As a promising candidate seed cell type in regenerative medicine,mesenchymal stem cells(MSCs)have attracted considerable attention.The unique capacity of MSCs to exert a regulatory effect on immunity in an autologous/...As a promising candidate seed cell type in regenerative medicine,mesenchymal stem cells(MSCs)have attracted considerable attention.The unique capacity of MSCs to exert a regulatory effect on immunity in an autologous/allergenic manner makes them an attractive therapeutic cell type for immune disorders.In this review,we discussed the current knowledge of and advances in MSCs,including its basic biological properties,i.e.,multilineage differentiation,secretome,and immunomodulation.Specifically,on the basis of our previous work,we proposed three new concepts of MSCs,i.e.,“subtotipotent stem cell”hypothesis,MSC system,and“Yin and Yang”balance of MSC regulation,which may bring new insights into our understanding of MSCs.Furthermore,we analyzed data from the Clinical Trials database(http://clinicaltrials.gov)on registered clinical trials using MSCs to treat a variety of immune diseases,such as graft-versus-host disease,systemic lupus erythematosus,and multiple sclerosis.In addition,we highlighted MSC clinical trials in China and discussed the challenges and future directions in the field of MSC clinical application.展开更多
Remembrance activities can support the Culture of Care(CoC)in Laboratory Animal Science(LAS)not only by promoting a culture of respect,gratitude and thankfulness for animal life but also by helping the emotional proce...Remembrance activities can support the Culture of Care(CoC)in Laboratory Animal Science(LAS)not only by promoting a culture of respect,gratitude and thankfulness for animal life but also by helping the emotional processing and healing of lab animal researchers and animal facility staff.Even though remembrance activities are practiced in many parts of the world,we did not come across any reported cases in Sri Lanka before 2022.Therefore,here,we report on the various remembrance activities and practices observed within our local scientific community.展开更多
The presence of endogenous neural stem/progenitor cells in the adult mammalian brain suggests that the central nervous system can be repaired and regenerated after injury.However,whether it is possible to stimulate ne...The presence of endogenous neural stem/progenitor cells in the adult mammalian brain suggests that the central nervous system can be repaired and regenerated after injury.However,whether it is possible to stimulate neurogenesis and reconstruct cortical layers II to VI in non-neurogenic regions,such as the cortex,remains unknown.In this study,we implanted a hyaluronic acid collagen gel loaded with basic fibroblast growth factor into the motor cortex immediately following traumatic injury.Our findings reveal that this gel effectively stimulated the proliferation and migration of endogenous neural stem/progenitor cells,as well as their differentiation into mature and functionally integrated neurons.Importantly,these new neurons reconstructed the architecture of cortical layers II to VI,integrated into the existing neural circuitry,and ultimately led to improved brain function.These findings offer novel insight into potential clinical treatments for traumatic cerebral cortex injuries.展开更多
This study explores whether the current external quality assessment(EQA)level and acceptable bias for basic semen analysis in China are clinically useful.We collected data of semen EQA from Andrology laboratories in t...This study explores whether the current external quality assessment(EQA)level and acceptable bias for basic semen analysis in China are clinically useful.We collected data of semen EQA from Andrology laboratories in the Hunan Province(China)in 2022 and searched for data in the published literature from January2000 to December 2023 in China.On the basis of these data,we analyzed the coefficients of variation and acceptable biases of different quality control materials for basic semen analysis through robust statistics.We compared these findings with quality specifications based on biological variation from optimal,desirable,and minimum levels of bias to seek a unified and more suitable semen EQAbias evaluation standard for China's national conditions.Different sources of semen quality control material exhibited considerable variation in acceptable biases among laboratories,ranging from 8.2%to 56.9%.A total of 50.0% of the laboratories met the minimum quality specifications for progressive motility(PR),whereas 100.0%and 75.0%of laboratories met only the minimum quality specifications for sperm concentration and total motility(nonprogressive[NP]+PR),respectively.The Z value for sperm concentration and PR+NP was equivalent to the desirable performance specification,whereas the Z value for PR was equivalent only to the minimum performance specification.This study highlights the feasibility of operating external quality assessment schemes for basic semen analysis using quality specifications based on biological variation.These specifications should be unified among external quality control(EQC)centers based on biological variation.展开更多
The early developmental period is a critical window during which brain cells mature and contribute to both brain development and later life functions.Gamma-aminobutyric acid(GABA),recognized as a major neurotransmitte...The early developmental period is a critical window during which brain cells mature and contribute to both brain development and later life functions.Gamma-aminobutyric acid(GABA),recognized as a major neurotransmitter,plays a crucial role in coordinating synapse formation,neuronal proliferation,and migration during this time.展开更多
AAV-PHP.eB is an artificial adeno-associated virus(AAV)that crosses the blood-brain barrier and targets neurons more efficiently than other AAVs when administered systematically.While AAV-PHP.eB has been used in vario...AAV-PHP.eB is an artificial adeno-associated virus(AAV)that crosses the blood-brain barrier and targets neurons more efficiently than other AAVs when administered systematically.While AAV-PHP.eB has been used in various disease models,its cellular tropism in cerebrovascular diseases remains unclear.In the present study,we aimed to elucidate the tropism of AAV-PHP.eB for different cell types in the brain in a mouse model of ischemic stroke and evaluate its effectiveness in mediating basic fibroblast growth factor(bFGF)gene therapy.Mice were injected intravenously with AAV-PHP.eB either 14 days prior to(pre-stroke)or 1 day following(post-stroke)transient middle cerebral artery occlusion.Notably,we observed a shift in tropism from neurons to endothelial cells with post-stroke administration of AAV-PHP.eB-mNeonGreen(mNG).This endothelial cell tropism correlated strongly with expression of the endothelial membrane receptor lymphocyte antigen 6 family member A(Ly6A).Furthermore,AAV-PHP.eB-mediated overexpression of bFGF markedly improved neurobehavioral outcomes and promoted long-term neurogenesis and angiogenesis post-ischemic stroke.Our findings underscore the significance of considering potential tropism shifts when utilizing AAV-PHP.eB-mediated gene therapy in neurological diseases and suggest a promising new strategy for bFGF gene therapy in stroke treatment.展开更多
