期刊文献+
共找到1,897篇文章
< 1 2 95 >
每页显示 20 50 100
Database Resources in BIG Data Center:Submission, Archiving, and Integration of Big Data in Plant Science 被引量:4
1
作者 Shuhui Song Zhang Zhang 《Molecular Plant》 SCIE CAS CSCD 2019年第3期279-281,共3页
With the rapid advancement of sequencing technologies and the growing volume of omics data in plants, there is much anticipation in digging out the treasure from such big data and accordingly refining the current agri... With the rapid advancement of sequencing technologies and the growing volume of omics data in plants, there is much anticipation in digging out the treasure from such big data and accordingly refining the current agricultural practice to be applied in the near future. Toward this end, database resources that deliver web services for plant omics data submission, archiving, and integration are urgently needed. As a part of Beijing Institute of Genomics (BIG) of the Chinese Academy of Sciences (CAS), BIG Data Center (http://bigd.big.ac.cn) provides open access to a suite of database resources (Table 1), with the aim of supporting plant research activities for domestic and international users in both academia and industry to translate big data into big discoveries (BIG Data Center Members, 2017;BIG Data Center Members, 2018;BIG Data Center Members, 2019). Here, we give a brief introduction of plant-related database resources in BIG Data Center and appeal to plant research com丒 munities to make full use of these resources for plant data submission, archiving, and integration. 展开更多
关键词 DATABASE RESOURCES BIG Data CENTER
原文传递
Privacy-preserving deep learning techniques for wearable sensor-based big data applications 被引量:1
2
作者 Rafik HAMZA Minh-Son DAO 《Virtual Reality & Intelligent Hardware》 2022年第3期210-222,共13页
Wearable technologies have the potential to become a valuable influence on human daily life where they may enable observing the world in new ways,including,for example,using augmented reality(AR)applications.Wearable ... Wearable technologies have the potential to become a valuable influence on human daily life where they may enable observing the world in new ways,including,for example,using augmented reality(AR)applications.Wearable technology uses electronic devices that may be carried as accessories,clothes,or even embedded in the user's body.Although the potential benefits of smart wearables are numerous,their extensive and continual usage creates several privacy concerns and tricky information security challenges.In this paper,we present a comprehensive survey of recent privacy-preserving big data analytics applications based on wearable sensors.We highlight the fundamental features of security and privacy for wearable device applications.Then,we examine the utilization of deep learning algorithms with cryptography and determine their usability for wearable sensors.We also present a case study on privacy-preserving machine learning techniques.Herein,we theoretically and empirically evaluate the privacy-preserving deep learning framework's performance.We explain the implementation details of a case study of a secure prediction service using the convolutional neural network(CNN)model and the Cheon-Kim-Kim-Song(CHKS)homomorphic encryption algorithm.Finally,we explore the obstacles and gaps in the deployment of practical real-world applications.Following a comprehensive overview,we identify the most important obstacles that must be overcome and discuss some interesting future research directions. 展开更多
关键词 Wearable technology Augmented reality PRIVACY-PRESERVING Deep learning Big data Secure prediction service
在线阅读 下载PDF
Swarm-based Cost-sensitive Decision Tree Using Optimized Rules for Imbalanced Data Classification
3
作者 Mehdi Mansouri Mohammad H.Nadimi-Shahraki Zahra Beheshti 《Journal of Bionic Engineering》 2025年第3期1434-1458,共25页
