherently immunosuppressive(1,2).Effective tumor therapy necessitates the dismantling of this microenvironment,aiming to eradicate tumors from the host system.
文摘Dear Editor,Local recurrence and cervical lymph node metastases are major causes of mortality in patients with head and neck squamous cell carcinoma(HNSCC).To date,none of the proposed strategies for predicting outcomes in this disease have proven fully effective,and a comprehensive physical examination remains the primary method for early detection and monitoring of HNSCC.
基金Supported by the King Salman Center for Disability Research,No.KSRG-2023-407.
文摘Diabetic foot(DF)is a major public health concern.As evident from numerous previous studies,supervision of DF ulcer(DFU)is crucial,and a specific quality check-up is needed.Patients should be educated about glycaemic management,DFUs,foot lesions,proper care for injuries,diet,and surgery.Certain reasonably priced treatments,such as hyperbaric oxygen and vacuum-assisted closure therapy,are also available for DFUs,along with modern wound care products and techniques.Nonetheless,DF care(cleaning,applying antimicrobial cream when wounded,and foot reflexology),blood glucose monitoring to control diabetes,and monthly or quarterly examinations in individuals with diabetes are effective in managing DFUs.Between 50%and 80%of DF infections are preventable.Regardless of the intensity of the lesion,it needs to be treated carefully and checked daily during infection.Tissue regeneration can be aided by cleaning,dressing,and application of topical medicines.The choice of shoes is also important because it affects blood circulation and nerve impulses.In general,regular check-ups,monitoring of the patient’s condition,measuring blood glucose levels,and providing frequent guidance regarding DFU care are crucial.Finally,this important clinical problem requires involvement of multiple professionals to properly manage it.
基金supported by grants from the Jagiellonian University,Poland(N18/DBS/000007)the Polish National Science Centre(2018/31/N/NZ4/03787).
文摘Angiogenesis,the expansion of pre-existing vascular networks,is crucial for normal organ growth and tissue repair,but is also involved in various pathologies,including inflammation,ischemia,diabetes,and cancer.In solid tumors,angiogenesis supports growth,nutrient delivery,waste removal,and metastasis.Tumors can induce angiogenesis through proangiogenic factors including VEGF,FGF-2,PDGF,angiopoietins,HGF,TNF,IL-6,SCF,tryptase,and chymase.This balance is disrupted in tumors,and extracellular vesicles(EVs)contribute to this by transferring proangiogenic factors and increasing their expression in endothelial cells(ECs).Malignant melanoma,a particular type of skin cancer,accounts for only 1%of skin cancer cases but more than 75%of deaths.Its incidence has risen significantly,with a 40%increase between 2012 and 2022,especially in fair-skinned populations.Advanced metastatic stages have a high mortality due to delayed diagnosis.This review examines the molecular basis of angiogenesis in melanoma,focusing on melanoma-derived EVs and their possible use in new antiangiogenic therapies.
基金supported by the National Natural Science Foundation of China,Nos.32070735(to QL),82371321(to QL),82171270(to ZL)Public Service Platform for Artificial Intelligence Screening and Auxiliary Diagnosis for the Medical and Health Industry,Ministry of Industry and Information Technology of the People's Republic of China,No.2020-0103-3-1(to ZL)+2 种基金the Natural Science Foundation of Beijing,No.Z200016(to ZL)Beijing Talents Project,No.2018000021223ZK03(to ZL)Beijing Municipal Committee of Science and Technology,No.Z201100005620010(to ZL)。
文摘Stroke is classified as ischemic or hemorrhagic,and there are few effective treatments for either type.Immunologic mechanisms play a critical role in secondary brain injury following a stroke,which manifests as cytokine release,blood–brain barrier disruption,neuronal cell death,and ultimately behavioral impairment.Suppressing the inflammatory response has been shown to mitigate this cascade of events in experimental stroke models.However,in clinical trials of anti-inflammatory agents,longterm immunosuppression has not demonstrated significant clinical benefits for patients.This may be attributable to the dichotomous roles of inflammation in both tissue injury and repair,as well as the complex pathophysiologic inflammatory processes in stroke.Inhibiting acute harmful inflammatory responses or inducing a phenotypic shift from a pro-inflammatory to an anti-inflammatory state at specific time points after a stroke are alternative and promising therapeutic strategies.Identifying agents that can modulate inflammation requires a detailed understanding of the inflammatory processes of stroke.Furthermore,epigenetic reprogramming plays a crucial role in modulating post-stroke inflammation and can potentially be exploited for stroke management.In this review,we summarize current findings on the epigenetic regulation of the inflammatory response in stroke,focusing on key signaling pathways including nuclear factor-kappa B,Janus kinase/signal transducer and activator of transcription,and mitogen-activated protein kinase as well as inflammasome activation.We also discuss promising molecular targets for stroke treatment.The evidence to date indicates that therapeutic targeting of the epigenetic regulation of inflammation can shift the balance from inflammation-induced tissue injury to repair following stroke,leading to improved post-stroke outcomes.
基金supported by the Natural Science Foundation of Guangxi(No.2022GXNSFGA035003)the National Natural Science Foundation of China(No.22077021).
文摘To treat cancer and inhibit its metastasis to the greatest extent,we proposed to develop an Au(III)agent to induce immunogenic cell death(ICD)and establish long-term immunity.To this end,we optimized a series of Au(III)2-benzoylpyridine thiosemicarbazone complexes to obtain an Au(III)agent(5b)with excellent cytotoxicity to cancer.The results show that 5b effectively inhibits tumor growth and its metastasis in vivo.Interestingly,we revealed a new mechanism of 5b inhibiting tumor growth and metastasis:5b releases ICD-related damage-associated molecular patterns(DAMPs),such as calreticulin(CRT),ATP and high mobility group box 1(HMGB1)by inducing endoplasmic reticulum stress(ERS)and mitochondrial dysfunction,which then stimulated an antitumor CD8^(+)T cell response and Foxp^(3+)T cell depletion,thus establishing long-action antitumor immunity.
基金supported by the National Natural Science Foundation of China(32161143021)the Iran National Science Foundation(4001873)+1 种基金the Henan Province Natural Science Foundation of China(182300410313)Henan University graduate Talent Program of Henan Province(SYLYC2023092).
文摘Parkinson's disease(PD),a chronic and com-mon neurodegenerative disease,is characterized by the progressive loss of dopaminergic neurons in the dense part of the substantia nigra and abnormal aggregation of alpha-synuclein.Type 2 diabetes mellitus(T2DM)is a metabolic disease characterized by chronic insulin resistance and deficiency in insulin secretion.Extensive evidence has con-firmed shared pathogenic mechanisms underlying PD and T2DM,such as oxidative stress caused by insulin resistance,mitochondrial dysfunction,inflammation,and disorders of energy metabolism.Conventional drugs for treating T2DM,such as metformin and glucagon-like peptide-1 receptor ago-nists,affect nerve repair.Even drugs for treating PD,such as levodopa,can affect insulin secretion.This review sum-marizes the relationship between PD and T2DM and related therapeutic drugs from the perspective of insulin signaling pathways in the brain.