Mung bean is an economically important legume crop species that is used as a food,consumed as a vegetable,and used as an ingredient and even as a medicine.To explore the genomic diversity of mung bean,we assembled a h...Mung bean is an economically important legume crop species that is used as a food,consumed as a vegetable,and used as an ingredient and even as a medicine.To explore the genomic diversity of mung bean,we assembled a high-quality reference genome(Vrad_JL7)that was479.35 Mb in size,with a contig N50 length of 10.34 Mb.A total of 40,125 protein-coding genes were annotated,representing96.9%of the genetic region.We also sequenced 217 accessions,mainly landraces and cultivars from China,and identified 2,229,343 high-quality single-nucleotide polymorphisms(SNPs).Population structure revealed that the Chinese accessions diverged into two groups and were distinct from non-Chinese lines.Genetic diversity analysis based on genomic data from 750 accessions in 23 countries supported the hypothesis that mung bean was first domesticated in south Asia and introduced to east Asia probably through the Silk Road.We constructed the first pan-genome of mung bean germplasm and assembled 287.73 Mb of non-reference sequences.Among the genes,83.1%were core genes and 16.9%were variable.Presence/absence variation(PAV)events of nine genes involved in the regulation of the photoperiodic flowering pathway were identified as being under selection during the adaptation process to promote early flowering in the spring.Genomewide association studies(GWASs)revealed 2,912 SNPs and 259 gene PAV events associated with 33 agronomic traits,including a SNP in the coding region of the SWEET10 homolog(jg24043)involved in crude starch content and a PAV event in a large fragment containing 11 genes for color-related traits.This high-quality reference genome and pan-genome will provide insights into mung bean breeding.展开更多
Hybrid rice(Oryza sativa)generally outperforms its inbred parents in yield and stress tolerance,a phenomenon termed heterosis,but the underlying mechanism is not completely understood.Here,we combined transcriptome,pr...Hybrid rice(Oryza sativa)generally outperforms its inbred parents in yield and stress tolerance,a phenomenon termed heterosis,but the underlying mechanism is not completely understood.Here,we combined transcriptome,proteome,physiological,and heterosis analyses to examine the salt response of super hybrid rice Chaoyou1000(CY1000).In addition to surpassing the mean values for its two parents(mid-parent heterosis),CY1000 exhibited a higher reactive oxygen species scavenging ability than both its parents(over-parent heterosis or heterobeltiosis).Nonadditive expression and allele-specific gene expression assays showed that the glutathione S-transferase gene OsGSTU26 and the amino acid transporter gene OsAAT30 may have major roles in heterosis for salt tolerance,acting in an overdominant fashion in CY1000.Furthermore,we identified OsWRKY72 as a common transcription factor that binds and regulates OsGSTU26 and OsAAT30.The salt-sensitive phenotypes were associated with the OsWRKY72^(paternal)genotype or the OsAAT30^(maternal)genotype in core rice germplasm varieties.OsWRKY72^(paternal)specifically repressed the expression of OsGSTU26 under salt stress,leading to salinity sensitivity,while OsWRKY72^(maternal)specifically repressed OsAAT30,resulting in salinity tolerance.These results suggest that the OsWRKY72-OsAAT30/OsGSTU26 module may play an important role in heterosis for salt tolerance in an overdominant fashion in CY1000 hybrid rice,providing valuable clues to elucidate the mechanism of heterosis for salinity tolerance in hybrid rice.展开更多
基金supported by the National Key R&D Program of China(2019YFD1000700/2019YFD1000702)the China Agricultural Research System(CARS-08-G3)+2 种基金the Key Research and Development Program of Hebei(21326305D)the Hebei Agriculture Research System(HBCT2018070203)the Hebei Talent Project.
文摘Mung bean is an economically important legume crop species that is used as a food,consumed as a vegetable,and used as an ingredient and even as a medicine.To explore the genomic diversity of mung bean,we assembled a high-quality reference genome(Vrad_JL7)that was479.35 Mb in size,with a contig N50 length of 10.34 Mb.A total of 40,125 protein-coding genes were annotated,representing96.9%of the genetic region.We also sequenced 217 accessions,mainly landraces and cultivars from China,and identified 2,229,343 high-quality single-nucleotide polymorphisms(SNPs).Population structure revealed that the Chinese accessions diverged into two groups and were distinct from non-Chinese lines.Genetic diversity analysis based on genomic data from 750 accessions in 23 countries supported the hypothesis that mung bean was first domesticated in south Asia and introduced to east Asia probably through the Silk Road.We constructed the first pan-genome of mung bean germplasm and assembled 287.73 Mb of non-reference sequences.Among the genes,83.1%were core genes and 16.9%were variable.Presence/absence variation(PAV)events of nine genes involved in the regulation of the photoperiodic flowering pathway were identified as being under selection during the adaptation process to promote early flowering in the spring.Genomewide association studies(GWASs)revealed 2,912 SNPs and 259 gene PAV events associated with 33 agronomic traits,including a SNP in the coding region of the SWEET10 homolog(jg24043)involved in crude starch content and a PAV event in a large fragment containing 11 genes for color-related traits.This high-quality reference genome and pan-genome will provide insights into mung bean breeding.
基金supported by grants from the National Natural Science Foundation of China(Grant No.32272050 and U21A20208)the National Center of Technology Innovation for Saline-Alkali Tolerant Rice(2022PT1005)+2 种基金the Hunan Natural Science Foundation(Grant No.2022JJ30021)the Science and Technology Innovation Program of Hunan Province(2023NK1010)the Changsha Science and Technology Project(Grant No.kq2202221)。
文摘Hybrid rice(Oryza sativa)generally outperforms its inbred parents in yield and stress tolerance,a phenomenon termed heterosis,but the underlying mechanism is not completely understood.Here,we combined transcriptome,proteome,physiological,and heterosis analyses to examine the salt response of super hybrid rice Chaoyou1000(CY1000).In addition to surpassing the mean values for its two parents(mid-parent heterosis),CY1000 exhibited a higher reactive oxygen species scavenging ability than both its parents(over-parent heterosis or heterobeltiosis).Nonadditive expression and allele-specific gene expression assays showed that the glutathione S-transferase gene OsGSTU26 and the amino acid transporter gene OsAAT30 may have major roles in heterosis for salt tolerance,acting in an overdominant fashion in CY1000.Furthermore,we identified OsWRKY72 as a common transcription factor that binds and regulates OsGSTU26 and OsAAT30.The salt-sensitive phenotypes were associated with the OsWRKY72^(paternal)genotype or the OsAAT30^(maternal)genotype in core rice germplasm varieties.OsWRKY72^(paternal)specifically repressed the expression of OsGSTU26 under salt stress,leading to salinity sensitivity,while OsWRKY72^(maternal)specifically repressed OsAAT30,resulting in salinity tolerance.These results suggest that the OsWRKY72-OsAAT30/OsGSTU26 module may play an important role in heterosis for salt tolerance in an overdominant fashion in CY1000 hybrid rice,providing valuable clues to elucidate the mechanism of heterosis for salinity tolerance in hybrid rice.