Currently,endeavors to scale up the production of amorphous catalysts are still impeded by intricate synthesis conditions.Here,we have prepared a series of metal-based molybdate via one-step coprecipitation method.Aft...Currently,endeavors to scale up the production of amorphous catalysts are still impeded by intricate synthesis conditions.Here,we have prepared a series of metal-based molybdate via one-step coprecipitation method.After ingredient optimization,amorphous Co_(2)CeFe_(2)-MoO_(4) was identified as exhibiting the highest intrinsic activity among its counterparts.Modulation of electron structure enables Co_(2)CeFe_(2)-MoO_(4) to balance the adsorption behavior towards reactive intermediates.Ultimately,the obtained Co_(2)CeFe_(2)-MoO_(4) molybdate demonstrated a captivating OER performance,showcasing a low overpotential of 230 mV at 10 mA cm^(-2).Moreover,the alkaline electrolyzer employing the Co_(2)CeFe_(2)-MoO_(4) anode exhibited a low cell voltage of 1.50 V for water splitting and underwent an acceptable attenuation of 4.99% after 165 h of continuous operation,demonstrating its favorable catalytic activity and durability.This work provides a facile and eco-friendly synthesis pathway for crafting cost-effective and durable earth-abundant OER electrocatalysts tailored for water splitting to produce clean hydrogen.展开更多
The robust Mg-H bonds present in magnesium hydride(MgH_(2))hinder the dissociation of hydrogen molecules on MgH_(2),leading to suboptimal thermo dynamic and kinetic properties.Transition metals such as nickel(Ni)and N...The robust Mg-H bonds present in magnesium hydride(MgH_(2))hinder the dissociation of hydrogen molecules on MgH_(2),leading to suboptimal thermo dynamic and kinetic properties.Transition metals such as nickel(Ni)and Nb exhibit superior hydrogen absorption energies as compared to Mg.By integrating two-dimensional Nb_(n)C_(n-1)T_(x)-MXene(with a large specific surface area and strong hydrogen absorption capacity provided by Nb)with Ni clusters,we developed an effective catalyst for hydrogen adsorption in MgH_(2).This study focused on the synthesis of an efficient MXene-Nb_(2)CT_(x)composite containing nano Ni cluster to enhance the hydrogenation and dehydrogenation processes of the Mg/MgH_(2)system.The Txend groups(-F,-O)were found to interact with Ni to create Ni-F or Ni-O bonds,which subsequently engage with adjacent Ni atoms to form Ni-Ni bonds.This interaction facilitates the loading of Ni clusters onto Nb_(2)CT_(x)and mitigates the inhibitory effects of-F or-O on hydrogen adsorption and desorption in the Mg-based system.Consequently,Nb_(2)C and Ni operate synergistic ally to enhance hydrogen dissociation and weaken Mg-H bonds.Theoretical simulations revealed that the inclusion of the Nb_(2)C/Ni catalyst in an elongation of Mg-H bonds enhancehydrogen dissociation and weaken Mg-H bonds.Theoretical simulations revealed that the inclusion of the Nb_(2)C/Ni catalyst in an elongation of Mg-H bonds facilitate hydrogen molecule dissociation on the Nb_(2)C/Ni composite.Hydrogen storage performance assesments demonstrated that the Nb_(2)C/Ni catalyst efficiently catalyzed hydrogen absorption and desorption;specifically,the hydrogenation/dehydrogenation capacity of Nb_(2)C/Ni@MgH_(2)reachedca.5.0 wt%at 100℃,while at 200℃,the capacities for hydrogenation and dehydrogenation reached 7.0 wt%and6.0 wt%,respectively,within 6 min.展开更多
The dicarbon(C_(2))molecule is an important molecular species observed in many carbon-containing gaseous environments.The spectroscopic and dissociative studies of C_(2)have attracted great attention for a long time f...The dicarbon(C_(2))molecule is an important molecular species observed in many carbon-containing gaseous environments.The spectroscopic and dissociative studies of C_(2)have attracted great attention for a long time for understanding its electronic characters as well as the evolution and cycling of carbon in the universe.In this study,the lifetimes of C_(2)populated at the three high-lying electronic states of(2-4)^(3)Δ_(g) in the vacuum ultraviolet(VUV)region have been experimentally measured using a time-of-flight mass spectrometer and the VUV-pump-UV-probe photoionization scheme.The measurements showed that all the rovibronic levels in the 2(g)^(3)Δ_(g) state exhibit shorter lifetimes than the dynamical limit of the experimental method,consistent with the theoretically predicted radiative lifetimes.Dependence of the lifetime on the vibrational level was observed in the 3^(3)Δ_(g) state,and a marginal rotational dependence was noticed in the vʹ=1 vibrational level.For the 4^(3)Δ_(g) state,the rotationally resolved lifetimes in the vʹ=1 vibrational level were found to be slightly longer than those in the vʹ=0 and 2 vibrational levels.Such a complicated dependence of the lifetime on the rovibronic level makes further experimental and theoretical investigations highly desired for understanding the dynamics in the high-lying excited states of C_(2).展开更多
Lead-halide perovskite nanoparticles(LHP NPs) are highly promising materials for next-generation displays and solid-state lighting due to their exceptional optical properties. However, their inherent instability prese...Lead-halide perovskite nanoparticles(LHP NPs) are highly promising materials for next-generation displays and solid-state lighting due to their exceptional optical properties. However, their inherent instability presents a significant challenge. Recent advances have demonstrated that optoelectronic devices based on monolayer nanoparticle films exhibit both high luminescence efficiency and long-term stability.Our research demonstrates that mobility limitations and anisotropic alignments in CsPbBr3nanocube monolayer films are key to their stabilization, hindering spontaneous growth through face-to-face fusion and resulting in the formation of connecting necks in a diagonal direction. Introducing laser irradiation confirmed this by significantly accelerating nanocubes growth, increasing mobility, and enhancing local structural ordering, leading to larger and more regularly shaped nanosheets. Fourier transform infrared spectroscopy and energy dispersive spectroscopy line-scan analyses indicated that laser irradiation did not disrupt the ligand structure. Transmission electron microscopy and correlative cathodoluminescence electron microscopy revealed the effects of post-growth and heterogeneous structures, including enhanced luminescence and inhomogeneous intensity in the nanosheets. These findings deepen the understanding of the post-growth mechanism of monolayer nanoparticles and the structure-emission correlation and highlight the unique role of laser irradiation in directing the formation of well-defined and regular nanostructures.展开更多