Spinal cord injury represents a severe form of central nervous system trauma for which effective treatments remain limited.Microglia is the resident immune cells of the central nervous system,play a critical role in s...Spinal cord injury represents a severe form of central nervous system trauma for which effective treatments remain limited.Microglia is the resident immune cells of the central nervous system,play a critical role in spinal cord injury.Previous studies have shown that microglia can promote neuronal survival by phagocytosing dead cells and debris and by releasing neuroprotective and anti-inflammatory factors.However,excessive activation of microglia can lead to persistent inflammation and contribute to the formation of glial scars,which hinder axonal regeneration.Despite this,the precise role and mechanisms of microglia during the acute phase of spinal cord injury remain controversial and poorly understood.To elucidate the role of microglia in spinal cord injury,we employed the colony-stimulating factor 1 receptor inhibitor PLX5622 to deplete microglia.We observed that sustained depletion of microglia resulted in an expansion of the lesion area,downregulation of brain-derived neurotrophic factor,and impaired functional recovery after spinal cord injury.Next,we generated a transgenic mouse line with conditional overexpression of brain-derived neurotrophic factor specifically in microglia.We found that brain-derived neurotrophic factor overexpression in microglia increased angiogenesis and blood flow following spinal cord injury and facilitated the recovery of hindlimb motor function.Additionally,brain-derived neurotrophic factor overexpression in microglia reduced inflammation and neuronal apoptosis during the acute phase of spinal cord injury.Furthermore,through using specific transgenic mouse lines,TMEM119,and the colony-stimulating factor 1 receptor inhibitor PLX73086,we demonstrated that the neuroprotective effects were predominantly due to brain-derived neurotrophic factor overexpression in microglia rather than macrophages.In conclusion,our findings suggest the critical role of microglia in the formation of protective glial scars.Depleting microglia is detrimental to recovery of spinal cord injury,whereas targeting brain-derived neurotrophic factor overexpression in microglia represents a promising and novel therapeutic strategy to enhance motor function recovery in patients with spinal cord injury.展开更多
Ischemia–reperfusion injury is a common pathophysiological mechanism in retinal degeneration.PANoptosis is a newly defined integral form of regulated cell death that combines the key features of pyroptosis,apoptosis,...Ischemia–reperfusion injury is a common pathophysiological mechanism in retinal degeneration.PANoptosis is a newly defined integral form of regulated cell death that combines the key features of pyroptosis,apoptosis,and necroptosis.Oligomerization of mitochondrial voltage-dependent anion channel 1 is an important pathological event in regulating cell death in retinal ischemia–reperfusion injury.However,its role in PANoptosis remains largely unknown.In this study,we demonstrated that voltage-dependent anion channel 1 oligomerization-mediated mitochondrial dysfunction was associated with PANoptosis in retinal ischemia–reperfusion injury.Inhibition of voltage-dependent anion channel 1 oligomerization suppressed mitochondrial dysfunction and PANoptosis in retinal cells subjected to ischemia–reperfusion injury.Mechanistically,mitochondria-derived reactive oxygen species played a central role in the voltagedependent anion channel 1-mediated regulation of PANoptosis by promoting PANoptosome assembly.Moreover,inhibiting voltage-dependent anion channel 1 oligomerization protected against PANoptosis in the retinas of rats subjected to ischemia–reperfusion injury.Overall,our findings reveal the critical role of voltage-dependent anion channel 1 oligomerization in regulating PANoptosis in retinal ischemia–reperfusion injury,highlighting voltage-dependent anion channel 1 as a promising therapeutic target.展开更多
BACKGROUND Robotic assistance is increasingly used for donor and recipient hepatectomy in liver transplantation,yet existing evidence is fragmented and variably indirect.AIM To evaluate clinical outcomes,surgical perf...BACKGROUND Robotic assistance is increasingly used for donor and recipient hepatectomy in liver transplantation,yet existing evidence is fragmented and variably indirect.AIM To evaluate clinical outcomes,surgical performance,and economic effects of robotic-assisted donor and recipient hepatectomy in the transplant pathway.METHODS Following Preferred Reporting Items for Systematic reviews and Meta-Analyses 2020 and a priori registration,systematic reviews were included with or without meta-analysis.Four databases were searched through July 2025.Methodological quality was appraised with a measurement tool to assess systematic reviews(AMSTAR 2),and certainty was graded with grading of recommendations assessment,development and evaluation(GRADE).Evidence overlap was calculated via a citation-matrix-based corrected covered area(CCA).Effect sizes were prespecified as risk ratios(RR)for dichotomous outcomes and mean differences for continuous outcomes.RESULTS Five reviews met the inclusion criteria,four with meta-analyses and one consensus review used only for context.Donor(direct)findings were more favorable for robotics in terms of estimated blood loss(≈-117 mL)and length of stay(≈-0.6 days),although with longer operative time(≈+105 minutes).Absolute risks for donor complications were not estimable from ratio-only data.Recipient(indirect)meta-analysis indicated robotics to be favorable in terms of conversion(RR≈0.41)and severe morbidity(RR≈0.81),with a trend toward lower overall morbidity(RR≈0.92)and no difference in 30-day mortality.Differences in length of stay and operative time were small and heterogeneous.Economic evidence(indirect,network meta-analysis)suggested higher procedural costs for robotic vs laparoscopic intervention,but lower hospitalization costs vs open intervention,with laparoscopy the least expensive overall.AMSTAR 2 ratings were moderate-to-high across the reviews,GRADE certainty was low for key donor continuous outcomes,and low-to-moderate for recipient and economic outcomes.Overlap was slight(graded-corpus CCA=0.0%;including a contextual non-transplant review increased CCA to≈1.25%).CONCLUSION Robotic donor hepatectomy confers perioperative advantages at the cost of longer operative time.Recipient and economic findings are indirect and considered hypothesis-generating.Transplant-specific,prospective comparisons using a minimum standardized dataset and uniform outcome definitions are needed to resolve remaining uncertainties and to clarify the cost-utility correlation.展开更多
The cerebellum is receiving increasing attention for its cognitive,emotional,and social functions,as well as its unique metabolic profiles.Cerebellar microglia exhibit specialized and highly immunogenic phenotypes und...The cerebellum is receiving increasing attention for its cognitive,emotional,and social functions,as well as its unique metabolic profiles.Cerebellar microglia exhibit specialized and highly immunogenic phenotypes under both physiological and pathological conditions.These immune cells communicate with intrinsic and systemic factors and contribute to the structural and functional compartmentalization of the cerebellum.In this review,we discuss the roles of microglia in the cerebellar microenvironment,neuroinflammation,cerebellar adaptation,and neuronal activity,the associated molecular and cellular mechanisms,and potential therapeutic strategies targeting cerebellar microglia in the context of neuroinflammation.Future directions and unresolved questions in this field are further highlighted,particularly regarding therapeutic interventions targeting cerebellar microglia,functional mechanisms and activities of microglia in the cerebellar circuitry,neuronal connectivity,and neurofunctional outcomes of their activity.Cerebellar morphology and neuronal performance are influenced by both intrinsic and systemic factors that are actively monitored by microglia in both healthy and diseased states.Under pathological conditions,local subsets of microglia exhibit diverse responses to the altered microenvironment that contribute to the structural and functional compartmentalization of the cerebellum.Microglia in the cerebellum undergo early maturation during the embryonic stage and display specialized,highly immunogenic phenotypes.In summary,cerebellar microglia have the capacity to serve as regulatory tools that influence outcomes across a wide range of neurological and systemic conditions,including neurodevelopmental,neurodegenerative,metabolic,and stress-related disorders.展开更多
