With the rapid advancement of sequencing technologies and the growing volume of omics data in plants, there is much anticipation in digging out the treasure from such big data and accordingly refining the current agri...With the rapid advancement of sequencing technologies and the growing volume of omics data in plants, there is much anticipation in digging out the treasure from such big data and accordingly refining the current agricultural practice to be applied in the near future. Toward this end, database resources that deliver web services for plant omics data submission, archiving, and integration are urgently needed. As a part of Beijing Institute of Genomics (BIG) of the Chinese Academy of Sciences (CAS), BIG Data Center (http://bigd.big.ac.cn) provides open access to a suite of database resources (Table 1), with the aim of supporting plant research activities for domestic and international users in both academia and industry to translate big data into big discoveries (BIG Data Center Members, 2017;BIG Data Center Members, 2018;BIG Data Center Members, 2019). Here, we give a brief introduction of plant-related database resources in BIG Data Center and appeal to plant research com丒 munities to make full use of these resources for plant data submission, archiving, and integration.展开更多
Despite the widespread use of Decision trees (DT) across various applications, their performance tends to suffer when dealing with imbalanced datasets, where the distribution of certain classes significantly outweighs...Despite the widespread use of Decision trees (DT) across various applications, their performance tends to suffer when dealing with imbalanced datasets, where the distribution of certain classes significantly outweighs others. Cost-sensitive learning is a strategy to solve this problem, and several cost-sensitive DT algorithms have been proposed to date. However, existing algorithms, which are heuristic, tried to greedily select either a better splitting point or feature node, leading to local optima for tree nodes and ignoring the cost of the whole tree. In addition, determination of the costs is difficult and often requires domain expertise. This study proposes a DT for imbalanced data, called Swarm-based Cost-sensitive DT (SCDT), using the cost-sensitive learning strategy and an enhanced swarm-based algorithm. The DT is encoded using a hybrid individual representation. A hybrid artificial bee colony approach is designed to optimize rules, considering specified costs in an F-Measure-based fitness function. Experimental results using datasets compared with state-of-the-art DT algorithms show that the SCDT method achieved the highest performance on most datasets. Moreover, SCDT also excels in other critical performance metrics, such as recall, precision, F1-score, and AUC, with notable results with average values of 83%, 87.3%, 85%, and 80.7%, respectively.展开更多
Wearable technologies have the potential to become a valuable influence on human daily life where they may enable observing the world in new ways,including,for example,using augmented reality(AR)applications.Wearable ...Wearable technologies have the potential to become a valuable influence on human daily life where they may enable observing the world in new ways,including,for example,using augmented reality(AR)applications.Wearable technology uses electronic devices that may be carried as accessories,clothes,or even embedded in the user's body.Although the potential benefits of smart wearables are numerous,their extensive and continual usage creates several privacy concerns and tricky information security challenges.In this paper,we present a comprehensive survey of recent privacy-preserving big data analytics applications based on wearable sensors.We highlight the fundamental features of security and privacy for wearable device applications.Then,we examine the utilization of deep learning algorithms with cryptography and determine their usability for wearable sensors.We also present a case study on privacy-preserving machine learning techniques.Herein,we theoretically and empirically evaluate the privacy-preserving deep learning framework's performance.We explain the implementation details of a case study of a secure prediction service using the convolutional neural network(CNN)model and the Cheon-Kim-Kim-Song(CHKS)homomorphic encryption algorithm.Finally,we explore the obstacles and gaps in the deployment of practical real-world applications.Following a comprehensive overview,we identify the most important obstacles that must be overcome and discuss some interesting future research directions.展开更多
Nitrogen dioxide(NO_(2))poses a critical potential risk to environmental quality and public health.A reliable machine learning(ML)forecasting framework will be useful to provide valuable information to support governm...Nitrogen dioxide(NO_(2))poses a critical potential risk to environmental quality and public health.A reliable machine learning(ML)forecasting framework will be useful to provide valuable information to support government decision-making.Based on the data from1609 air quality monitors across China from 2014-2020,this study designed an ensemble ML model by integrating multiple types of spatial-temporal variables and three sub-models for time-sensitive prediction over a wide range.The ensemble ML model incorporates a residual connection to the gated recurrent unit(GRU)network and adopts the advantage of Transformer,extreme gradient boosting(XGBoost)and