The structure and electronic properties of Co_(2)Ge_(10)^(-)anion and its neutral counterpart were investigated by anion photoelectron spectroscopy and theoretical calculations.The experimental vertical detachment ene...The structure and electronic properties of Co_(2)Ge_(10)^(-)anion and its neutral counterpart were investigated by anion photoelectron spectroscopy and theoretical calculations.The experimental vertical detachment energy of Co_(2)Ge_(10)^(-)was measured to be 2.86±0.08 eV.The lowest-energy isomer of Co_(2)Ge_(10)^(-)is in a doublet state and has a cage-like structure with Cs symmetry,which can be constructed by a tetragonal bipyramid on top of a pentagonal bipyramid and these two bipyramid structures share a common Co atom.The most stable structure of neutral Co_(2)Ge_(10)resembles its anionic counterpart and it is in a triplet state.The natural population analysis showed that the inner Co atom of both the anionic and neutral Co_(2)Ge_(10)acquires negative charge from the neighboring Ge atoms.The outer Co atom has a larger spin moment than the inner Co atom,indicating that the magnetic moments of Co_(2)Ge_(10)^(-/0)are mainly contributed by the outer Co atom.Analyses of the density of states and molecular orbitals indicated that there are a few highly delocalized molecular orbitals in Co_(2)Ge_(10)^(-),which are mainly contributed by Ge 4s atomic orbitals.展开更多
Regioselevtive functionalization of perylene diimides(PDIs)at bay area often requires multistep synthesis and strenuous recrystallization.Direct bromination of perylene diimides only afford the 1,6 and 1,7-regioisomer...Regioselevtive functionalization of perylene diimides(PDIs)at bay area often requires multistep synthesis and strenuous recrystallization.Direct bromination of perylene diimides only afford the 1,6 and 1,7-regioisomers.More importantly,the 1,6-dibromo regioisomers could only be separated by preparative HPLC.Herein,we report a promising strategy for constructing Janus backbone of BN-doped perylene diimide derivatives.This Janus-type configuration results in the unique regioselective functionalization of BN-JPDIs,which yields exclusively the 1,6-regioisomers.Further investigation shows that the Janus-type configuration leads to a net dipole moment of 1.94 D and intramolecular charge transfer,which causes substantial changes on the optoelectronic properties.Moreover,the single crystal organic field-effect transistors based on BN-JPDIs exhibit electron mobilities up to 0.57 cm^(2)V^(-1)s^(-1),showcasing their potential as versatile building block towards high-performance n-type organic semiconductors.展开更多
The p-block metal(In,Sn,Bi,etc.)-based electrocatalysts have exhibited excellent activity in the electrocatalytic CO_(2)reduction(ECR)to formate.However,the rapid decrease in catalytic activity caused by catalyst reco...The p-block metal(In,Sn,Bi,etc.)-based electrocatalysts have exhibited excellent activity in the electrocatalytic CO_(2)reduction(ECR)to formate.However,the rapid decrease in catalytic activity caused by catalyst reconstruction and agglomeration under ECR conditions significantly restricts their practical applications.Herein,we developed a sulfur anchoring strategy to stabilize the high-density sub-3 nm In_(2)S_(3)nanoparticles on sulfur-doped porous carbon substrates(i-In_(2)S_(3)/S-C)for formate production.Systematic characterizations evidenced that the as-prepared catalyst exhibited a strong metal sulfide-support interaction(MSSI),which effectively regulated the electronic states of In_(2)S_(3),achieving a high formate Faradaic efficiency of 91%at−0.95 V vs.RHE.More importantly,the sulfur anchoring effectively immobilized the sub-3 nm In_(2)S_(3)nanoparticles to prevent them from agglomeration.It enabled the catalysts to exhibit much higher durability than the In_(2)S_(3)samples without sulfur anchoring,demonstrating that the strong MSSI and fast charge transfer on the catalytic interface could significantly promote the structural stability of In_(2)S_(3)catalysts.These results provide a viable approach for developing efficient and stable electrocatalysts for CO_(2)reduction.展开更多
With the rapid development of the world economy,complex air pollution has increasingly become a serious threat;for example,with haze events occurring frequently in various regions of the globe.Recent evidence has indi...With the rapid development of the world economy,complex air pollution has increasingly become a serious threat;for example,with haze events occurring frequently in various regions of the globe.Recent evidence has indicated that secondary aerosols play an important role in haze formation,and that heterogeneous processes are among the main forces driving their explosive growth.In this regard,this paper reviews recent advances in the understanding of the impact of heterogeneous processes on haze chemistry,including the impact on NO_(2)chemistry,marine aerosols,and the hygroscopicity and optical properties of atmospheric aerosols.It is distinguished from past reviews on this topic by focusing mainly on new insights from the past five years.We summarize the main findings of the impacts of heterogeneous processes on NO_(2)chemistry,marine aerosols,and the physicochemical properties of atmospheric aerosols,and propose several future research directions.展开更多
The rovibrational spectra of thioanisole(TA)and its halogenated derivatives,3-fluorothioanisole(3FTA)and 3-chlorothioanisole(3ClTA),were measured using synchrotron-based Fourier transform infrared spectroscopy(FTIR)at...The rovibrational spectra of thioanisole(TA)and its halogenated derivatives,3-fluorothioanisole(3FTA)and 3-chlorothioanisole(3ClTA),were measured using synchrotron-based Fourier transform infrared spectroscopy(FTIR)at the Canadian Light Source.Combined with density functional theory calculations,the stable structures and vibrational modes of TA,3FTA,and 3ClTA in their vibrational states were analyzed.The theoretical vibrational mode frequencies were corrected by simulating the rotational structure of a vibrational band.The contributions of the cis-and trans-isomers of 3FTA and 3ClTA to the FTIR spectra at 298 K were estimated using the Boltzmann distribution,revealing their coexistence in the experimental spectra.The results indicate that both fluorine and chlorine substitution significantly affect the vibrational modes,particularly in the benzene ring.Compared to TA,the FTIR spectra of 3FTA and 3ClTA show changes in the frequencies and intensities of some vibrational modes,with halogen substitution causing specific modes to shift to higher wavenumbers.A comparison of the FTIR spectra of TA,3FTA,and 3ClTA highlights the influence of halogen substitution on vibrational properties,emphasizing how the type and position of the substituent affect frequency shifts and spectral intensities.These findings provide deeper insights into how halogenation alters vibrational spectra,which is crucial for further spectral analysis and molecular structure determination.展开更多