Despite the widespread use of Decision trees (DT) across various applications, their performance tends to suffer when dealing with imbalanced datasets, where the distribution of certain classes significantly outweighs... Despite the widespread use of Decision trees (DT) across various applications, their performance tends to suffer when dealing with imbalanced datasets, where the distribution of certain classes significantly outweighs others. Cost-sensitive learning is a strategy to solve this problem, and several cost-sensitive DT algorithms have been proposed to date. However, existing algorithms, which are heuristic, tried to greedily select either a better splitting point or feature node, leading to local optima for tree nodes and ignoring the cost of the whole tree. In addition, determination of the costs is difficult and often requires domain expertise. This study proposes a DT for imbalanced data, called Swarm-based Cost-sensitive DT (SCDT), using the cost-sensitive learning strategy and an enhanced swarm-based algorithm. The DT is encoded using a hybrid individual representation. A hybrid artificial bee colony approach is designed to optimize rules, considering specified costs in an F-Measure-based fitness function. Experimental results using datasets compared with state-of-the-art DT algorithms show that the SCDT method achieved the highest performance on most datasets. Moreover, SCDT also excels in other critical performance metrics, such as recall, precision, F1-score, and AUC, with notable results with average values of 83%, 87.3%, 85%, and 80.7%, respectively. 展开更多
关键词 Decision tree Cost-sensitive learning Artificial bee colony Swarm-based Imbalanced classification
在线阅读 下载PDF
Prioritization of potential drug targets for diabetic kidney disease using integrative omics data mining and causal inference
4
作者 Junyu Zhang Jie Peng +7 位作者 Chaolun Yu Yu Ning Wenhui Lin Mingxing Ni Qiang Xie Chuan Yang Huiying Liang Miao Lin 《Journal of Pharmaceutical Analysis》 2025年第8期1787-1799,共13页
Diabetic kidney disease(DKD)with increasing global prevalence lacks effective therapeutic targets to halt or reverse its progression.Therapeutic targets supported by causal genetic evidence are more likely to succeed ... Diabetic kidney disease(DKD)with increasing global prevalence lacks effective therapeutic targets to halt or reverse its progression.Therapeutic targets supported by causal genetic evidence are more likely to succeed in randomized clinical trials.In this study,we integrated large-scale plasma proteomics,genetic-driven causal inference,and experimental validation to identify prioritized targets for DKD using the UK Biobank(UKB)and FinnGen cohorts.Among 2844 diabetic patients(528 with DKD),we identified 37 targets significantly associated with incident DKD,supported by both observational and causal evidence.Of these,22%(8/37)of the potential targets are currently under investigation for DKD or other diseases.Our prospective study confirmed that higher levels of three prioritized targetsdinsulin-like growth factor binding protein 4(IGFBP4),family with sequence similarity 3 member C(FAM3C),and prostaglandin D2 synthase(PTGDS)dwere associated with a 4.35,3.51,and 3.57-fold increased likelihood of developing DKD,respectively.In addition,population-level protein-altering variants(PAVs)analysis and in vitro experiments cross-validated FAM3C and IGFBP4 as potential new target candidates for DKD,through the classic NLR family pyrin domain containing 3(NLRP3)-caspase-1-gasdermin D(GSDMD)apoptotic axis.Our results demonstrate that integrating omics data mining with causal inference may be a promising strategy for prioritizing therapeutic targets. 展开更多
关键词 Diabetic kidney disease PROTEOMICS Causal inference Drug targets
暂未订购
Noncontact Monitoring and AI‐Driven Stroke Prediction:National Center for Neurological Disorders‐Based Approach Using Smart Beds
5