Retinal ganglion cells are the bridging neurons between the eye and the central nervous system,transmitting visual signals to the brain.The injury and loss of retinal ganglion cells are the primary pathological change...Retinal ganglion cells are the bridging neurons between the eye and the central nervous system,transmitting visual signals to the brain.The injury and loss of retinal ganglion cells are the primary pathological changes in several retinal degenerative diseases,including glaucoma,ischemic optic neuropathy,diabetic neuropathy,and optic neuritis.In mammals,injured retinal ganglion cells lack regenerative capacity and undergo apoptotic cell death within a few days of injury.Additionally,these cells exhibit limited regenerative ability,ultimately contributing to vision impairment and potentially leading to blindness.Currently,the only effective clinical treatment for glaucoma is to prevent vision loss by lowering intraocular pressure through medications or surgery;however,this approach cannot halt the effect of retinal ganglion cell loss on visual function.This review comprehensively investigates the mechanisms underlying retinal ganglion cell degeneration in retinal degenerative diseases and further explores the current status and potential of cell replacement therapy for regenerating retinal ganglion cells.As our understanding of the complex processes involved in retinal ganglion cell degeneration deepens,we can explore new treatment strategies,such as cell transplantation,which may offer more effective ways to mitigate the effect of retinal degenerative diseases on vision.展开更多
Prostatic carcinoma(PCa)has become one of the most common cancers among men worldwide,with both incidence and mortality rates steadily rising.Although current treatments are effective in the early stages of PCa,many c...Prostatic carcinoma(PCa)has become one of the most common cancers among men worldwide,with both incidence and mortality rates steadily rising.Although current treatments are effective in the early stages of PCa,many cases eventually progress to castration-resistant prostate cancer(CRPC),and led to treatment failure.To develop new therapeutic strategies to ameliorate the survival of PCa patients then has pressed the need on medicinal researchers.Of traditional Chinese medicinal herbs,Angelica gigas Naka(AGN),and its major pyranocoumarins were broadly reported on the effect of anti-PCa.However,existing reviews mainly focus on decursin(D),decursinol angelate(DA),and decursinol(DOH),without fully exploring other coumarins in AGN.Moreover,most reviews discuss general anticancer effects,with limited emphasis on PCa specifically.This review made a comprehensive summary of the coumarin components of AGN,and depicted the anti-PCa effects and mechanisms,giving a solid research support for drug discovery and development.This review also featured pharmacokinetic advantages and therapeutic potential of DOH,in order to suggest possibilities to overcome the in vivo transformation limitations of D and DA,and shed light on CRPC treatment.We also recommend future studies focus on more in vivo evidence,safety and toxicity evaluation,and clinical validation in humans.展开更多
Synaptic pruning is a crucial process in synaptic refinement,eliminating unstable synaptic connections in neural circuits.This process is triggered and regulated primarily by spontaneous neural activity and experience...Synaptic pruning is a crucial process in synaptic refinement,eliminating unstable synaptic connections in neural circuits.This process is triggered and regulated primarily by spontaneous neural activity and experience-dependent mechanisms.The pruning process involves multiple molecular signals and a series of regulatory activities governing the“eat me”and“don't eat me”states.Under physiological conditions,the interaction between glial cells and neurons results in the clearance of unnecessary synapses,maintaining normal neural circuit functionality via synaptic pruning.Alterations in genetic and environmental factors can lead to imbalanced synaptic pruning,thus promoting the occurrence and development of autism spectrum disorder,schizophrenia,Alzheimer's disease,and other neurological disorders.In this review,we investigated the molecular mechanisms responsible for synaptic pruning during neural development.We focus on how synaptic pruning can regulate neural circuits and its association with neurological disorders.Furthermore,we discuss the application of emerging optical and imaging technologies to observe synaptic structure and function,as well as their potential for clinical translation.Our aim was to enhance our understanding of synaptic pruning during neural development,including the molecular basis underlying the regulation of synaptic function and the dynamic changes in synaptic density,and to investigate the potential role of these mechanisms in the pathophysiology of neurological diseases,thus providing a theoretical foundation for the treatment of neurological disorders.展开更多
BACKGROUND Suicide constitutes the second leading cause of death among adolescents globally and represents a critical public health concern.The neural mechanisms underlying suicidal behavior in adolescents with major ...BACKGROUND Suicide constitutes the second leading cause of death among adolescents globally and represents a critical public health concern.The neural mechanisms underlying suicidal behavior in adolescents with major depressive disorder(MDD)remain poorly understood.Aberrant resting-state functional connectivity(rsFC)in the amygdala,a key region implicated in emotional regulation and threat detection,is strongly implicated in depression and suicidal behavior.AIM To investigate rsFC alterations between amygdala subregions and whole-brain networks in adolescent patients with depression and suicide attempts.METHODS Resting-state functional magnetic resonance imaging data were acquired from 32 adolescents with MDD and suicide attempts(sMDD)group,33 adolescents with MDD but without suicide attempts(nsMDD)group,and 34 demographically matched healthy control(HC)group,with the lateral and medial amygdala(MeA)defined as regions of interest.The rsFC patterns of amygdala subregions were compared across the three groups,and associations between aberrant rsFC values and clinical symptom severity scores were examined.RESULTS Compared with the nsMDD group,the sMDD group exhibited reduced rsFC between the right lateral amygdala(LA)and the right inferior occipital gyrus as well as the left middle occipital gyrus.Compared with the HC group,the abnormal brain regions of rsFC in the sMDD group and nsMDD group involve the parahippocampal gyrus(PHG)and fusiform gyrus.In the sMDD group,right MeA and right temporal pole:Superior temporal gyrus rsFC value negatively correlated with the Rosenberg Self-Esteem Scale scores(r=-0.409,P=0.025),while left LA and right PHG rsFC value positively correlated with the Adolescent Self-Rating Life Events Checklist interpersonal relationship scores(r=0.372,P=0.043).CONCLUSION Aberrant rsFC changes between amygdala subregions and these brain regions provide novel insights into the underlying neural mechanisms of suicide attempts in adolescents with MDD.展开更多
