期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
国外栽培豌豆遗传多样性分析及核心种质构建 被引量:32
1
作者 宗绪晓 关建平 +3 位作者 王述民 刘庆昌 Robert R Redden Rebecca Ford 《作物学报》 CAS CSCD 北大核心 2008年第9期1518-1528,共11页
从111对备选SSR引物中筛选出能扩增出清晰稳定单一带的多态性引物21对及其最佳退火温度,并优化了豌豆SSR标记实验体系。利用上述引物,对来自于67个国家的731份豌豆栽培种质(Pisum sativum L.)进行遗传多样性分析与核心种质构建。共扩增... 从111对备选SSR引物中筛选出能扩增出清晰稳定单一带的多态性引物21对及其最佳退火温度,并优化了豌豆SSR标记实验体系。利用上述引物,对来自于67个国家的731份豌豆栽培种质(Pisum sativum L.)进行遗传多样性分析与核心种质构建。共扩增出109条多态性带,每对引物平均扩增出5.19个等位变异。SSR等位变异在各大洲间分布不均匀,有效等位变异数、Shannon's信息指数(I)洲际间差异明显。各大洲资源群间遗传多样性差异显著,其中亚洲最高(I=1.1753),欧洲其次(I=1.1387),俄罗斯联邦(I=1.0285)、美洲(I=1.0196)、非洲(I=0.9254)、大洋洲(I=0.8608)依次降低。利用Popgene1.32软件,依豌豆栽培资源洲际间Nei78遗传距离可聚类成2个组群和4个亚组群;基于Structure 2.2软件分析,国外栽培豌豆资源实际由3大类群组成,并与Popgene 1.32聚类结果呼应得较好。上述两种分析方法均表明,国外栽培豌豆类群的遗传多样性与其地理分布相关。设计并实践了一套基于Structure分析的科学可靠、逻辑性强的核心种质构建标准化方案,并依此构建了一套以6.57%的资源(48份)涵盖总体84.4%等位变异的国外栽培豌豆核心种质。 展开更多
关键词 豌豆栽培种(Pisum sativum L.) SSR 遗传多样性 核心种质 国外资源
在线阅读 下载PDF
豌豆属(Pisum)SSR标记遗传多样性结构鉴别与分析 被引量:18
2
作者 宗绪晓 Rebecca Ford +2 位作者 Robert R Redden 关建平 王述民 《中国农业科学》 CAS CSCD 北大核心 2009年第1期36-46,共11页
【目的】评价豌豆属(Pisum L.)2个种5个亚种下,共8个资源类群的遗传多样性水平,揭示豌豆属下资源群体结构及其遗传关系远近,验证传统植物学分类的可靠程度,为充分发掘、利用豌豆野生种质提供必要信息。【方法】利用21对豌豆多态性SSR引... 【目的】评价豌豆属(Pisum L.)2个种5个亚种下,共8个资源类群的遗传多样性水平,揭示豌豆属下资源群体结构及其遗传关系远近,验证传统植物学分类的可靠程度,为充分发掘、利用豌豆野生种质提供必要信息。【方法】利用21对豌豆多态性SSR引物,对来自世界5大洲62个国家的豌豆属94份栽培种质(P.sativum ssp.sativum var.sativum)及其1个近缘野生种(P.fulvum),3个野生亚种(P.sativum ssp.abyssinicum、P.sativum ssp.asiaticum、P.sativum ssp.transcaucasicum)和3个野生变种(P.sativum ssp.elatius var.elatius、P.sativum ssp.elatius var.pumilio、P.sativum ssp.sativumvar.arvense)的103份野生种质进行SSR标记遗传多样性分析;利用NTSYSpc2.2d软件估算其遗传距离,进行主成分分析(PCA)并绘制三维空间聚类图;利用Popgene V1.32估算种质群间的Nei78遗传距离等参数并进行UPGMA聚类分析,采用MEGA3.1绘制种质群间聚类图;采用Popgene V1.32估算种质群的等位位点分布等参数,利用Fstat V2.9.3.2进行种质群间遗传多样性差异显著性测验。【结果】21对豌豆多态性SSR引物共扩增出104条多态性带,每对引物平均扩增出4.95个等位变异,其中有效等位变异占65.56%;PSAD270,PSAC58,PSAA18,PSAC75,PSAA175和PSAB72等SSR引物最为有效。SSR等位变异在豌豆属植物学分类单位中分布均匀,但分类单位种质群间的遗传多样性在多数情况下差异显著。豌豆属野生种P.fulvum的遗传多样性远低于栽培种P.sativum;豌豆栽培种下,P.sativum ssp.sativum var.sativum和P.sativum ssp.asiaticum的遗传多样性最高,P.sativum ssp.elatius var.elatius和P.sativum ssp.transcaucasicum次之,P.sativum ssp.elatius var.pumilio、P.sativum ssp.sativum var.arvense和P.sativumssp.abyssinicum最低。PCA分析发现,豌豆属种质资源由4个差异明显的基因库构成。"fulvum"基因库主要由野生种Pisum fulvum资源构成,"abyssinicum"基因库主要由栽培种下的P.sativum ssp.abyssinicum亚种资源构成,"arvense"基因库主要由栽培种下的P.sativum ssp.sativumvar.arvense变种资源构成;"sativum"基因库由P.sativum ssp.asiaticum、P.sativum ssp.elatius var.elatius、P.sativum ssp.transcaucasicum、P.sativum ssp.elatius var.pumilio和P.sativum ssp.sativum var.sativum资源构成。"sativum"基因库构成豌豆栽培资源初级基因库;"fulvum"、"abyssinicum"和"arvense"基因库共同构成豌豆栽培资源次级基因库。植物学分类单位间的Nei78遗传距离介于7.531~35.956,UPGMA聚类方法将豌豆属植物学分类单位聚成3个组群,"组群I"对应"sativum"和"arvense"基因库之和,"组群II"对应"abyssinicum"基因库,"组群III"对应"fulvum"基因库,聚类结果支持4个基因库的划分。【结论】豌豆属下多数植物学分类单位间遗传多样性差异显著,并分化成4个基因库。研究结果部分支持豌豆属下传统的植物学分类体系,并指出了其合理与不足之处。为拓宽豌豆育成品种的遗传基础,应充分发掘豌豆属下各基因库的遗传潜力。 展开更多
关键词 豌豆属(Pisum L.) SSR 遗传多样性 植物学分类体系 基因库
在线阅读 下载PDF
Chilli anthracnose disease caused by Colletotrichum species 被引量:18
3
作者 Po Po THAN Haryudian PRIHASTUTI +2 位作者 Sitthisack PHOULIVONG Paul W.J.TAYLOR Kevin D.HYDE 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE CAS CSCD 2008年第10期764-778,共15页