作者 Lan Lan Jia‐Wei Luo +4 位作者 Rui Li Ling Guan Xin Wang Jin Yin Yi‐Long Wang 《Health Care Science》 2025年第5期340-349,共10页
Background:Stroke is the second leading cause of death and third leading cause of disability worldwide and is the leading cause of death and disability among adults in China,with its incidence rate continuing to rise.... Background:Stroke is the second leading cause of death and third leading cause of disability worldwide and is the leading cause of death and disability among adults in China,with its incidence rate continuing to rise.In China,the average age of firsttime stroke patients is 66.4 years,and the intravenous thrombolysis rate using recombinant tissue plasminogen activator within 3 h of onset is only 16%.Given this fact,there is a pressing need for real‐time predictive tools,particularly for elderly individuals at home,that can provide early warnings for potential strokes.Methods:We collected continuous monitoring data from nonintrusive smart beds and multimodal temporal data from electronic medical records at the National Center for Neurological Disorders.The data included smart bed monitoring indicators,laboratory tests,nurse observations,and static data as potential predictors,with stroke as the outcome.We applied feature representation and feature selection techniques and then input the predictors into machine learning models.Additionally,deep learning models were used after preprocessing the irregular temporal data.Finally,we evaluated the performance of the stroke prediction models and assessed the importance of the features.We used continuously updated vital signs and clinical data during hospitalization to generate timely stroke risk alerts during the same period of admission.Results:A total of 37,041 samples were analyzed,of which 7020 patients were diagnosed with stroke.When only the smart bed features were used for prediction,the model achieved an area under the receiver operating characteristic curve(AUROC)of 0.59−0.63,with an accuracy ranging from 60%−65%.Among the four artificial intelligence algorithms,the random forest model demonstrated the best performance.After all the available features were incorporated,the AUROC increased to 0.94,and the accuracy improved to 92%.Conclusions:In this study,the occurrence of stroke was successfully identified by integrating multimodal temporal data from electronic medical records.Noncontact monitoring of respiration and heart rate offers a promising approach for daily stroke surveillance in home‐based populations,particularly for elderly individuals living alone. 展开更多
关键词 artificial intelligence ECHOCARDIOGRAPHY electronic medical record PREDICTION STROKE time series
暂未订购
多种慢性病对年龄相关性黄斑变性风险的影响及其交互效应研究
6
作者 赵颖颖 苏萍 +9 位作者 陈巧巧 逄锦宏 施婕 王雅倩 李秋春 何蕊言 王玥 陈学禹 于媛媛 迟蔚蔚 《中国全科医学》 北大核心 2026年第2期213-218,共6页
背景年龄相关性黄斑变性(AMD)是全球50岁以上人群视力丧失和损伤的主要原因,预计到2040年将影响2.88亿人。目的探讨多种慢性病与AMD之间的关系,分析不同的慢性病组合与AMD风险的交互效应,评估多种慢性病及其相互作用对AMD发生风险的影... 背景年龄相关性黄斑变性(AMD)是全球50岁以上人群视力丧失和损伤的主要原因,预计到2040年将影响2.88亿人。目的探讨多种慢性病与AMD之间的关系,分析不同的慢性病组合与AMD风险的交互效应,评估多种慢性病及其相互作用对AMD发生风险的影响。方法依托齐鲁全生命周期电子健康研究型数据库(Cheeloo LEAD),纳入数据库中2015—2023年健康档案体检信息、个人基本信息、诊断信息完整的50岁以上人群,按照ICD-10(H35.3)编码筛选AMD组。以年龄、性别作为匹配项进行1∶4匹配,选取不患有AMD的人群为对照组。记录两组研究对象的人口基线特征及慢性病情况。采用多因素Logistic回归模型分析高血压、糖尿病、心脏病等慢性病与AMD的关联,并借助方差膨胀因子(VIF)检验共线性,确保模型稳健性。最后,引入交互项以评估不同慢性病组合对AMD风险的协同效应。结果本研究共纳入16780人,其中AMD组3356人,对照组13424人。多因素Logistic回归分析结果显示,在调整混杂因素后,高血压(OR=2.81,95%CI=2.59~3.04)、心脏病(OR=2.02,95%CI=1.86~2.19)、脑卒中(OR=1.82,95%CI=1.66~1.99)、糖尿病(OR=2.72,95%CI=2.47~2.99)、血脂异常(OR=2.01,95%CI=1.78~2.28)、慢性胃部疾病或消化系统疾病(OR=1.90,95%CI=1.72~2.10)、慢性肝脏疾病(OR=2.29,95%CI=2.04~2.57)、情感及精神方面疾病(OR=2.86,95%CI=2.49~3.29)、与记忆相关疾病(OR=1.86,95%CI=1.52~2.28)均是AMD患病的影响因素(P<0.05)。交互效应分析显示,高血压与糖尿病组合对AMD的预测概率为0.40;糖尿病与血脂异常组合对AMD的预测概率为0.40;慢性肝脏疾病与糖尿病组合对AMD的预测概率为0.45;高血压与心脏病组合对AMD的预测概率为0.30;脑卒中与心脏病组合对AMD的预测概率为0.30;慢性胃部疾病与慢性肝脏疾病组合对AMD的预测概率为0.30;情感及精神方面疾病与记忆相关疾病组合对AMD的预测概率为0.45;高血压与情感及精神方面疾病组合对AMD的预测概率为0.45。结论高血压、糖尿病、慢性肝脏疾病等均与AMD的发生有显著关联,特别是慢性肝脏疾病与糖尿病组合、情感及精神方面疾病与记忆相关疾病组合、高血压和糖尿病慢性病组合对AMD的影响更加明显。 展开更多