Organic-inorganic hybrid perovskite solar cells achieve remarkable efficiencies(>26%)yet face stability challenges.Quasi-2D alternating-cation-interlayer perovskites offer enhanced stability through hydrophobic spa...Organic-inorganic hybrid perovskite solar cells achieve remarkable efficiencies(>26%)yet face stability challenges.Quasi-2D alternating-cation-interlayer perovskites offer enhanced stability through hydrophobic spacer cations but suffer from vertical phase segregation and buried interface defects.Herein,we introduce dicyanodiamide(DCD)to simultaneously address these dual limitations in GA(MA)_(n)Pb_(n)I_(3n+1)perovskites.The guanidine group in DCD passivates undercoordinated Pb^(2+)and MA^(+)vacancies at the perovskite/TiO_(2)interface,while cyano groups eliminate oxygen vacancies in TiO_(2)via Ti^(4+)-CN coordination,reducing interfacial trap density by 73%with respect to the control sample.In addition,DCD regulates crystallization kinetics,suppressing low-n-phase aggregation and promoting vertical alignment of high-n phases,which benefit for carrier transport.This dual-functional modification enhances charge transport and stabilizes energy-level alignment.The optimized devices achieve a record power conversion efficiency of 21.54%(vs.19.05%control)and retain 94%initial efficiency after 1200 h,outperforming unmodified counterparts(84%retention).Combining defect passivation with phase homogenization,this work establishes a molecular bridge strategy to decouple stability-efficiency trade-offs in low-dimensional perovskites,providing a universal framework for interface engineering in high-performance optoelectronics.展开更多
Achieving seamless tiling through the self-assembly of organic species has long fascinated scientists for its potential applications across various fields.However,constructing periodic nanostructures with high-order t...Achieving seamless tiling through the self-assembly of organic species has long fascinated scientists for its potential applications across various fields.However,constructing periodic nanostructures with high-order tessellation remains challenging,particularly in achieving precise control at the supramolecular level.In this study,we present the successful creation of multiple seamless 2D tessellations on Au(111)surface using versatile hexagonal tiles derived from a singular molecular unit,namely 2,6,10-tribromotricycloquinazoline.Through scanning tunneling microscopy imaging,seven distinct 2D tessellations,ranging from regular to semiregular to k-uniform tilings,are unveiled at the molecular level.Density functional theory calculations provide a theoretical basis for the formation of these complex 2D tessellation,highlighting the important role of the variability of Br···Br/H contacts in facilitating complex seamless 2D tessellations on surface.This work opens avenues for exploring possibilities in constructing intricate tiling patterns with diverse applications.展开更多
Wide-bandgap mixed-halide perovskites,particularly CsPbIBr_(2),hold great promise for multi-junction solar cells due to their well-matched bandgap and all-inorganic material system.However,their inherent susceptibilit...Wide-bandgap mixed-halide perovskites,particularly CsPbIBr_(2),hold great promise for multi-junction solar cells due to their well-matched bandgap and all-inorganic material system.However,their inherent susceptibility to light-induced phase segregation(LIPS)limits efficiency and stability.In this work,we investigate the effect of three organic additives-4-cyclopentene-1,3-dione(CPD),maleimide(HPD),and 3,4-dibromo-1H-pyrrole-2,5(2H,5H)-dione(BrPD)-on LIPS in wide-bandgap CsPbIBr_(2)perovskite films.The additives form various chemical interactions,including coordination bonds,hydrogen bonds,and ionic bonds,with I^(-)and undercoordinated Pb^(2+)ions,among which BrPD has the strongest interaction.This interaction regulates crystallization and improves film morphology.The BrPD-modified films have the largest grain size and the highest light stability,suppressing LIPS,enhancing carrier transfer,and improving device performance.BrPD-modified CsPbIBr_(2)-based solar cells achieve a power conversion efficiency(PCE)of 11.34%,outperforming the control(8.96%)and other additives.Moreover,BrPDmodified devices show excellent stability,retaining 94%of their initial PCE after 60 min of continuous light exposure.This work highlights the potential of strategically selected organic additives to enhance the stability and performance of perovskite solar cells,offering valuable insights for the design of high-efficiency and long-lasting perovskite-based optoelectronic devices.展开更多
Ovarian cancer remains a leading cause of gynecological cancer mortality1,and patients with advanced stage ovarian cancer frequently develop malignant ascites that foster immunosuppressive microenvironments and therap...Ovarian cancer remains a leading cause of gynecological cancer mortality1,and patients with advanced stage ovarian cancer frequently develop malignant ascites that foster immunosuppressive microenvironments and therapeutic resistance2,3.Although ascites have traditionally been considered detrimental,we report a paradoxical role in which they enhance the cytotoxicity ofγδT cells—a unique T cell subset that can be allogenically transferred for cancer treatment4,5—toward ovarian cancer.展开更多
Nuclear magnetic resonance(NMR)spectroscopy is a powerful and broadly used spectroscopic technique for characterizing molecular structures and dynamics.Yet the power of NMR is restricted by its inherently low sensitiv...Nuclear magnetic resonance(NMR)spectroscopy is a powerful and broadly used spectroscopic technique for characterizing molecular structures and dynamics.Yet the power of NMR is restricted by its inherently low sensitivity due to the weak polarization of nuclear spins under conventional experiment conditions.Dynamic nuclear polarization(DNP)and chemically induced dynamic nuclear polarization(CIDNP)have been emerging as powerful in-situ hyperpolarization methods to boost NMR sensitivity.This review provides a brief overview of DNP mechanisms in the context of both solid-state and liquidstate.We delve into the molecular features of different polarizing agents and their impacts on DNP applications,which are now steadily progressing towards modern NMR magnetic field strengths and ambient temperatures.Furthermore,the progress of CIDNP,particularly photo-CIDNP as a potential alternative hyperpolarization technique of DNP,in studying protein dynamics and chemical reaction mechanisms,will be covered.This review also highlights the chemical diversity and experimental strategies crucial for these hyperpolarization techniques,showcasing their transformative role in NMR spectroscopy.展开更多