Lithium-oxygen(Li-O2)batteries are perceived as a promising breakthrough in sustainable electrochemical energy storage,utilizing ambient air as an energy source,eliminating the need for costly cathode materials,and of...Lithium-oxygen(Li-O2)batteries are perceived as a promising breakthrough in sustainable electrochemical energy storage,utilizing ambient air as an energy source,eliminating the need for costly cathode materials,and offering the highest theoretical energy density(~3.5 k Wh kg^(-1))among discussed candidates.Contributing to the poor cycle life of currently reported Li-O_(2)cells is singlet oxygen(1O_(2))formation,inducing parasitic reactions,degrading key components,and severely deteriorating cell performance.Here,we harness the chirality-induced spin selectivity effect of chiral cobalt oxide nanosheets(Co_(3)O_(4)NSs)as cathode materials to suppress 1O_(2)in Li-O_(2)batteries for the first time.Operando photoluminescence spectroscopy reveals a 3.7-fold and 3.23-fold reduction in 1O_(2)during discharge and charge,respectively,compared to conventional carbon paperbased cells,consistent with differential electrochemical mass spectrometry results,which indicate a near-theoretical charge-to-O_(2)ratio(2.04 e-/O_(2)).Density functional theory calculations demonstrate that chirality induces a peak shift near the Fermi level,enhancing Co 3d-O 2p hybridization,stabilizing reaction intermediates,and lowering activation barriers for Li_(2)O_(2)formation and decomposition.These findings establish a new strategy for improving the stability and energy efficiency of sustainable Li-O_(2)batteries,abridging the current gap to commercialization.展开更多
The rapid growth of biomedical data,particularly multi-omics data including genomes,transcriptomics,proteomics,metabolomics,and epigenomics,medical research and clinical decision-making confront both new opportunities...The rapid growth of biomedical data,particularly multi-omics data including genomes,transcriptomics,proteomics,metabolomics,and epigenomics,medical research and clinical decision-making confront both new opportunities and obstacles.The huge and diversified nature of these datasets cannot always be managed using traditional data analysis methods.As a consequence,deep learning has emerged as a strong tool for analysing numerous omics data due to its ability to handle complex and non-linear relationships.This paper explores the fundamental concepts of deep learning and how they are used in multi-omics medical data mining.We demonstrate how autoencoders,variational autoencoders,multimodal models,attention mechanisms,transformers,and graph neural networks enable pattern analysis and recognition across all omics data.Deep learning has been found to be effective in illness classification,biomarker identification,gene network learning,and therapeutic efficacy prediction.We also consider critical problems like as data quality,model explainability,whether findings can be repeated,and computational power requirements.We now consider future elements of combining omics with clinical and imaging data,explainable AI,federated learning,and real-time diagnostics.Overall,this study emphasises the need of collaborating across disciplines to advance deep learning-based multi-omics research for precision medicine and comprehending complicated disorders.展开更多
There are two types of cell death-apoptosis and necrosis. Apoptosis is cell death regulated by cell signaling pathways, while necrosis has until recently been considered a passive mechanism of cell death caused by env...There are two types of cell death-apoptosis and necrosis. Apoptosis is cell death regulated by cell signaling pathways, while necrosis has until recently been considered a passive mechanism of cell death caused by environmental pressures. However, recent studies show that necrosis can also be regulated by specific cell signaling pathways. This mode of death, termed necroptosis, has been found to be related to the occurrence and development of many diseases. We used bibliometrics to analyze the global output of literature on necroptosis in the field of neuroscience published in the period 2007–2019 to identify research hotspots and prospects. We included 145 necroptosisrelated publications and 2239 references published in the Web of Science during 2007–2019. Visualization analysis revealed that the number of publications related to necroptosis has increased year by year, reaching a peak in 2019. China is the country with the largest number of publications. Key word and literature analyses demonstrated that mitochondrial function change, stroke, ischemia/reperfusion and neuroinflammation are likely the research hotspots and future directions of necroptosis research in the nervous system. The relationship between immune response-related factors, damage-associated molecular patterns, pathogen-associated molecular patterns and necroptosis may become a potential research hotspot in the future. Taken together, our findings suggest that although the inherent limitations of bibliometrics may affect the accuracy of the literature-based prediction of research hotspots, the results obtained from the included publications can provide a reference for the study of necroptosis in the field of neuroscience.展开更多
In this paper, sixty-eight research articles published between 2000 and 2017 as well as textbooks which employed four classification algorithms: K-Nearest-Neighbor (KNN), Support Vector Machines (SVM), Random Forest (...In this paper, sixty-eight research articles published between 2000 and 2017 as well as textbooks which employed four classification algorithms: K-Nearest-Neighbor (KNN), Support Vector Machines (SVM), Random Forest (RF) and Neural Network (NN) as the main statistical tools were reviewed. The aim was to examine and compare these nonparametric classification methods on the following attributes: robustness to training data, sensitivity to changes, data fitting, stability, ability to handle large data sizes, sensitivity to noise, time invested in parameter tuning, and accuracy. The performances, strengths and shortcomings of each of the algorithms were examined, and finally, a conclusion was arrived at on which one has higher performance. It was evident from the literature reviewed that RF is too sensitive to small changes in the training dataset and is occasionally unstable and tends to overfit in the model. KNN is easy to implement and understand but has a major drawback of becoming significantly slow as the size of the data in use grows, while the ideal value of K for the KNN classifier is difficult to set. SVM and RF are insensitive to noise or overtraining, which shows their ability in dealing with unbalanced data. Larger input datasets will lengthen classification times for NN and KNN more than for SVM and RF. Among these nonparametric classification methods, NN has the potential to become a more widely used classification algorithm, but because of their time-consuming parameter tuning procedure, high level of complexity in computational processing, the numerous types of NN architectures to choose from and the high number of algorithms used for training, most researchers recommend SVM and RF as easier and wieldy used methods which repeatedly achieve results with high accuracies and are often faster to implement.展开更多
Teaching team plays an important role in integrating teaching resources,improving the quality of teachers and the quality of education and teaching.This paper studies the characteristics of the basic course teaching t...Teaching team plays an important role in integrating teaching resources,improving the quality of teachers and the quality of education and teaching.This paper studies the characteristics of the basic course teaching team,and gives the principles of building the basic course teaching team performance evaluation index system and the specific performance evaluation index system,in order to provide a direction for the high-level construction of the teaching team.展开更多
基金the Key Program for Beijing Municipal Natural Science Foundation(No.7141006)National Collaborative Innovation Program(for Biotherapy)+2 种基金Beijing Science and Technology Project(No.Z151100001615-063)National Key Research and Development Program(Nos.2016YFA0101000 and 2016YFA0101003)PUMC Youth Fund and the Fundamental Research Funds for the Central Universities(No.3332013141).