关键词 黄斑变性 慢性病 山东省 病例对照研究 影响因素分析 交互效应
暂未订购
西部地区数字政府建设路径探索和瓶颈突破——以甘肃省临夏州为例
7
作者 魏树华 《办公自动化》 2026年第1期64-67,共4页
我国西部地区在数字政府建设过程中普遍存在基础设施落后、数据共享不充分等问题。临夏州作为全国“三区三州”之一,研究临夏州的数字政府建设现状,可以很好地反映出西部的整体情况,文章首先介绍临夏州数字政府体系建设基础,然后总结临... 我国西部地区在数字政府建设过程中普遍存在基础设施落后、数据共享不充分等问题。临夏州作为全国“三区三州”之一,研究临夏州的数字政府建设现状,可以很好地反映出西部的整体情况,文章首先介绍临夏州数字政府体系建设基础,然后总结临夏数字政府建设的成效和面临的问题,最后分析出临夏州数字政府建设如何突破瓶颈,为类似地区数字政府建设提供参考借鉴。 展开更多
关键词 大数据 数字政府 数字经济 数据共享
在线阅读 下载PDF
Demand Analysis and Management Suggestion:Sharing Epidemiological Data Among Medical Institutions in Megacities for Epidemic Prevention and Control 被引量:2
8
作者 CAI Qinyi MI Yiqun +3 位作者 CHU Zhaowu ZHENG Yuanyi CHEN Fang LIU Yicheng 《Journal of Shanghai Jiaotong university(Science)》 EI 2020年第2期137-139,共3页
During the prevention of coronavirus disease 2019(COVID-19),epidemiological data is essential for controlling the source of infection,cutting off the route of transmission,and protecting vulnerable populations.Followi... During the prevention of coronavirus disease 2019(COVID-19),epidemiological data is essential for controlling the source of infection,cutting off the route of transmission,and protecting vulnerable populations.Following Law of the People's Republic of China on Prevention and Treatment of Infectious Diseases and other related regulations,medical institutions have been authorized to collect the detailed information of patients,while it is still a formidable task in megacities because of the significant patient mobility and the existing information sharing barrier.As a smart city which strengthens precise epidemic prevention and control,Shanghai has established a multi-department platform named"one-net management"on dynamic information monitoring.By sharing epidemiological data with medical institutions under a safe environment,we believe that the ability to prevent and control epidemics among medical institutions will be effectively and comprehensively improved. 展开更多
关键词 EPIDEMIC PREVENTION and control BIG data SHARING medical institutions MEGACITIES
原文传递
Rice Expression Database(RED):An integrated RNA-Seq-derived gene expression database for rice 被引量:18
9
作者 Lin Xia Dong Zou +7 位作者 Jian Sang Xingjian Xu Hongyan Yin Mengwei Li Shuangyang Wu Songnian Hu Lili Hao Zhang Zhang 《Journal of Genetics and Genomics》 SCIE CAS CSCD 2017年第5期235-241,共7页
Rice is one of the most important stable food as well as a monocotyledonous model organism for the plant research community.Here,we present RED(Rice Expression Database;http://expression.ic4r.org),an integrated dat... Rice is one of the most important stable food as well as a monocotyledonous model organism for the plant research community.Here,we present RED(Rice Expression Database;http://expression.ic4r.org),an integrated database of rice gene expression profiles derived entirely from RNA-Seq data.RED features a comprehensive collection of 284 high-quality RNA-Seq experiments,integrates a large number of gene expression profiles and covers a wide range of rice growth stages as well as various treatments.Based on massive expression profiles,RED provides a list of housekeeping and tissue-specific genes and dynamically constructs co-expression networks for gene(s) of interest.Besides,it provides user-friendly web interfaces for querying,browsing and visualizing expression profiles of concerned genes.Together,as a core resource in BIG Data Center,RED bears great utility for characterizing the function of rice genes and better understanding important biological processes and mechanisms underlying complex agronomic traits in rice. 展开更多
关键词 Rice expression database Expression profiles Housekeeping gene Tissue-specific gene Co-expression network
原文传递