Nitrous acid(HONO)is a crucial source of OH radicals in the troposphere,significantly enhancing secondary pollutants like secondary organic aerosols(SOA)and peroxyacetyl nitrates(PAN).While prior research has examined...Nitrous acid(HONO)is a crucial source of OH radicals in the troposphere,significantly enhancing secondary pollutants like secondary organic aerosols(SOA)and peroxyacetyl nitrates(PAN).While prior research has examined HONO sources and their total impacts on secondary pollution,the specific enhancement capacity of each individual HONO source remains underexplored.This study uses observational data from 2015 to 2018 for HONO,SOA,and PAN across six sites in China,combined with WRF-Chem model adding six potential HONO sources to evaluate their capacity:traffic emissions(E_traffic),soil emissions(E_soil),indoor-outdoor exchange(E_indoor),nitrate photolysis(P_nit),and NO_(2) heterogeneous reactions on aerosol and ground surfaces(Het_a,Het_g).The simulated HONO contributions near the ground in urban Beijing were:12%from NO+OH(default source),10%-20%from E_traffic,1%-12%from P_nit,2%-10%from Het_a,and 50%-70% from Het_g.For SOA and PAN,we calculated incremental contributions enhanced by each HONO source and derived enhancement ratios(ERs)normalized against HONO’s contribution:~7 for P_nit,~2 for Het_a,~0.9 for Het_g,~0.8 for E_soil,~0.3 for E_traffic,and~0.1 for E_indoor.HONO sources’capacity to enhance secondary pollutants varies,being larger for aerosol-related sources.Vertical analysis on HONO concentration,spatial distribution,RO_(x) radical cycling rates,and OH enhancements revealed that aerosol-related HONO sources,especially P_nit,contribute more to secondary pollution.Future research should focus more on assessing real-world impacts of HONO sources,besides identifying their budgets.Additionally,uptake coefficient(γ)and nitrate photolysis frequency(J_(nitrate))critically affect HONO and secondary pollutant formation,necessitating further investigations.展开更多
Surface with well-defined components and structures possesses unique electronic,magnetic,optical and chemical properties.As a result,surface chemistry research plays a crucial role in various fields such as catalysis,...Surface with well-defined components and structures possesses unique electronic,magnetic,optical and chemical properties.As a result,surface chemistry research plays a crucial role in various fields such as catalysis,energy,materials,quantum,and microelectronics.Surface science mainly investigates the correspondence between surface property and functionality.Scanning probe microscopy(SPM)techniques are important tools to characterize surface properties because of the capability of atomic-scale imaging,spectroscopy and manipulation at the single-atom level.In this review,we summarize recent advances in surface electronic,magnetic and optical properties characterized mainly by SPM-based methods.We focus on elucidating theπ-magnetism in graphene-based nanostructures,construction of spin qubits on surfaces,topology properties of surface organic structures,STM-based light emission,tip-enhanced Raman spectroscopy and integration of machine learning in SPM studies.展开更多
In fulfillment of the national science-and-technology development agenda, the Department of Chemical Sciences of the National Natural Science Foundation of China (NSFC) convened the Strategic Symposium on the Fifteent...In fulfillment of the national science-and-technology development agenda, the Department of Chemical Sciences of the National Natural Science Foundation of China (NSFC) convened the Strategic Symposium on the Fifteenth FiveYear (20262030) Development Plan for Electrochemistry held in Xiamen on 29 August, 2025-the culminating year of the Fourteenth Five-Year (2021-2025) Development Plan. More than forty leading experts in the field of electrochemistry participated with spanning nine thematic fronts: Interfacial Electrocatalysis, Interfacial Electrochemistry for Energy Storage, Bioelectrochemistry, Electrochemistry of Hydrogen Energy, Electrochemical Micro-/Nano-Manufacturing, Operando Electrochemical Characterization, Electro-Thermal Coupling Catalysis, Theoretical and Computational Electrochemistry,and Electrochemical Synthesis. The forum assembled China's foremost electrochemical expertise to blueprint high-quality disciplinary growth for the coming five-year period, thereby serving overarching national strategic needs and sharpening the international competitiveness of Chinese electrochemistry.This paper is presented to highlight the strategic needs and priority areas for the next five years (2026-2030) based on this symposium. The development status of basic research and applied basic research in China's electrochemistry field is systematically reviewed. The in-depth analyses of the existing problems and key challenges in the research and development of electrochemistry related fields are outlined, and the frontier research areas and development trends in the next 5-10 years by integrating national major strategic needs are discussed, which will further promote the academic community to reach a clearer consensus. The proposed strategic roadmap is intended to accelerate a sharpened community consensus, propel the discipline toward high-quality advancement, and furnish a critical reference for building China into a world-leading science and technology power.展开更多
基金supported by the National Natural Science Foundation of China (No. 21872153)。
文摘Currently,endeavors to scale up the production of amorphous catalysts are still impeded by intricate synthesis conditions.Here,we have prepared a series of metal-based molybdate via one-step coprecipitation method.After ingredient optimization,amorphous Co_(2)CeFe_(2)-MoO_(4) was identified as exhibiting the highest intrinsic activity among its counterparts.Modulation of electron structure enables Co_(2)CeFe_(2)-MoO_(4) to balance the adsorption behavior towards reactive intermediates.Ultimately,the obtained Co_(2)CeFe_(2)-MoO_(4) molybdate demonstrated a captivating OER performance,showcasing a low overpotential of 230 mV at 10 mA cm^(-2).Moreover,the alkaline electrolyzer employing the Co_(2)CeFe_(2)-MoO_(4) anode exhibited a low cell voltage of 1.50 V for water splitting and underwent an acceptable attenuation of 4.99% after 165 h of continuous operation,demonstrating its favorable catalytic activity and durability.This work provides a facile and eco-friendly synthesis pathway for crafting cost-effective and durable earth-abundant OER electrocatalysts tailored for water splitting to produce clean hydrogen.