Anthracnose disease is one of the major economic constraints to chilli production worldwide, especially in tropical and subtropical regions. Accurate taxonomic information is necessary for effective disease control ma... Anthracnose disease is one of the major economic constraints to chilli production worldwide, especially in tropical and subtropical regions. Accurate taxonomic information is necessary for effective disease control management. In the Colletotrichum patho-system, different Colletotrichum species can be associated with anthracnose of the same host. Little information is known concerning the interactions of the species associated with the chilli anthracnose although several Colletotrichum species have been reported as causal agents of chilli anthracnose disease worldwide. The ambiguous taxonomic status of Colletotrichum species has resulted in inaccurate identification which may cause practical problems in plant breeding and disease management. Although the management and control of anthracnose disease are still being extensively researched, commercial cultivars of Capsicum annuum that are resistant to the pathogens that cause chilli anthracnose have not yet been developed. This paper reviews the causal agents of chilli anthracnose, the disease cycle, conventional methods in identification of the pathogen and molecular approaches that have been used for the identification of Colletotrichum species. Pathogenetic variation and population structure of the causal agents of chilli anthracnose along with the current taxonomic status of Colletotrichum species are discussed. Future developments leading to the disease management strategies are suggested. 展开更多
关键词 Capsicum annuum Disease management Identification TAXONOMY PATHOGENICITY
在线阅读 下载PDF
Identification and Analysis of Genetic Diversity Structure Within Pisum Genus Based on Microsatellite Markers 被引量:4
4
作者 ZONG Xu-xiao Rebecca Ford +2 位作者 Robert R Redden GUAN Jian-ping WANG Shu-min 《Agricultural Sciences in China》 CAS CSCD 2009年第3期257-267,共11页
To assesse the genetic diversity among wild and cultivated accessions of 8 taxonomic groups in 2 species, and 5 subspecies under Pisum genus, and to analyze population structure and their genetic relationships among v... To assesse the genetic diversity among wild and cultivated accessions of 8 taxonomic groups in 2 species, and 5 subspecies under Pisum genus, and to analyze population structure and their genetic relationships among various groups of taxonomy, the study tried to verify the fitness of traditionally botanical taxonomic system under Pisum genus and to provide essential information for the exploration and utilization of wild relatives of pea genetic resources. 197 Pisum accessions from 62 counties of 5 continents were employed for SSR analysis using 21 polymorphic primer pairs in this study. Except for cultivated field pea Pisum sativum ssp. sativum var. sativum (94 genotypes), also included were wild relative genotypes that were classified as belonging to P. fulvum, P. sativum ssp.abyssinicum, P. sativum ssp. asiaticum, P. sativum ssp. transcaucasicum, P. sativum ssp. elatius var. elatius, P. sativum ssp. elatius var. pumilio and P. sativum ssp. sativum var. arvense (103 