Permalloy Ni_(80)Fe_(20) films have been grown on thermal oxidized Si (111)wafers by magnetron sputtering at well-controlled substrate temperatures of 300, 500, 640 and 780 Kin 0.65 Pa argon pressure. The base pressur...Permalloy Ni_(80)Fe_(20) films have been grown on thermal oxidized Si (111)wafers by magnetron sputtering at well-controlled substrate temperatures of 300, 500, 640 and 780 Kin 0.65 Pa argon pressure. The base pressure was about 1x10^(-4) Pa. The deposition rate was about 5nm/min for all the films. The structure of the films was studied using X-ray diffraction, scanningelectron microscopy and atomic force microscopy. The composition of the films was analyzed usingscanning Auger microprobe. The resistance and magnetoresistance of the films were measured usingfour-point probe technique. The results show that the content of oxygen in the films decreasesgradually with raising substrate temperature. In addition, the surface morphology of the filmspresents notable change with the increasing of the substrate temperature; the residual gases anddefects decrease and the grains have coalesced evidently, and then the grains have grown upobviously and the texture of (111) orientation develops gradually in the growing film. As a result,the resistivity reduces apparently and magnetoresistance ratio increases markedly with raisingsubstrate temperature.展开更多
基金This work was financially supported by National Natural Science Foundation of China (No.19974005).
文摘Permalloy Ni_(80)Fe_(20) films have been grown on thermal oxidized Si (111)wafers by magnetron sputtering at well-controlled substrate temperatures of 300, 500, 640 and 780 Kin 0.65 Pa argon pressure. The base pressure was about 1x10^(-4) Pa. The deposition rate was about 5nm/min for all the films. The structure of the films was studied using X-ray diffraction, scanningelectron microscopy and atomic force microscopy. The composition of the films was analyzed usingscanning Auger microprobe. The resistance and magnetoresistance of the films were measured usingfour-point probe technique. The results show that the content of oxygen in the films decreasesgradually with raising substrate temperature. In addition, the surface morphology of the filmspresents notable change with the increasing of the substrate temperature; the residual gases anddefects decrease and the grains have coalesced evidently, and then the grains have grown upobviously and the texture of (111) orientation develops gradually in the growing film. As a result,the resistivity reduces apparently and magnetoresistance ratio increases markedly with raisingsubstrate temperature.