基金financially supported by the Natural Science Foundation of Jiangsu Province of China(No.BK20210079)Xuzhou Science and Technology Project(No.KC23011)
文摘The robust Mg-H bonds present in magnesium hydride(MgH_(2))hinder the dissociation of hydrogen molecules on MgH_(2),leading to suboptimal thermo dynamic and kinetic properties.Transition metals such as nickel(Ni)and Nb exhibit superior hydrogen absorption energies as compared to Mg.By integrating two-dimensional Nb_(n)C_(n-1)T_(x)-MXene(with a large specific surface area and strong hydrogen absorption capacity provided by Nb)with Ni clusters,we developed an effective catalyst for hydrogen adsorption in MgH_(2).This study focused on the synthesis of an efficient MXene-Nb_(2)CT_(x)composite containing nano Ni cluster to enhance the hydrogenation and dehydrogenation processes of the Mg/MgH_(2)system.The Txend groups(-F,-O)were found to interact with Ni to create Ni-F or Ni-O bonds,which subsequently engage with adjacent Ni atoms to form Ni-Ni bonds.This interaction facilitates the loading of Ni clusters onto Nb_(2)CT_(x)and mitigates the inhibitory effects of-F or-O on hydrogen adsorption and desorption in the Mg-based system.Consequently,Nb_(2)C and Ni operate synergistic ally to enhance hydrogen dissociation and weaken Mg-H bonds.Theoretical simulations revealed that the inclusion of the Nb_(2)C/Ni catalyst in an elongation of Mg-H bonds enhancehydrogen dissociation and weaken Mg-H bonds.Theoretical simulations revealed that the inclusion of the Nb_(2)C/Ni catalyst in an elongation of Mg-H bonds facilitate hydrogen molecule dissociation on the Nb_(2)C/Ni composite.Hydrogen storage performance assesments demonstrated that the Nb_(2)C/Ni catalyst efficiently catalyzed hydrogen absorption and desorption;specifically,the hydrogenation/dehydrogenation capacity of Nb_(2)C/Ni@MgH_(2)reachedca.5.0 wt%at 100℃,while at 200℃,the capacities for hydrogenation and dehydrogenation reached 7.0 wt%and6.0 wt%,respectively,within 6 min.
基金supported by the National Natural Science Foundation of China(No.22122308)Beijing National Laboratory for Molecular Sciences(BNLMS).Hong Gao is also partially supported by the Innovation Capability Support Program of Shaanxi Province(2023-CX-TD-49)supported by the China Postdoctoral Science Foundation(No.2020TQ0324).
文摘The dicarbon(C_(2))molecule is an important molecular species observed in many carbon-containing gaseous environments.The spectroscopic and dissociative studies of C_(2)have attracted great attention for a long time for understanding its electronic characters as well as the evolution and cycling of carbon in the universe.In this study,the lifetimes of C_(2)populated at the three high-lying electronic states of(2-4)^(3)Δ_(g) in the vacuum ultraviolet(VUV)region have been experimentally measured using a time-of-flight mass spectrometer and the VUV-pump-UV-probe photoionization scheme.The measurements showed that all the rovibronic levels in the 2(g)^(3)Δ_(g) state exhibit shorter lifetimes than the dynamical limit of the experimental method,consistent with the theoretically predicted radiative lifetimes.Dependence of the lifetime on the vibrational level was observed in the 3^(3)Δ_(g) state,and a marginal rotational dependence was noticed in the vʹ=1 vibrational level.For the 4^(3)Δ_(g) state,the rotationally resolved lifetimes in the vʹ=1 vibrational level were found to be slightly longer than those in the vʹ=0 and 2 vibrational levels.Such a complicated dependence of the lifetime on the rovibronic level makes further experimental and theoretical investigations highly desired for understanding the dynamics in the high-lying excited states of C_(2).
基金National Key Research and Development Program of China(2023YFA1507602)National Natural Science Foundation of China (22171010, 62174011)。
文摘Lead-halide perovskite nanoparticles(LHP NPs) are highly promising materials for next-generation displays and solid-state lighting due to their exceptional optical properties. However, their inherent instability presents a significant challenge. Recent advances have demonstrated that optoelectronic devices based on monolayer nanoparticle films exhibit both high luminescence efficiency and long-term stability.Our research demonstrates that mobility limitations and anisotropic alignments in CsPbBr3nanocube monolayer films are key to their stabilization, hindering spontaneous growth through face-to-face fusion and resulting in the formation of connecting necks in a diagonal direction. Introducing laser irradiation confirmed this by significantly accelerating nanocubes growth, increasing mobility, and enhancing local structural ordering, leading to larger and more regularly shaped nanosheets. Fourier transform infrared spectroscopy and energy dispersive spectroscopy line-scan analyses indicated that laser irradiation did not disrupt the ligand structure. Transmission electron microscopy and correlative cathodoluminescence electron microscopy revealed the effects of post-growth and heterogeneous structures, including enhanced luminescence and inhomogeneous intensity in the nanosheets. These findings deepen the understanding of the post-growth mechanism of monolayer nanoparticles and the structure-emission correlation and highlight the unique role of laser irradiation in directing the formation of well-defined and regular nanostructures.
基金supported by the National Natural Science Foundation of China(Nos.92461313,12074387,and 92161114)the Innovation Capability Support Program of Shaanxi Province(No.2023-CX-TD-49).
文摘The structure and electronic properties of Co_(2)Ge_(10)^(-)anion and its neutral counterpart were investigated by anion photoelectron spectroscopy and theoretical calculations.The experimental vertical detachment energy of Co_(2)Ge_(10)^(-)was measured to be 2.86±0.08 eV.The lowest-energy isomer of Co_(2)Ge_(10)^(-)is in a doublet state and has a cage-like structure with Cs symmetry,which can be constructed by a tetragonal bipyramid on top of a pentagonal bipyramid and these two bipyramid structures share a common Co atom.The most stable structure of neutral Co_(2)Ge_(10)resembles its anionic counterpart and it is in a triplet state.The natural population analysis showed that the inner Co atom of both the anionic and neutral Co_(2)Ge_(10)acquires negative charge from the neighboring Ge atoms.The outer Co atom has a larger spin moment than the inner Co atom,indicating that the magnetic moments of Co_(2)Ge_(10)^(-/0)are mainly contributed by the outer Co atom.Analyses of the density of states and molecular orbitals indicated that there are a few highly delocalized molecular orbitals in Co_(2)Ge_(10)^(-),which are mainly contributed by Ge 4s atomic orbitals.