文摘As a promising candidate seed cell type in regenerative medicine,mesenchymal stem cells(MSCs)have attracted considerable attention.The unique capacity of MSCs to exert a regulatory effect on immunity in an autologous/allergenic manner makes them an attractive therapeutic cell type for immune disorders.In this review,we discussed the current knowledge of and advances in MSCs,including its basic biological properties,i.e.,multilineage differentiation,secretome,and immunomodulation.Specifically,on the basis of our previous work,we proposed three new concepts of MSCs,i.e.,“subtotipotent stem cell”hypothesis,MSC system,and“Yin and Yang”balance of MSC regulation,which may bring new insights into our understanding of MSCs.Furthermore,we analyzed data from the Clinical Trials database(http://clinicaltrials.gov)on registered clinical trials using MSCs to treat a variety of immune diseases,such as graft-versus-host disease,systemic lupus erythematosus,and multiple sclerosis.In addition,we highlighted MSC clinical trials in China and discussed the challenges and future directions in the field of MSC clinical application.
文摘Remembrance activities can support the Culture of Care(CoC)in Laboratory Animal Science(LAS)not only by promoting a culture of respect,gratitude and thankfulness for animal life but also by helping the emotional processing and healing of lab animal researchers and animal facility staff.Even though remembrance activities are practiced in many parts of the world,we did not come across any reported cases in Sri Lanka before 2022.Therefore,here,we report on the various remembrance activities and practices observed within our local scientific community.
基金supported by the National Natural Science Foundation of China,Nos.82272171(to ZY),82271403(to XL),81941011(to XL),31971279(to ZY),31730030(to XL)the Natural Science Foundation of Beijing,No.7222004(to HD).
文摘The presence of endogenous neural stem/progenitor cells in the adult mammalian brain suggests that the central nervous system can be repaired and regenerated after injury.However,whether it is possible to stimulate neurogenesis and reconstruct cortical layers II to VI in non-neurogenic regions,such as the cortex,remains unknown.In this study,we implanted a hyaluronic acid collagen gel loaded with basic fibroblast growth factor into the motor cortex immediately following traumatic injury.Our findings reveal that this gel effectively stimulated the proliferation and migration of endogenous neural stem/progenitor cells,as well as their differentiation into mature and functionally integrated neurons.Importantly,these new neurons reconstructed the architecture of cortical layers II to VI,integrated into the existing neural circuitry,and ultimately led to improved brain function.These findings offer novel insight into potential clinical treatments for traumatic cerebral cortex injuries.
基金supported by the Hunan Province Municipal Natural Science Foundation(2022JJ30018)the Hunan Province Health Commission Science Foundation(B202301037899)to WNL。
文摘This study explores whether the current external quality assessment(EQA)level and acceptable bias for basic semen analysis in China are clinically useful.We collected data of semen EQA from Andrology laboratories in the Hunan Province(China)in 2022 and searched for data in the published literature from January2000 to December 2023 in China.On the basis of these data,we analyzed the coefficients of variation and acceptable biases of different quality control materials for basic semen analysis through robust statistics.We compared these findings with quality specifications based on biological variation from optimal,desirable,and minimum levels of bias to seek a unified and more suitable semen EQAbias evaluation standard for China's national conditions.Different sources of semen quality control material exhibited considerable variation in acceptable biases among laboratories,ranging from 8.2%to 56.9%.A total of 50.0% of the laboratories met the minimum quality specifications for progressive motility(PR),whereas 100.0%and 75.0%of laboratories met only the minimum quality specifications for sperm concentration and total motility(nonprogressive[NP]+PR),respectively.The Z value for sperm concentration and PR+NP was equivalent to the desirable performance specification,whereas the Z value for PR was equivalent only to the minimum performance specification.This study highlights the feasibility of operating external quality assessment schemes for basic semen analysis using quality specifications based on biological variation.These specifications should be unified among external quality control(EQC)centers based on biological variation.
基金supported by the Center for Cognition and Sociality,Institute for Basic Science(IBS)(IBS-R001-D2)(to WK).
文摘The early developmental period is a critical window during which brain cells mature and contribute to both brain development and later life functions.Gamma-aminobutyric acid(GABA),recognized as a major neurotransmitter,plays a crucial role in coordinating synapse formation,neuronal proliferation,and migration during this time.
基金supported by the National Natural Science Foundation of China,Nos.81870921(to YW),81974179(to ZZ),82271320(to ZZ),82071284(to YT)National Key R&D Program of China,No.2022YFA1603600(to ZZ),2019YFA0112000(to YT)+1 种基金Scientific Research and Innovation Program of Shanghai Education Commission,No.2019-01-07-00-02-E00064(to GYY)Scientific and Technological Innovation Act Program of Shanghai Science and Technology Commission,No.20JC1411900(to GYY).
文摘AAV-PHP.eB is an artificial adeno-associated virus(AAV)that crosses the blood-brain barrier and targets neurons more efficiently than other AAVs when administered systematically.While AAV-PHP.eB has been used in various disease models,its cellular tropism in cerebrovascular diseases remains unclear.In the present study,we aimed to elucidate the tropism of AAV-PHP.eB for different cell types in the brain in a mouse model of ischemic stroke and evaluate its effectiveness in mediating basic fibroblast growth factor(bFGF)gene therapy.Mice were injected intravenously with AAV-PHP.eB either 14 days prior to(pre-stroke)or 1 day following(post-stroke)transient middle cerebral artery occlusion.Notably,we observed a shift in tropism from neurons to endothelial cells with post-stroke administration of AAV-PHP.eB-mNeonGreen(mNG).This endothelial cell tropism correlated strongly with expression of the endothelial membrane receptor lymphocyte antigen 6 family member A(Ly6A).Furthermore,AAV-PHP.eB-mediated overexpression of bFGF markedly improved neurobehavioral outcomes and promoted long-term neurogenesis and angiogenesis post-ischemic stroke.Our findings underscore the significance of considering potential tropism shifts when utilizing AAV-PHP.eB-mediated gene therapy in neurological diseases and suggest a promising new strategy for bFGF gene therapy in stroke treatment.