genotypes). The PCA analyses and 3-dimension PCA graphs were conducted and drawn by NTSYSpc 2.2d statistical package. Nei78 genetic distances among groups of genetic resources were calculated, and cluster analysis using UPGMA method was carried out by using Popgene V1.32 statistical package, the dendrogram was drawn by MEGA3.1 statistical package. Allelic statistics were carried out by Popgene V1.32. The significance test between groups of genotypes was carried out by Fstat V2.9.3.2 statistical package. 104 polymorphic bands were amplified using 21 SSR primer pairs with unambiguous unique polymorphic bands. 4.95 alleles were detected by each SSR primer pair in average, of which 65.56% were effective alleles for diversity. PSAD270, PSAC58, PSAA18, PSAC75, PSAA175 and PSAB72 were the most effective SSR pairs. SSR alleles were uniformly distributed among botanical taxon units under Pisum genus, but significant difference appeared in most pairwise comparisons for genetic diversity between taxon unit based groups of genetic resources. Genetic diversity level of wild species P. fulvum was much lower than the cultivated species P. sativum. Under species P. sativum, P. sativum ssp. sativum var. sativum and P. sativum ssp. asiaticum were the highest in gentic diversity, followed by P. sativum ssp. elatius var. elatius and P. sativum ssp. transcaucasicum, P. sativum ssp. elatius var. pumilio, P. sativum ssp. sativum vat. arvense and P. sativum ssp. abyssinicum were the lowest. Four gene pool clusters were detected under Pisum genus by using PCA analysis. Gene pool "fulvum" mainly consisted of wild species Pisum fulvum, gene pool "abyssinicum" mainly consisted of P. sativum ssp. abyssinicum, and gene pool "arvense" mainly consisted of P. sativum ssp. sativum var. arvense. While gene pool "sativum" were composed by 5 botanical taxon units, they are P. sativum ssp. asiaticum, P. sativum ssp. elatius var. elatius, P. sativum ssp. transcaucasicum, P. sativum ssp. elatius var. pumilio and P. sativum ssp. sativum var. sativum. "sativum" gene pool constructed the primary gene pool of cultivated genetic resources; "fulvum" gene pool, "abyssinicum" gene pool and "arvense" gene pool together constructed the secondary gene pool of cultivated genetic resources. Pairwise Nei78 genetic distance among botanical taxon based groups of pea genetic resources ranged from 7.531 to 35.956, 3 large cluster groups were identified based on the UPGMA dendrogram. Group Ⅰ equals to "sativum" and "arvense" gene pools, Group Ⅱ equals to "abyssinicum" gene pool, and Group Ⅲ equals to "fulvum" gene pool. The UPGMA clustering results generally supporting the PCA clusting results. There were significant differences among most botanical groups under Pisum genus, with clear separation of four gene pools for genetic diversity structure. The research results partially support the traditional botanical taxonomy under Pisum genus, and pointed out its advantage and shortcoming. In order to broaden the genetic bases of pea varieties, the genetic potentials in the four gene pools should be thoroughly exploited. 展开更多
关键词 Pisum genus SSR genetic diversity botanical taxonomy gene pool
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部