基金support from the National Natural Science Foundation of China(Nos.22071007,22020102001,22335002)the National Key R&D Program of China(No.2022YFB3602802)+3 种基金Beijing Natural Science Foundation(No.Z220025)the National Facility for Protein Science in Shanghai,Shanghai Advanced Research Institute,CAS,for providing technical support in X-ray diffraction data collectionthe High-Performance Computing Platform of Peking University for supporting the computational workthe support of BMS Junior Fellow program。
文摘Regioselevtive functionalization of perylene diimides(PDIs)at bay area often requires multistep synthesis and strenuous recrystallization.Direct bromination of perylene diimides only afford the 1,6 and 1,7-regioisomers.More importantly,the 1,6-dibromo regioisomers could only be separated by preparative HPLC.Herein,we report a promising strategy for constructing Janus backbone of BN-doped perylene diimide derivatives.This Janus-type configuration results in the unique regioselective functionalization of BN-JPDIs,which yields exclusively the 1,6-regioisomers.Further investigation shows that the Janus-type configuration leads to a net dipole moment of 1.94 D and intramolecular charge transfer,which causes substantial changes on the optoelectronic properties.Moreover,the single crystal organic field-effect transistors based on BN-JPDIs exhibit electron mobilities up to 0.57 cm^(2)V^(-1)s^(-1),showcasing their potential as versatile building block towards high-performance n-type organic semiconductors.
文摘The p-block metal(In,Sn,Bi,etc.)-based electrocatalysts have exhibited excellent activity in the electrocatalytic CO_(2)reduction(ECR)to formate.However,the rapid decrease in catalytic activity caused by catalyst reconstruction and agglomeration under ECR conditions significantly restricts their practical applications.Herein,we developed a sulfur anchoring strategy to stabilize the high-density sub-3 nm In_(2)S_(3)nanoparticles on sulfur-doped porous carbon substrates(i-In_(2)S_(3)/S-C)for formate production.Systematic characterizations evidenced that the as-prepared catalyst exhibited a strong metal sulfide-support interaction(MSSI),which effectively regulated the electronic states of In_(2)S_(3),achieving a high formate Faradaic efficiency of 91%at−0.95 V vs.RHE.More importantly,the sulfur anchoring effectively immobilized the sub-3 nm In_(2)S_(3)nanoparticles to prevent them from agglomeration.It enabled the catalysts to exhibit much higher durability than the In_(2)S_(3)samples without sulfur anchoring,demonstrating that the strong MSSI and fast charge transfer on the catalytic interface could significantly promote the structural stability of In_(2)S_(3)catalysts.These results provide a viable approach for developing efficient and stable electrocatalysts for CO_(2)reduction.
基金supported by the National Key Research and Development Program of China(No.2022YFC3701000)the National Natural Science Foundation of China(Nos.42130606 and 41931287)+1 种基金the Beijing National Laboratory for Molecular Sciences(BNLMS-CXXM-202011)the Youth Innovation Promotion Association of the Chinese Academy of Sciences(No.Y2021013).
文摘With the rapid development of the world economy,complex air pollution has increasingly become a serious threat;for example,with haze events occurring frequently in various regions of the globe.Recent evidence has indicated that secondary aerosols play an important role in haze formation,and that heterogeneous processes are among the main forces driving their explosive growth.In this regard,this paper reviews recent advances in the understanding of the impact of heterogeneous processes on haze chemistry,including the impact on NO_(2)chemistry,marine aerosols,and the hygroscopicity and optical properties of atmospheric aerosols.It is distinguished from past reviews on this topic by focusing mainly on new insights from the past five years.We summarize the main findings of the impacts of heterogeneous processes on NO_(2)chemistry,marine aerosols,and the physicochemical properties of atmospheric aerosols,and propose several future research directions.
基金supported by the National Natural Science Foundation of China(No.223B2306)the Innovation Capability Support Program of Shaanxi Province(2023-CX-TD-49)the Natural Science Basic Research Program of Shaanxi Province(2025JC-JCQN-043).
文摘The rovibrational spectra of thioanisole(TA)and its halogenated derivatives,3-fluorothioanisole(3FTA)and 3-chlorothioanisole(3ClTA),were measured using synchrotron-based Fourier transform infrared spectroscopy(FTIR)at the Canadian Light Source.Combined with density functional theory calculations,the stable structures and vibrational modes of TA,3FTA,and 3ClTA in their vibrational states were analyzed.The theoretical vibrational mode frequencies were corrected by simulating the rotational structure of a vibrational band.The contributions of the cis-and trans-isomers of 3FTA and 3ClTA to the FTIR spectra at 298 K were estimated using the Boltzmann distribution,revealing their coexistence in the experimental spectra.The results indicate that both fluorine and chlorine substitution significantly affect the vibrational modes,particularly in the benzene ring.Compared to TA,the FTIR spectra of 3FTA and 3ClTA show changes in the frequencies and intensities of some vibrational modes,with halogen substitution causing specific modes to shift to higher wavenumbers.A comparison of the FTIR spectra of TA,3FTA,and 3ClTA highlights the influence of halogen substitution on vibrational properties,emphasizing how the type and position of the substituent affect frequency shifts and spectral intensities.These findings provide deeper insights into how halogenation alters vibrational spectra,which is crucial for further spectral analysis and molecular structure determination.