Time-sensitive prediction of NO_(2) concentration in China using an ensemble machine learning model from multi-source data 被引量:2
10
作者 Chenliang Tao Man Jia +5 位作者 Guoqiang Wang Yuqiang Zhang Qingzhu Zhang Xianfeng Wang Qiao Wang Wenxing Wang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2024年第3期30-40,共11页
Nitrogen dioxide(NO_(2))poses a critical potential risk to environmental quality and public health.A reliable machine learning(ML)forecasting framework will be useful to provide valuable information to support governm... Nitrogen dioxide(NO_(2))poses a critical potential risk to environmental quality and public health.A reliable machine learning(ML)forecasting framework will be useful to provide valuable information to support government decision-making.Based on the data from1609 air quality monitors across China from 2014-2020,this study designed an ensemble ML model by integrating multiple types of spatial-temporal variables and three sub-models for time-sensitive prediction over a wide range.The ensemble ML model incorporates a residual connection to the gated recurrent unit(GRU)network and adopts the advantage of Transformer,extreme gradient boosting(XGBoost)and GRU with residual connection network,resulting in a 4.1%±1.0%lower root mean square error over XGBoost for the test results.The ensemble model shows great prediction performance,with coefficient of determination of 0.91,0.86,and 0.77 for 1-hr,3-hr,and 24-hr averages for the test results,respectively.In particular,this model has achieved excellent performance with low spatial uncertainty in Central,East,and North China,the major site-dense zones.Through the interpretability analysis based on the Shapley value for different temporal resolutions,we found that the contribution of atmospheric chemical processes is more important for hourly predictions compared with the daily scale predictions,while the impact of meteorological conditions would be ever-prominent for the latter.Compared with existing models for different spatiotemporal scales,the present model can be implemented at any air quality monitoring station across China to facilitate achieving rapid and dependable forecast of NO_(2),which will help developing effective control policies. 展开更多
关键词 Air quality prediction Deep learning Ensemble method Nitrogen dioxide Spatiotemporal covariates
原文传递
A Power Data Anomaly Detection Model Based on Deep Learning with Adaptive Feature Fusion
11
作者 Xiu Liu Liang Gu +3 位作者 Xin Gong Long An Xurui Gao Juying Wu 《Computers, Materials & Continua》 SCIE EI 2024年第6期4045-4061,共17页
With the popularisation of intelligent power,power devices have different shapes,numbers and specifications.This means that the power data has distributional variability,the model learning process cannot achieve suffi... With the popularisation of intelligent power,power devices have different shapes,numbers and specifications.This means that the power data has distributional variability,the model learning process cannot achieve sufficient extraction of data features,which seriously affects the accuracy and performance of anomaly detection.Therefore,this paper proposes a deep learning-based anomaly detection model for power data,which integrates a data alignment enhancement technique based on random sampling and an adaptive feature fusion method leveraging dimension reduction.Aiming at the distribution variability of power data,this paper developed a sliding window-based data adjustment method for this model,which solves the problem of high-dimensional feature noise and low-dimensional missing data.To address the problem of insufficient feature fusion,an adaptive feature fusion method based on feature dimension reduction and dictionary learning is proposed to improve the anomaly data detection accuracy of the model.In order to verify the effectiveness of the proposed method,we conducted effectiveness comparisons through elimination experiments.The experimental results show that compared with the traditional anomaly detection methods,the method proposed in this paper not only has an advantage in model accuracy,but also reduces the amount of parameter calculation of the model in the process of feature matching and improves the detection speed. 展开更多