基金supported by the National Natural Science Foundation of China,Nos.82072165 and 82272256(both to XM)the Key Project of Xiangyang Central Hospital,No.2023YZ03(to RM)。
文摘Spinal cord injury represents a severe form of central nervous system trauma for which effective treatments remain limited.Microglia is the resident immune cells of the central nervous system,play a critical role in spinal cord injury.Previous studies have shown that microglia can promote neuronal survival by phagocytosing dead cells and debris and by releasing neuroprotective and anti-inflammatory factors.However,excessive activation of microglia can lead to persistent inflammation and contribute to the formation of glial scars,which hinder axonal regeneration.Despite this,the precise role and mechanisms of microglia during the acute phase of spinal cord injury remain controversial and poorly understood.To elucidate the role of microglia in spinal cord injury,we employed the colony-stimulating factor 1 receptor inhibitor PLX5622 to deplete microglia.We observed that sustained depletion of microglia resulted in an expansion of the lesion area,downregulation of brain-derived neurotrophic factor,and impaired functional recovery after spinal cord injury.Next,we generated a transgenic mouse line with conditional overexpression of brain-derived neurotrophic factor specifically in microglia.We found that brain-derived neurotrophic factor overexpression in microglia increased angiogenesis and blood flow following spinal cord injury and facilitated the recovery of hindlimb motor function.Additionally,brain-derived neurotrophic factor overexpression in microglia reduced inflammation and neuronal apoptosis during the acute phase of spinal cord injury.Furthermore,through using specific transgenic mouse lines,TMEM119,and the colony-stimulating factor 1 receptor inhibitor PLX73086,we demonstrated that the neuroprotective effects were predominantly due to brain-derived neurotrophic factor overexpression in microglia rather than macrophages.In conclusion,our findings suggest the critical role of microglia in the formation of protective glial scars.Depleting microglia is detrimental to recovery of spinal cord injury,whereas targeting brain-derived neurotrophic factor overexpression in microglia represents a promising and novel therapeutic strategy to enhance motor function recovery in patients with spinal cord injury.
基金supported by the National Natural Science Foundation of China,Nos.82172196(to KX),82372507(to KX)the Natural Science Foundation of Hunan Province,China,No.2023JJ40804(to QZ)the Key Laboratory of Emergency and Trauma(Hainan Medical University)of the Ministry of Education,China,No.KLET-202210(to QZ)。
文摘Ischemia–reperfusion injury is a common pathophysiological mechanism in retinal degeneration.PANoptosis is a newly defined integral form of regulated cell death that combines the key features of pyroptosis,apoptosis,and necroptosis.Oligomerization of mitochondrial voltage-dependent anion channel 1 is an important pathological event in regulating cell death in retinal ischemia–reperfusion injury.However,its role in PANoptosis remains largely unknown.In this study,we demonstrated that voltage-dependent anion channel 1 oligomerization-mediated mitochondrial dysfunction was associated with PANoptosis in retinal ischemia–reperfusion injury.Inhibition of voltage-dependent anion channel 1 oligomerization suppressed mitochondrial dysfunction and PANoptosis in retinal cells subjected to ischemia–reperfusion injury.Mechanistically,mitochondria-derived reactive oxygen species played a central role in the voltagedependent anion channel 1-mediated regulation of PANoptosis by promoting PANoptosome assembly.Moreover,inhibiting voltage-dependent anion channel 1 oligomerization protected against PANoptosis in the retinas of rats subjected to ischemia–reperfusion injury.Overall,our findings reveal the critical role of voltage-dependent anion channel 1 oligomerization in regulating PANoptosis in retinal ischemia–reperfusion injury,highlighting voltage-dependent anion channel 1 as a promising therapeutic target.
文摘BACKGROUND Robotic assistance is increasingly used for donor and recipient hepatectomy in liver transplantation,yet existing evidence is fragmented and variably indirect.AIM To evaluate clinical outcomes,surgical performance,and economic effects of robotic-assisted donor and recipient hepatectomy in the transplant pathway.METHODS Following Preferred Reporting Items for Systematic reviews and Meta-Analyses 2020 and a priori registration,systematic reviews were included with or without meta-analysis.Four databases were searched through July 2025.Methodological quality was appraised with a measurement tool to assess systematic reviews(AMSTAR 2),and certainty was graded with grading of recommendations assessment,development and evaluation(GRADE).Evidence overlap was calculated via a citation-matrix-based corrected covered area(CCA).Effect sizes were prespecified as risk ratios(RR)for dichotomous outcomes and mean differences for continuous outcomes.RESULTS Five reviews met the inclusion criteria,four with meta-analyses and one consensus review used only for context.Donor(direct)findings were more favorable for robotics in terms of estimated blood loss(≈-117 mL)and length of stay(≈-0.6 days),although with longer operative time(≈+105 minutes).Absolute risks for donor complications were not estimable from ratio-only data.Recipient(indirect)meta-analysis indicated robotics to be favorable in terms of conversion(RR≈0.41)and severe morbidity(RR≈0.81),with a trend toward lower overall morbidity(RR≈0.92)and no difference in 30-day mortality.Differences in length of stay and operative time were small and heterogeneous.Economic evidence(indirect,network meta-analysis)suggested higher procedural costs for robotic vs laparoscopic intervention,but lower hospitalization costs vs open intervention,with laparoscopy the least expensive overall.AMSTAR 2 ratings were moderate-to-high across the reviews,GRADE certainty was low for key donor continuous outcomes,and low-to-moderate for recipient and economic outcomes.Overlap was slight(graded-corpus CCA=0.0%;including a contextual non-transplant review increased CCA to≈1.25%).CONCLUSION Robotic donor hepatectomy confers perioperative advantages at the cost of longer operative time.Recipient and economic findings are indirect and considered hypothesis-generating.Transplant-specific,prospective comparisons using a minimum standardized dataset and uniform outcome definitions are needed to resolve remaining uncertainties and to clarify the cost-utility correlation.
基金supported by grants from STI2030-Major Projects,No.2021ZD0204000(to YS)Key Strategic Science and Technology Cooperation Project of the Ministry of Science and Technology of China,No.SQ2023YFE0201430(to YS)+1 种基金the National Natural Science Foundation of China,Nos.31820103005(to YS),32200620(to LW)the Natural Science Foundation of Zhejiang Province of China,No.LZ24C090003(to YS)。
文摘The cerebellum is receiving increasing attention for its cognitive,emotional,and social functions,as well as its unique metabolic profiles.Cerebellar microglia exhibit specialized and highly immunogenic phenotypes under both physiological and pathological conditions.These immune cells communicate with intrinsic and systemic factors and contribute to the structural and functional compartmentalization of the cerebellum.In this review,we discuss the roles of microglia in the cerebellar microenvironment,neuroinflammation,cerebellar adaptation,and neuronal activity,the associated molecular and cellular mechanisms,and potential therapeutic strategies targeting cerebellar microglia in the context of neuroinflammation.Future directions and unresolved questions in this field are further highlighted,particularly regarding therapeutic interventions targeting cerebellar microglia,functional mechanisms and activities of microglia in the cerebellar circuitry,neuronal connectivity,and neurofunctional outcomes of their activity.Cerebellar morphology and neuronal performance are influenced by both intrinsic and systemic factors that are actively monitored by microglia in both healthy and diseased states.Under pathological conditions,local subsets of microglia exhibit diverse responses to the altered microenvironment that contribute to the structural and functional compartmentalization of the cerebellum.Microglia in the cerebellum undergo early maturation during the embryonic stage and display specialized,highly immunogenic phenotypes.In summary,cerebellar microglia have the capacity to serve as regulatory tools that influence outcomes across a wide range of neurological and systemic conditions,including neurodevelopmental,neurodegenerative,metabolic,and stress-related disorders.