基金support from the National Key R&D Program of China(Grant No.2023YFE0111500)the National Natural Science Foundation of China(Grant No.52321006,T2394480,T2394484,22109143,22479131)+8 种基金Beijing National Laboratory for Molecular Sciences(BNLMS-CXXM-202005)the China Postdoctoral Innovative Talent Support Program(Grant No.BX2021271)the China Postdoctoral Science Foundation(2022M712851)the Opening Project of State Key Laboratory of Advanced Technology for Float Glass(Grant No.2022KF04)Graduate Education Reform Project of Henan Province(Grant No.2023SJGLX136Y)Key R&D Special Program of Henan Province(Grant No.241111242000)Program for Science and Technology Innovation Talents in Universities of Henan Province(Grant No.25HASTIT005)Training Plan for Young Backbone Teachers of Zhengzhou University(Grant No.2023ZDGGJS017)the Joint Research Project of Puyang Shengtong Juyuan New Materials Co.,Ltd.(Grant No.20230128A).
文摘Organic-inorganic hybrid perovskite solar cells achieve remarkable efficiencies(>26%)yet face stability challenges.Quasi-2D alternating-cation-interlayer perovskites offer enhanced stability through hydrophobic spacer cations but suffer from vertical phase segregation and buried interface defects.Herein,we introduce dicyanodiamide(DCD)to simultaneously address these dual limitations in GA(MA)_(n)Pb_(n)I_(3n+1)perovskites.The guanidine group in DCD passivates undercoordinated Pb^(2+)and MA^(+)vacancies at the perovskite/TiO_(2)interface,while cyano groups eliminate oxygen vacancies in TiO_(2)via Ti^(4+)-CN coordination,reducing interfacial trap density by 73%with respect to the control sample.In addition,DCD regulates crystallization kinetics,suppressing low-n-phase aggregation and promoting vertical alignment of high-n phases,which benefit for carrier transport.This dual-functional modification enhances charge transport and stabilizes energy-level alignment.The optimized devices achieve a record power conversion efficiency of 21.54%(vs.19.05%control)and retain 94%initial efficiency after 1200 h,outperforming unmodified counterparts(84%retention).Combining defect passivation with phase homogenization,this work establishes a molecular bridge strategy to decouple stability-efficiency trade-offs in low-dimensional perovskites,providing a universal framework for interface engineering in high-performance optoelectronics.
基金supported by the Strategic Priority Research Program of CAS(No.XDB0520201)the National Natural Science Foundation of China((Nos.22132007,22372175,22202208,22372030)CAS Project for Young Scientists in Basic Research(No.YSBR-053).
文摘Achieving seamless tiling through the self-assembly of organic species has long fascinated scientists for its potential applications across various fields.However,constructing periodic nanostructures with high-order tessellation remains challenging,particularly in achieving precise control at the supramolecular level.In this study,we present the successful creation of multiple seamless 2D tessellations on Au(111)surface using versatile hexagonal tiles derived from a singular molecular unit,namely 2,6,10-tribromotricycloquinazoline.Through scanning tunneling microscopy imaging,seven distinct 2D tessellations,ranging from regular to semiregular to k-uniform tilings,are unveiled at the molecular level.Density functional theory calculations provide a theoretical basis for the formation of these complex 2D tessellation,highlighting the important role of the variability of Br···Br/H contacts in facilitating complex seamless 2D tessellations on surface.This work opens avenues for exploring possibilities in constructing intricate tiling patterns with diverse applications.
基金supported financially by the National Key R&D Program of China(Grant No.2023YFE0111500)the National Natural Science Foundation of China(Grant Nos.52321006,T2394480,T2394484,22109143,22475196,22479131)+11 种基金the Research Grants Council of Hong Kong(CRF C4005-22YRGC Senior Research Fellowship Scheme(SRFS2223-5S01))the Joint Fund for Provincial Science and Technology R&D Program of Henan(grant no.242301420051)the Opening Project of the State Key Laboratory of Advanced Technology for Float Glass(grant no.2022KF04)the China Postdoctoral Innovative Talent Support Program(grant no.BX2021271)the China Postdoctoral Science Foundation(grant no.2022M712851)the Graduate Education Reform Project of Henan Province(Grant No.2023SJGLX136Y)the Key R&D Special Program of Henan Province(Grant No.241111242000)the Program for Science&Technology Innovation Talents in Universities of Henan Province(Grant No.25HASTIT005)the Training Plan for Young Backbone Teachers of Zhengzhou University(Grant No.2023ZDGGJS017)the Joint Research Project of Puyang ShengtongJuyuan New Materials Co.Ltd.(Grant No.20230128A)。
文摘Wide-bandgap mixed-halide perovskites,particularly CsPbIBr_(2),hold great promise for multi-junction solar cells due to their well-matched bandgap and all-inorganic material system.However,their inherent susceptibility to light-induced phase segregation(LIPS)limits efficiency and stability.In this work,we investigate the effect of three organic additives-4-cyclopentene-1,3-dione(CPD),maleimide(HPD),and 3,4-dibromo-1H-pyrrole-2,5(2H,5H)-dione(BrPD)-on LIPS in wide-bandgap CsPbIBr_(2)perovskite films.The additives form various chemical interactions,including coordination bonds,hydrogen bonds,and ionic bonds,with I^(-)and undercoordinated Pb^(2+)ions,among which BrPD has the strongest interaction.This interaction regulates crystallization and improves film morphology.The BrPD-modified films have the largest grain size and the highest light stability,suppressing LIPS,enhancing carrier transfer,and improving device performance.BrPD-modified CsPbIBr_(2)-based solar cells achieve a power conversion efficiency(PCE)of 11.34%,outperforming the control(8.96%)and other additives.Moreover,BrPDmodified devices show excellent stability,retaining 94%of their initial PCE after 60 min of continuous light exposure.This work highlights the potential of strategically selected organic additives to enhance the stability and performance of perovskite solar cells,offering valuable insights for the design of high-efficiency and long-lasting perovskite-based optoelectronic devices.
基金supported by the National Natural Science Foundation of China(Grant No.82274034)the Peking University Medicine plus X Pilot Program-Platform Construction Project(Grant No.2024YXXLHPT004).
文摘Ovarian cancer remains a leading cause of gynecological cancer mortality1,and patients with advanced stage ovarian cancer frequently develop malignant ascites that foster immunosuppressive microenvironments and therapeutic resistance2,3.Although ascites have traditionally been considered detrimental,we report a paradoxical role in which they enhance the cytotoxicity ofγδT cells—a unique T cell subset that can be allogenically transferred for cancer treatment4,5—toward ovarian cancer.