关键词 Data alignment dimension reduction feature fusion data anomaly detection deep learning
在线阅读 下载PDF
An Improved Binary Quantum-based Avian Navigation Optimizer Algorithm to Select Effective Feature Subset from Medical Data:A COVID-19 Case Study
12
作者 Ali Fatahi Mohammad H.Nadimi-Shahraki Hoda Zamani 《Journal of Bionic Engineering》 SCIE EI CSCD 2024年第1期426-446,共21页
Feature Subset Selection(FSS)is an NP-hard problem to remove redundant and irrelevant features particularly from medical data,and it can be effectively addressed by metaheuristic algorithms.However,existing binary ver... Feature Subset Selection(FSS)is an NP-hard problem to remove redundant and irrelevant features particularly from medical data,and it can be effectively addressed by metaheuristic algorithms.However,existing binary versions of metaheuristic algorithms have issues with convergence and lack an effective binarization method,resulting in suboptimal solutions that hinder diagnosis and prediction accuracy.This paper aims to propose an Improved Binary Quantum-based Avian Navigation Optimizer Algorithm(IBQANA)for FSS in medical data preprocessing to address the suboptimal solutions arising from binary versions of metaheuristic algorithms.The proposed IBQANA’s contributions include the Hybrid Binary Operator(HBO)and the Distance-based Binary Search Strategy(DBSS).HBO is designed to convert continuous values into binary solutions,even for values outside the[0,1]range,ensuring accurate binary mapping.On the other hand,DBSS is a two-phase search strategy that enhances the performance of inferior search agents and accelerates convergence.By combining exploration and exploitation phases based on an adaptive probability function,DBSS effectively avoids local optima.The effectiveness of applying HBO is compared with five transfer function families and thresholding on 12 medical datasets,with feature numbers ranging from 8 to 10,509.IBQANA's effectiveness is evaluated regarding the accuracy,fitness,and selected features and compared with seven binary metaheuristic algorithms.Furthermore,IBQANA is utilized to detect COVID-19.The results reveal that the proposed IBQANA outperforms all comparative algorithms on COVID-19 and 11 other medical datasets.The proposed method presents a promising solution to the FSS problem in medical data preprocessing. 展开更多
关键词 Feature subset selection Optimization Binary metaheuristic algorithms BIOINSPIRED Machine learning Medical datasets
暂未订购
人工智能海洋学研究的计量分析 被引量:3
13
作者 张灿影 张斌 +1 位作者 冯志纲 李晓峰 《海洋与湖沼》 北大核心 2025年第1期112-125,共14页
海洋科学研究对于理解和保护我们的海洋环境、维持生物多样性、支持经济发展,并应对全球气候变化具有至关重要的作用。近年来,随着海洋监测范围的不断扩大,海洋数据的收集速度和量级呈指数级增长,这远远超出了传统科研方法的处理和分析... 海洋科学研究对于理解和保护我们的海洋环境、维持生物多样性、支持经济发展,并应对全球气候变化具有至关重要的作用。近年来,随着海洋监测范围的不断扩大,海洋数据的收集速度和量级呈指数级增长,这远远超出了传统科研方法的处理和分析能力,给海洋动态变化的分析带来了挑战。同时,海洋数据的快速增长为人工智能(artificial intelligence,AI)提供了丰富的训练材料,为AI的应用提供了广阔的舞台,AI的引入可以有效地处理和分析这些海量数据,通过自动化的方式提高数据处理的效率和准确性,为海洋科学研究提供了全新的视角和方法。基于Web of Science数据库,采用文献计量方法与工具,分析了8 021篇(2024年4月20日为止)AI海洋学研究的整体态势,结果表明:(1) 2020年前后全球AI海洋学研究呈现出爆发式增长;(2) 2017年中国发文数量超过美国,成为AI海洋学研究领域发文最多的国家;(3)环境科学、地球科学和遥感是发表论文最多的3个学科领域;(4) AI技术在海洋生态环境监测、生物多样性评估、海洋和大气现象识别与预报等领域应用较多。尽管AI方法在海洋科学研究应用中表现良好,显示出巨大潜力,但仍存在局限性。未来建议制定统一的海洋数据标准和协议,鼓励跨学科的研究合作,以更有效地利用AI技术挖掘海洋数据的潜力,为海洋保护和管理提供更深入的洞察和解决方案。 展开更多
关键词 人工智能 海洋监测 分类 预报 计量分析
在线阅读 下载PDF
Residential Energy Consumption Forecasting Based on Federated Reinforcement Learning with Data Privacy Protection
14
作者 You Lu Linqian Cui +2 位作者 YunzheWang Jiacheng Sun Lanhui Liu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第10期717-732,共16页