GRU with residual connection network,resulting in a 4.1%±1.0%lower root mean square error over XGBoost for the test results.The ensemble model shows great prediction performance,with coefficient of determination of 0.91,0.86,and 0.77 for 1-hr,3-hr,and 24-hr averages for the test results,respectively.In particular,this model has achieved excellent performance with low spatial uncertainty in Central,East,and North China,the major site-dense zones.Through the interpretability analysis based on the Shapley value for different temporal resolutions,we found that the contribution of atmospheric chemical processes is more important for hourly predictions compared with the daily scale predictions,while the impact of meteorological conditions would be ever-prominent for the latter.Compared with existing models for different spatiotemporal scales,the present model can be implemented at any air quality monitoring station across China to facilitate achieving rapid and dependable forecast of NO_(2),which will help developing effective control policies.展开更多
With the popularisation of intelligent power,power devices have different shapes,numbers and specifications.This means that the power data has distributional variability,the model learning process cannot achieve suffi...With the popularisation of intelligent power,power devices have different shapes,numbers and specifications.This means that the power data has distributional variability,the model learning process cannot achieve sufficient extraction of data features,which seriously affects the accuracy and performance of anomaly detection.Therefore,this paper proposes a deep learning-based anomaly detection model for power data,which integrates a data alignment enhancement technique based on random sampling and an adaptive feature fusion method leveraging dimension reduction.Aiming at the distribution variability of power data,this paper developed a sliding window-based data adjustment method for this model,which solves the problem of high-dimensional feature noise and low-dimensional missing data.To address the problem of insufficient feature fusion,an adaptive feature fusion method based on feature dimension reduction and dictionary learning is proposed to improve the anomaly data detection accuracy of the model.In order to verify the effectiveness of the proposed method,we conducted effectiveness comparisons through elimination experiments.The experimental results show that compared with the traditional anomaly detection methods,the method proposed in this paper not only has an advantage in model accuracy,but also reduces the amount of parameter calculation of the model in the process of feature matching and improves the detection speed.展开更多
基金Strategic Priority Research Program of the Chinese Academy of Sciences (XDA19050302 to Z.Z.XDA08020102 to Z.Z.)+2 种基金National Natural Science Foundation of China (31871328 to Z.Z.)K.C.Wong Education Foundation (to Z.Z.)The Youth Innovation Promotion Association of Chinese Academy of Sciences (2017141 to S.S.).
文摘With the rapid advancement of sequencing technologies and the growing volume of omics data in plants, there is much anticipation in digging out the treasure from such big data and accordingly refining the current agricultural practice to be applied in the near future. Toward this end, database resources that deliver web services for plant omics data submission, archiving, and integration are urgently needed. As a part of Beijing Institute of Genomics (BIG) of the Chinese Academy of Sciences (CAS), BIG Data Center (http://bigd.big.ac.cn) provides open access to a suite of database resources (Table 1), with the aim of supporting plant research activities for domestic and international users in both academia and industry to translate big data into big discoveries (BIG Data Center Members, 2017;BIG Data Center Members, 2018;BIG Data Center Members, 2019). Here, we give a brief introduction of plant-related database resources in BIG Data Center and appeal to plant research com丒 munities to make full use of these resources for plant data submission, archiving, and integration.
文摘Despite the widespread use of Decision trees (DT) across various applications, their performance tends to suffer when dealing with imbalanced datasets, where the distribution of certain classes significantly outweighs others. Cost-sensitive learning is a strategy to solve this problem, and several cost-sensitive DT algorithms have been proposed to date. However, existing algorithms, which are heuristic, tried to greedily select either a better splitting point or feature node, leading to local optima for tree nodes and ignoring the cost of the whole tree. In addition, determination of the costs is difficult and often requires domain expertise. This study proposes a DT for imbalanced data, called Swarm-based Cost-sensitive DT (SCDT), using the cost-sensitive learning strategy and an enhanced swarm-based algorithm. The DT is encoded using a hybrid individual representation. A hybrid artificial bee colony approach is designed to optimize rules, considering specified costs in an F-Measure-based fitness function. Experimental results using datasets compared with state-of-the-art DT algorithms show that the SCDT method achieved the highest performance on most datasets. Moreover, SCDT also excels in other critical performance metrics, such as recall, precision, F1-score, and AUC, with notable results with average values of 83%, 87.3%, 85%, and 80.7%, respectively.