基金supported by the National Natural Science Foundation of China(Grant No.22403029)the Postdoctoral Fellowship Program of China Postdoctoral Science Foundation(Grant No.GZC20240475,2024M760922)+5 种基金supported by National Natural Science Foundation of China(Grant No.22174099)supported by the National Natural Science Foundation of China(Grant No.22273023)the National Key R&D Program of China(Grant No.2019YFA0905200)Shanghai Municipal Natural Science Foundation(Grant No.23ZR1418200)Natural Science Foundation of Chongqing,China(Grant No.CSTB2023NSCQ-MSX0616)Shanghai Frontiers Science Center of Molecule Intelligent Syntheses,and the Fundamental Research Funds for the Central Universities.
文摘Nuclear magnetic resonance(NMR)spectroscopy is a powerful and broadly used spectroscopic technique for characterizing molecular structures and dynamics.Yet the power of NMR is restricted by its inherently low sensitivity due to the weak polarization of nuclear spins under conventional experiment conditions.Dynamic nuclear polarization(DNP)and chemically induced dynamic nuclear polarization(CIDNP)have been emerging as powerful in-situ hyperpolarization methods to boost NMR sensitivity.This review provides a brief overview of DNP mechanisms in the context of both solid-state and liquidstate.We delve into the molecular features of different polarizing agents and their impacts on DNP applications,which are now steadily progressing towards modern NMR magnetic field strengths and ambient temperatures.Furthermore,the progress of CIDNP,particularly photo-CIDNP as a potential alternative hyperpolarization technique of DNP,in studying protein dynamics and chemical reaction mechanisms,will be covered.This review also highlights the chemical diversity and experimental strategies crucial for these hyperpolarization techniques,showcasing their transformative role in NMR spectroscopy.
基金supported by the National Natural Science Foundation of China(Nos.92044302,42075108,42107124,41822703,91544221,91844301,and 22222610)Beijing National Laboratory for Molecular Sciences(No.BNLMS-CXXM-202011)the Natural Science Foundation of Yunnan Province(No.202302AN360006)。
文摘Nitrous acid(HONO)is a crucial source of OH radicals in the troposphere,significantly enhancing secondary pollutants like secondary organic aerosols(SOA)and peroxyacetyl nitrates(PAN).While prior research has examined HONO sources and their total impacts on secondary pollution,the specific enhancement capacity of each individual HONO source remains underexplored.This study uses observational data from 2015 to 2018 for HONO,SOA,and PAN across six sites in China,combined with WRF-Chem model adding six potential HONO sources to evaluate their capacity:traffic emissions(E_traffic),soil emissions(E_soil),indoor-outdoor exchange(E_indoor),nitrate photolysis(P_nit),and NO_(2) heterogeneous reactions on aerosol and ground surfaces(Het_a,Het_g).The simulated HONO contributions near the ground in urban Beijing were:12%from NO+OH(default source),10%-20%from E_traffic,1%-12%from P_nit,2%-10%from Het_a,and 50%-70% from Het_g.For SOA and PAN,we calculated incremental contributions enhanced by each HONO source and derived enhancement ratios(ERs)normalized against HONO’s contribution:~7 for P_nit,~2 for Het_a,~0.9 for Het_g,~0.8 for E_soil,~0.3 for E_traffic,and~0.1 for E_indoor.HONO sources’capacity to enhance secondary pollutants varies,being larger for aerosol-related sources.Vertical analysis on HONO concentration,spatial distribution,RO_(x) radical cycling rates,and OH enhancements revealed that aerosol-related HONO sources,especially P_nit,contribute more to secondary pollution.Future research should focus more on assessing real-world impacts of HONO sources,besides identifying their budgets.Additionally,uptake coefficient(γ)and nitrate photolysis frequency(J_(nitrate))critically affect HONO and secondary pollutant formation,necessitating further investigations.
文摘Surface with well-defined components and structures possesses unique electronic,magnetic,optical and chemical properties.As a result,surface chemistry research plays a crucial role in various fields such as catalysis,energy,materials,quantum,and microelectronics.Surface science mainly investigates the correspondence between surface property and functionality.Scanning probe microscopy(SPM)techniques are important tools to characterize surface properties because of the capability of atomic-scale imaging,spectroscopy and manipulation at the single-atom level.In this review,we summarize recent advances in surface electronic,magnetic and optical properties characterized mainly by SPM-based methods.We focus on elucidating theπ-magnetism in graphene-based nanostructures,construction of spin qubits on surfaces,topology properties of surface organic structures,STM-based light emission,tip-enhanced Raman spectroscopy and integration of machine learning in SPM studies.
文摘In fulfillment of the national science-and-technology development agenda, the Department of Chemical Sciences of the National Natural Science Foundation of China (NSFC) convened the Strategic Symposium on the Fifteenth FiveYear (20262030) Development Plan for Electrochemistry held in Xiamen on 29 August, 2025-the culminating year of the Fourteenth Five-Year (2021-2025) Development Plan. More than forty leading experts in the field of electrochemistry participated with spanning nine thematic fronts: Interfacial Electrocatalysis, Interfacial Electrochemistry for Energy Storage, Bioelectrochemistry, Electrochemistry of Hydrogen Energy, Electrochemical Micro-/Nano-Manufacturing, Operando Electrochemical Characterization, Electro-Thermal Coupling Catalysis, Theoretical and Computational Electrochemistry,and Electrochemical Synthesis. The forum assembled China's foremost electrochemical expertise to blueprint high-quality disciplinary growth for the coming five-year period, thereby serving overarching national strategic needs and sharpening the international competitiveness of Chinese electrochemistry.This paper is presented to highlight the strategic needs and priority areas for the next five years (2026-2030) based on this symposium. The development status of basic research and applied basic research in China's electrochemistry field is systematically reviewed. The in-depth analyses of the existing problems and key challenges in the research and development of electrochemistry related fields are outlined, and the frontier research areas and development trends in the next 5-10 years by integrating national major strategic needs are discussed, which will further promote the academic community to reach a clearer consensus. The proposed strategic roadmap is intended to accelerate a sharpened community consensus, propel the discipline toward high-quality advancement, and furnish a critical reference for building China into a world-leading science and technology power.