基金supported by the National Key Research and Development Program of China,No.2019YFA0111200the National Natural Science Foundation of China,Nos.U23A20436,82371047+3 种基金Key Research Project in Shanxi Province,No.202302130501008Shanxi Provincial Science Fund for Distinguished Young Scholars,No.202103021221008Key Research and Development Program in Shanxi Province,No.202204051001023Shanxi Medical University Doctor’s Startup Fund Project,No.SD22028(all to YG)。
文摘Retinal ganglion cells are the bridging neurons between the eye and the central nervous system,transmitting visual signals to the brain.The injury and loss of retinal ganglion cells are the primary pathological changes in several retinal degenerative diseases,including glaucoma,ischemic optic neuropathy,diabetic neuropathy,and optic neuritis.In mammals,injured retinal ganglion cells lack regenerative capacity and undergo apoptotic cell death within a few days of injury.Additionally,these cells exhibit limited regenerative ability,ultimately contributing to vision impairment and potentially leading to blindness.Currently,the only effective clinical treatment for glaucoma is to prevent vision loss by lowering intraocular pressure through medications or surgery;however,this approach cannot halt the effect of retinal ganglion cell loss on visual function.This review comprehensively investigates the mechanisms underlying retinal ganglion cell degeneration in retinal degenerative diseases and further explores the current status and potential of cell replacement therapy for regenerating retinal ganglion cells.As our understanding of the complex processes involved in retinal ganglion cell degeneration deepens,we can explore new treatment strategies,such as cell transplantation,which may offer more effective ways to mitigate the effect of retinal degenerative diseases on vision.
基金supported by the Natural Science Foundation of Guangdong Province(grant number 2021A1515011485)the Traditional Chinese Medicine Multidisciplinary Innovation Team Program of Liaoning Province(grant number LNZYYCXTD-JCCX-002)+1 种基金the Key Laboratory foundation of Ministry of Education for TCM Viscera State Theory and Applications of Liaoning University of Traditional Chinese Medicine(grant number.zyzx1807)“Three levels”Talent Construction Projects in Zhuhai College of Science and Technology.
文摘Prostatic carcinoma(PCa)has become one of the most common cancers among men worldwide,with both incidence and mortality rates steadily rising.Although current treatments are effective in the early stages of PCa,many cases eventually progress to castration-resistant prostate cancer(CRPC),and led to treatment failure.To develop new therapeutic strategies to ameliorate the survival of PCa patients then has pressed the need on medicinal researchers.Of traditional Chinese medicinal herbs,Angelica gigas Naka(AGN),and its major pyranocoumarins were broadly reported on the effect of anti-PCa.However,existing reviews mainly focus on decursin(D),decursinol angelate(DA),and decursinol(DOH),without fully exploring other coumarins in AGN.Moreover,most reviews discuss general anticancer effects,with limited emphasis on PCa specifically.This review made a comprehensive summary of the coumarin components of AGN,and depicted the anti-PCa effects and mechanisms,giving a solid research support for drug discovery and development.This review also featured pharmacokinetic advantages and therapeutic potential of DOH,in order to suggest possibilities to overcome the in vivo transformation limitations of D and DA,and shed light on CRPC treatment.We also recommend future studies focus on more in vivo evidence,safety and toxicity evaluation,and clinical validation in humans.
基金supported by the National Natural Science Foundation of China,No.31760290,82160688the Key Development Areas Project of Ganzhou Science and Technology,No.2022B-SF9554(all to XL)。
文摘Synaptic pruning is a crucial process in synaptic refinement,eliminating unstable synaptic connections in neural circuits.This process is triggered and regulated primarily by spontaneous neural activity and experience-dependent mechanisms.The pruning process involves multiple molecular signals and a series of regulatory activities governing the“eat me”and“don't eat me”states.Under physiological conditions,the interaction between glial cells and neurons results in the clearance of unnecessary synapses,maintaining normal neural circuit functionality via synaptic pruning.Alterations in genetic and environmental factors can lead to imbalanced synaptic pruning,thus promoting the occurrence and development of autism spectrum disorder,schizophrenia,Alzheimer's disease,and other neurological disorders.In this review,we investigated the molecular mechanisms responsible for synaptic pruning during neural development.We focus on how synaptic pruning can regulate neural circuits and its association with neurological disorders.Furthermore,we discuss the application of emerging optical and imaging technologies to observe synaptic structure and function,as well as their potential for clinical translation.Our aim was to enhance our understanding of synaptic pruning during neural development,including the molecular basis underlying the regulation of synaptic function and the dynamic changes in synaptic density,and to investigate the potential role of these mechanisms in the pathophysiology of neurological diseases,thus providing a theoretical foundation for the treatment of neurological disorders.
基金Supported by Suzhou Clinical Medical Center for Mood Disorders,No.Szlcyxzx202109Suzhou Key Laboratory,No.SZS2024016Multicenter Clinical Research on Major Diseases in Suzhou,No.DZXYJ202413.
文摘BACKGROUND Suicide constitutes the second leading cause of death among adolescents globally and represents a critical public health concern.The neural mechanisms underlying suicidal behavior in adolescents with major depressive disorder(MDD)remain poorly understood.Aberrant resting-state functional connectivity(rsFC)in the amygdala,a key region implicated in emotional regulation and threat detection,is strongly implicated in depression and suicidal behavior.AIM To investigate rsFC alterations between amygdala subregions and whole-brain networks in adolescent patients with depression and suicide attempts.METHODS Resting-state functional magnetic resonance imaging data were acquired from 32 adolescents with MDD and suicide attempts(sMDD)group,33 adolescents with MDD but without suicide attempts(nsMDD)group,and 34 demographically matched healthy control(HC)group,with the lateral and medial amygdala(MeA)defined as regions of interest.The rsFC patterns of amygdala subregions were compared across the three groups,and associations between aberrant rsFC values and clinical symptom severity scores were examined.RESULTS Compared with the nsMDD group,the sMDD group exhibited reduced rsFC between the right lateral amygdala(LA)and the right inferior occipital gyrus as well as the left middle occipital gyrus.Compared with the HC group,the abnormal brain regions of rsFC in the sMDD group and nsMDD group involve the parahippocampal gyrus(PHG)and fusiform gyrus.In the sMDD group,right MeA and right temporal pole:Superior temporal gyrus rsFC value negatively correlated with the Rosenberg Self-Esteem Scale scores(r=-0.409,P=0.025),while left LA and right PHG rsFC value positively correlated with the Adolescent Self-Rating Life Events Checklist interpersonal relationship scores(r=0.372,P=0.043).CONCLUSION Aberrant rsFC changes between amygdala subregions and these brain regions provide novel insights into the underlying neural mechanisms of suicide attempts in adolescents with MDD.