文摘Wearable technologies have the potential to become a valuable influence on human daily life where they may enable observing the world in new ways,including,for example,using augmented reality(AR)applications.Wearable technology uses electronic devices that may be carried as accessories,clothes,or even embedded in the user's body.Although the potential benefits of smart wearables are numerous,their extensive and continual usage creates several privacy concerns and tricky information security challenges.In this paper,we present a comprehensive survey of recent privacy-preserving big data analytics applications based on wearable sensors.We highlight the fundamental features of security and privacy for wearable device applications.Then,we examine the utilization of deep learning algorithms with cryptography and determine their usability for wearable sensors.We also present a case study on privacy-preserving machine learning techniques.Herein,we theoretically and empirically evaluate the privacy-preserving deep learning framework's performance.We explain the implementation details of a case study of a secure prediction service using the convolutional neural network(CNN)model and the Cheon-Kim-Kim-Song(CHKS)homomorphic encryption algorithm.Finally,we explore the obstacles and gaps in the deployment of practical real-world applications.Following a comprehensive overview,we identify the most important obstacles that must be overcome and discuss some interesting future research directions.
基金supported by the Taishan Scholars (No.ts201712003)。
文摘Nitrogen dioxide(NO_(2))poses a critical potential risk to environmental quality and public health.A reliable machine learning(ML)forecasting framework will be useful to provide valuable information to support government decision-making.Based on the data from1609 air quality monitors across China from 2014-2020,this study designed an ensemble ML model by integrating multiple types of spatial-temporal variables and three sub-models for time-sensitive prediction over a wide range.The ensemble ML model incorporates a residual connection to the gated recurrent unit(GRU)network and adopts the advantage of Transformer,extreme gradient boosting(XGBoost)and GRU with residual connection network,resulting in a 4.1%±1.0%lower root mean square error over XGBoost for the test results.The ensemble model shows great prediction performance,with coefficient of determination of 0.91,0.86,and 0.77 for 1-hr,3-hr,and 24-hr averages for the test results,respectively.In particular,this model has achieved excellent performance with low spatial uncertainty in Central,East,and North China,the major site-dense zones.Through the interpretability analysis based on the Shapley value for different temporal resolutions,we found that the contribution of atmospheric chemical processes is more important for hourly predictions compared with the daily scale predictions,while the impact of meteorological conditions would be ever-prominent for the latter.Compared with existing models for different spatiotemporal scales,the present model can be implemented at any air quality monitoring station across China to facilitate achieving rapid and dependable forecast of NO_(2),which will help developing effective control policies.
文摘With the popularisation of intelligent power,power devices have different shapes,numbers and specifications.This means that the power data has distributional variability,the model learning process cannot achieve sufficient extraction of data features,which seriously affects the accuracy and performance of anomaly detection.Therefore,this paper proposes a deep learning-based anomaly detection model for power data,which integrates a data alignment enhancement technique based on random sampling and an adaptive feature fusion method leveraging dimension reduction.Aiming at the distribution variability of power data,this paper developed a sliding window-based data adjustment method for this model,which solves the problem of high-dimensional feature noise and low-dimensional missing data.To address the problem of insufficient feature fusion,an adaptive feature fusion method based on feature dimension reduction and dictionary learning is proposed to improve the anomaly data detection accuracy of the model.In order to verify the effectiveness of the proposed method,we conducted effectiveness comparisons through elimination experiments.The experimental results show that compared with the traditional anomaly detection methods,the method proposed in this paper not only has an advantage in model accuracy,but also reduces the amount of parameter calculation of the model in the process of feature matching and improves the detection speed.