Most studies have conducted experiments on predicting energy consumption by integrating data formodel training.However, the process of centralizing data can cause problems of data leakage.Meanwhile,many laws and regul... Most studies have conducted experiments on predicting energy consumption by integrating data formodel training.However, the process of centralizing data can cause problems of data leakage.Meanwhile,many laws and regulationson data security and privacy have been enacted, making it difficult to centralize data, which can lead to a datasilo problem. Thus, to train the model while maintaining user privacy, we adopt a federated learning framework.However, in all classical federated learning frameworks secure aggregation, the Federated Averaging (FedAvg)method is used to directly weight the model parameters on average, which may have an adverse effect on te model.Therefore, we propose the Federated Reinforcement Learning (FedRL) model, which consists of multiple userscollaboratively training the model. Each household trains a local model on local data. These local data neverleave the local area, and only the encrypted parameters are uploaded to the central server to participate in thesecure aggregation of the global model. We improve FedAvg by incorporating a Q-learning algorithm to assignweights to each locally uploaded local model. And the model has improved predictive performance. We validatethe performance of the FedRL model by testing it on a real-world dataset and compare the experimental results withother models. The performance of our proposed method in most of the evaluation metrics is improved comparedto both the centralized and distributed models. 展开更多
关键词 Energy consumption forecasting federated learning data privacy protection Q-LEARNING
在线阅读 下载PDF
隧道入口处不同路面颜色对行车舒适性的影响 被引量:1
15
作者 梁波 王治东 +2 位作者 陈冬阳 秦灿 董越 《公路交通科技》 北大核心 2025年第6期152-159,188,共9页
【目标】为了改善隧道入口处洞内外环境差异对驾驶员行车干扰,提高驾驶员行车舒适性,深入研究隧道入口处不同路面颜色对驾驶员行车舒适性的影响。【方法】首先选取红色、黄色和绿色3种颜色作为研究对象,通过实车试验确定隧道入口处彩色... 【目标】为了改善隧道入口处洞内外环境差异对驾驶员行车干扰,提高驾驶员行车舒适性,深入研究隧道入口处不同路面颜色对驾驶员行车舒适性的影响。【方法】首先选取红色、黄色和绿色3种颜色作为研究对象,通过实车试验确定隧道入口处彩色路面铺设长度;然后通过室内仿真平台模拟不同行驶场景,采集驾驶员行驶速度、心率和瞳孔面积变化率数据,分析不同路面颜色下相应指标变化规律;最后,选取速度方差、心率增长率和视觉不舒适时间占比作为评价指标,通过组合赋权-模糊评价法对不同路面颜色下驾驶员行车舒适性进行评价。【结果】与黑色沥青路面相比,洞外绿色洞内红色路面下驾驶员心率和视觉不舒适时间占比分别降低7.9%和18%;隧道入口处路面颜色变化对驾驶员行驶速度影响较小,对视觉影响较大,两者舒适性评价指标权重分别为12%和56.4%;不同工况舒适性与黑色沥青路面相比存在优劣,其中洞外黄色洞内黄色路面舒适性得分低于原有黑色沥青路面,而洞外绿色洞内红色路面舒适性得分最高。【结论】彩色路面的合理设置对隧道入口处行车舒适性具有积极作用。 展开更多
关键词 隧道工程 行车舒适性 模糊评价 路面颜色 隧道入口处
原文传递
Recommendation system with minimized transaction data
16
作者 Yujeong Hwangbo Kyoung Jun Lee +1 位作者 Baek Jeong Kyung Yang Park 《Data Science and Management》 2021年第4期40-45,共6页
This paper deals with the recommendation system in the so-called user-centric payment environment where users,i.e.,the payers,can make payments without providing self-information to merchants.This service maintains on... This paper deals with the recommendation system in the so-called user-centric payment environment where users,i.e.,the payers,can make payments without providing self-information to merchants.This service maintains only the minimum purchase information such as the purchased product names,the time of purchase,the place of purchase for possible refunds or cancellations of purchases.This study aims to develop AI-based recommendation system by utilizing the minimum transaction data generated by the user-centric payment service.First,we developed a matrix-based extrapolative collaborative filtering algorithm based on open transaction data.The recommendation methodology was verified with the real transaction data.Based on the experimental results,we confirmed that the recommendation performance is satisfactory only with the minimum purchase information. 展开更多
关键词 User-centric payment Recommendation service Artificial intelligence Extrapolative collaborative filtering
在线阅读 下载PDF