基金supported by Basic Science Research Program(Priority Research Institute)through the NRF of Korea funded by the Ministry of Education(2021R1A6A1A10039823)by the Korea Basic Science Institute(National Research Facilities and Equipment Center)grant funded by the Ministry of Education(2020R1A6C101B194)。
文摘Lithium-oxygen(Li-O2)batteries are perceived as a promising breakthrough in sustainable electrochemical energy storage,utilizing ambient air as an energy source,eliminating the need for costly cathode materials,and offering the highest theoretical energy density(~3.5 k Wh kg^(-1))among discussed candidates.Contributing to the poor cycle life of currently reported Li-O_(2)cells is singlet oxygen(1O_(2))formation,inducing parasitic reactions,degrading key components,and severely deteriorating cell performance.Here,we harness the chirality-induced spin selectivity effect of chiral cobalt oxide nanosheets(Co_(3)O_(4)NSs)as cathode materials to suppress 1O_(2)in Li-O_(2)batteries for the first time.Operando photoluminescence spectroscopy reveals a 3.7-fold and 3.23-fold reduction in 1O_(2)during discharge and charge,respectively,compared to conventional carbon paperbased cells,consistent with differential electrochemical mass spectrometry results,which indicate a near-theoretical charge-to-O_(2)ratio(2.04 e-/O_(2)).Density functional theory calculations demonstrate that chirality induces a peak shift near the Fermi level,enhancing Co 3d-O 2p hybridization,stabilizing reaction intermediates,and lowering activation barriers for Li_(2)O_(2)formation and decomposition.These findings establish a new strategy for improving the stability and energy efficiency of sustainable Li-O_(2)batteries,abridging the current gap to commercialization.
文摘The rapid growth of biomedical data,particularly multi-omics data including genomes,transcriptomics,proteomics,metabolomics,and epigenomics,medical research and clinical decision-making confront both new opportunities and obstacles.The huge and diversified nature of these datasets cannot always be managed using traditional data analysis methods.As a consequence,deep learning has emerged as a strong tool for analysing numerous omics data due to its ability to handle complex and non-linear relationships.This paper explores the fundamental concepts of deep learning and how they are used in multi-omics medical data mining.We demonstrate how autoencoders,variational autoencoders,multimodal models,attention mechanisms,transformers,and graph neural networks enable pattern analysis and recognition across all omics data.Deep learning has been found to be effective in illness classification,biomarker identification,gene network learning,and therapeutic efficacy prediction.We also consider critical problems like as data quality,model explainability,whether findings can be repeated,and computational power requirements.We now consider future elements of combining omics with clinical and imaging data,explainable AI,federated learning,and real-time diagnostics.Overall,this study emphasises the need of collaborating across disciplines to advance deep learning-based multi-omics research for precision medicine and comprehending complicated disorders.
基金supported by the National Natural Science Foundation of China,Nos. 81772134,81971891,and 81571939 (to KX)the Key Research and Development Program of Hunan Province of China,No. 2018SK2091 (to KX)+3 种基金Hunan Provincial Innovation Foundation For Postgraduate,No. CX20200116 (to WTY)Wu Jie Ping Medical Foundation of the Minister of Health of China,No. 320.6750.14118 (to KX)Foundation of Science and Technology of Hunan Province of China,No. 2018JJ2552 (to YC)the Project of Graduate Independent Exploration and Innovation Plan of Central South University of China,No. 2020zzts218 (to WTY)。
文摘There are two types of cell death-apoptosis and necrosis. Apoptosis is cell death regulated by cell signaling pathways, while necrosis has until recently been considered a passive mechanism of cell death caused by environmental pressures. However, recent studies show that necrosis can also be regulated by specific cell signaling pathways. This mode of death, termed necroptosis, has been found to be related to the occurrence and development of many diseases. We used bibliometrics to analyze the global output of literature on necroptosis in the field of neuroscience published in the period 2007–2019 to identify research hotspots and prospects. We included 145 necroptosisrelated publications and 2239 references published in the Web of Science during 2007–2019. Visualization analysis revealed that the number of publications related to necroptosis has increased year by year, reaching a peak in 2019. China is the country with the largest number of publications. Key word and literature analyses demonstrated that mitochondrial function change, stroke, ischemia/reperfusion and neuroinflammation are likely the research hotspots and future directions of necroptosis research in the nervous system. The relationship between immune response-related factors, damage-associated molecular patterns, pathogen-associated molecular patterns and necroptosis may become a potential research hotspot in the future. Taken together, our findings suggest that although the inherent limitations of bibliometrics may affect the accuracy of the literature-based prediction of research hotspots, the results obtained from the included publications can provide a reference for the study of necroptosis in the field of neuroscience.
文摘In this paper, sixty-eight research articles published between 2000 and 2017 as well as textbooks which employed four classification algorithms: K-Nearest-Neighbor (KNN), Support Vector Machines (SVM), Random Forest (RF) and Neural Network (NN) as the main statistical tools were reviewed. The aim was to examine and compare these nonparametric classification methods on the following attributes: robustness to training data, sensitivity to changes, data fitting, stability, ability to handle large data sizes, sensitivity to noise, time invested in parameter tuning, and accuracy. The performances, strengths and shortcomings of each of the algorithms were examined, and finally, a conclusion was arrived at on which one has higher performance. It was evident from the literature reviewed that RF is too sensitive to small changes in the training dataset and is occasionally unstable and tends to overfit in the model. KNN is easy to implement and understand but has a major drawback of becoming significantly slow as the size of the data in use grows, while the ideal value of K for the KNN classifier is difficult to set. SVM and RF are insensitive to noise or overtraining, which shows their ability in dealing with unbalanced data. Larger input datasets will lengthen classification times for NN and KNN more than for SVM and RF. Among these nonparametric classification methods, NN has the potential to become a more widely used classification algorithm, but because of their time-consuming parameter tuning procedure, high level of complexity in computational processing, the numerous types of NN architectures to choose from and the high number of algorithms used for training, most researchers recommend SVM and RF as easier and wieldy used methods which repeatedly achieve results with high accuracies and are often faster to implement.
基金the 13th"Five-Year Plan"Project of Tianjin Educational Science:"Research on the Dynamic Monitoring Mechanism of Discipline Construction Performance in Colleges and Universities"(HE3078).
文摘Teaching team plays an important role in integrating teaching resources,improving the quality of teachers and the quality of education and teaching.This paper studies the characteristics of the basic course teaching team,and gives the principles of building the basic course teaching team performance evaluation index system and the specific performance evaluation index system,in order to provide a direction for the high-level construction of the teaching team.