基于Wi-Fi 6的医疗设备无线物联网采集终端研制 被引量:1
17
作者 张楠 李静 +4 位作者 张维娇 张斌 周云皓 何昆仑 曹德森 《中国医学装备》 2025年第2期1-8,共8页
目的:针对医疗设备移动化快速部署以及数据高速稳定传输的物联网建设需求,研制基于Wi-Fi 6的医疗设备无线物联网采集终端。方法:采用Wi-Fi 6技术构建医疗设备无线物联网,其数据采集终端包括基于Wi-Fi 6的前置客户端(CPE)和智能无线接入... 目的:针对医疗设备移动化快速部署以及数据高速稳定传输的物联网建设需求,研制基于Wi-Fi 6的医疗设备无线物联网采集终端。方法:采用Wi-Fi 6技术构建医疗设备无线物联网,其数据采集终端包括基于Wi-Fi 6的前置客户端(CPE)和智能无线接入站点。CPE采用国产主控芯片和Wi-Fi芯片(包含两路2.4G和5G天线),适配RS232、RJ45等多种接口,将医疗设备数据通过有线通讯接口转为无线方式传输,通过“白名单+证书”强化安全管控的安全二次认证,支持医疗设备安全准入与数据溯源。智能无线接入站点兼容Wi-Fi、蓝牙、射频识别等多种设备(包含2.4G和5G天线),与CPE联合应用双发选收技术,保证数据稳定传输。结果:对无线物联网采集终端关键性能进行测试,智能采集终端采集与输出数据完整性一致,终端采集与输出数据的时延最高为9 ms,平均2 ms,测试结果能够满足预期要求。结论:基于采集终端构建的医疗设备无线物联网能够稳定、快速采集设备数据至物联网数据平台,为医疗设备无线物联网构建提供范式。 展开更多
关键词 医疗设备 无线物联网 Wi-Fi 6 采集终端
暂未订购
联合光学遥感和SAR影像青海玛多Ms7.4地震同震形变场分析
18
作者 张双成 赵颖 +6 位作者 张成龙 张菊清 樊茜佑 司锦钊 张雅斐 朱武 李振洪 《武汉大学学报(信息科学版)》 北大核心 2025年第3期469-482,共14页
2021-05-22青海省果洛藏族自治州玛多县发生Ms 7.4地震,作为近年来少有的发生在巴颜喀拉块体内部的强震,研究其同震形变场特征是十分必要的。收集了玛多地震前后Sentinel-2和Landsat 8影像,利用光学像素追踪(pixel offset tracking,POT... 2021-05-22青海省果洛藏族自治州玛多县发生Ms 7.4地震,作为近年来少有的发生在巴颜喀拉块体内部的强震,研究其同震形变场特征是十分必要的。收集了玛多地震前后Sentinel-2和Landsat 8影像,利用光学像素追踪(pixel offset tracking,POT)技术获得了该地震东西向和南北向形变;基于地震前后Sentinel-1升、降轨影像,利用合成孔径雷达干涉测量技术获取了该地震升、降轨雷达视线向(line of sight,LOS)形变,利用合成孔径雷达(synthetic aperture radar,SAR)POT技术获得该地震距离向和方位向形变,联合解算得到其三维同震形变场,并对提取的同震形变场结果进行对比交叉验证。结果表明,此次玛多地震为左旋走滑型地震,同震形变以东西向水平运动为主,发震断裂为江错断裂。基于光学遥感影像,得到该地震东西向和南北向形变大约集中在±1.60 m和±0.60 m;基于SAR影像,得到升轨最大LOS向抬升和沉降量分别约为1.29 m和-1.12 m,降轨最大LOS向抬升和沉降量约分别为1.15 m和-1.26 m;解算的三维同震形变场中,东西向形变约为-2.00~1.70 m,南北向形变主要集中在-1.00~0.50 m,垂直向上沿断裂带两侧呈升降交替运动,形变约在±0.3 m。地震北侧形变量级相较于南侧更大,得到的地表破裂带长约176 km,在东南末端(34.48°N,99.04°E)、西北末端(34.76°N,97.61°E)和西段鄂陵湖南侧(34.74°N,97.75°E)存在分支破裂。基于光学遥感和SAR影像提取的玛多地震同震形变场具有一致特征,且多平台、多技术为获取该地震完整同震形变场补充了更多地表破裂带分支等特征,该研究为光学遥感和SAR影像在地震同震形变监测中的应用提供一些参考。 展开更多
关键词 玛多地震 光学遥感影像 SAR影像 像素追踪技术 INSAR
原文传递
不同严重程度双侧膝骨关节炎患者代偿机制差异研究
19
作者 胡波 王俊清 +3 位作者 张辉 邓涛 聂涌 李康 《中国修复重建外科杂志》 北大核心 2025年第7期861-868,共8页
目的研究轻中度和重度双侧膝骨关节炎(knee osteoarthritis,KOA)患者疼痛较重侧与较轻侧肢体的负荷分布特征,分析不同严重程度双侧KOA患者双下肢代偿机制。方法2022年7月—2023年9月共纳入113例受试者,包括轻中度(Kellgren-Lawrence 2~3... 目的研究轻中度和重度双侧膝骨关节炎(knee osteoarthritis,KOA)患者疼痛较重侧与较轻侧肢体的负荷分布特征,分析不同严重程度双侧KOA患者双下肢代偿机制。方法2022年7月—2023年9月共纳入113例受试者,包括轻中度(Kellgren-Lawrence 2~3级)双侧KOA患者43例、重度(Kellgren-Lawrence 4级)双侧KOA患者43例、健康志愿者(健康对照)27例。男16例,女97例;年龄34~89岁,平均61岁。采用疼痛视觉模拟评分(VAS)、美国特种外科医院(HSS)评分、膝关节被动活动范围(range of motion,ROM)及髋-膝-踝角(hip-knee-ankle angle,HKA)分别评估KOA患者步行时疼痛程度、关节功能以及下肢力线。通过步态分析系统采集步行过程中反光标记球运动轨迹及地面反作用力数据,并运用骨肌建模计算膝关节内收力矩(knee adduction moment,KAM)峰值、冲量,膝关节接触力(joint contact force,JCF)及内/外侧间室接触力(medial/lateral contact force,MCF/LCF)峰值等生物力学参数。统计分析双侧肢体临床及步态参数差异,并采用一维统计参数映射分析时序步态数据。结果轻中度KOA患者HSS评分为(67.7±7.9)分,重度KOA患者为(51.9±8.6)分,差异有统计学意义(t=8.747,P<0.001)。所有KOA患者疼痛较重侧HKA均大于较轻侧,VAS评分更高,差异有统计学意义(P<0.05)。轻中度KOA患者双侧ROM差异无统计学意义(P>0.05),重度患者疼痛较重侧ROM小于较轻侧且差异有统计学意义(P<0.05)。健康对照者双下肢所有膝关节负荷相关参数差异均无统计学意义(P>0.05)。所有KOA患者疼痛较轻侧下肢支撑时间均较长,双侧差异有统计学意义(P<0.05)。重度KOA患者中,疼痛较重侧KAM峰值、KAM冲量及MCF峰值均高于较轻侧(P<0.05)。轻中度KOA患者则相反,上述参数疼痛较重侧低于较轻侧,其中KAM峰值、KAM冲量双侧差异有统计学意义(P<0.05)。结论轻中度KOA患者可通过疼痛较轻侧代偿降低疼痛较重侧膝关节负荷,但重度KOA患者因双侧严重膝内翻畸形导致疼痛较轻侧代偿失效,反而加剧疼痛较重侧负荷,提示临床需要为不同严重程度患者制定个性化治疗方案。 展开更多
关键词 膝骨关节炎 代偿机制 负荷分布 严重程度
原文传递
数字经济时代的中国卫星遥感产业转型思考
20
作者 任伏虎 李林 董锦华 《遥感学报》 北大核心 2025年第6期2276-2288,共13页
现阶段中国卫星遥感仍面临“大事业、小产业”的发展困境。从用户需求的角度看,存在“用不上、用不好、用不起”3大问题。对此需要从如下3个维度提出系统性解决方案:“商业模式”由“少量用户+低频高价”向“海量用户+高频低价”转变,... 现阶段中国卫星遥感仍面临“大事业、小产业”的发展困境。从用户需求的角度看,存在“用不上、用不好、用不起”3大问题。对此需要从如下3个维度提出系统性解决方案:“商业模式”由“少量用户+低频高价”向“海量用户+高频低价”转变,“业务载体”打造开放式遥感数据汇聚与公众服务商业化平台,“技术设施”以通信卫星搭载遥感载荷的方式建设遥感全时全覆盖新型卫星系统。该方案的内在根本逻辑是遵循数字经济发展规律,发挥数据要素的共享复用价值,形成基于遥感大数据的平台共享经济;而外部发展契机则在于低轨巨型通信卫星星座的出现,为“跳出遥感做遥感”提供了关键性条件。设想的“通+感”新型卫星系统新增遥感载荷投资为数百亿,仅国内市场的公众服务(C端用户为主)年营收就有望达到百亿量级,能够快速实现投资盈利模型的闭环;在公众用户拓展上卫星遥感能与卫星通信业务协同互补,共同向十亿级别的大众通信用户渗透,商业合作具有较强可行性;未来在实现时空连续监测和遥感实时服务的基础上,利用商业遥感公众服务平台载体,卫星遥感在B端用户市场还有着巨大的价值创造空间。因此应当把握机遇,做好顶层设计与全局资源统筹,通过创新性的制度安排牵引中国卫星遥感产业转型发展。 展开更多
关键词 卫星遥感 公众服务 新型卫星系统 “通+感”卫星 遥感产业化 数字经济 数据要素
原文传递
上一页 1 2 95 下一页 到第
使用帮助 返回顶部