Strategic initiative:Entering Oman for a new strategy In 2004,the International Department of CNPC’s BGP took a crucial step in the Middle East market by successfully securing a seismic exploration project for the na...Strategic initiative:Entering Oman for a new strategy In 2004,the International Department of CNPC’s BGP took a crucial step in the Middle East market by successfully securing a seismic exploration project for the national oil company of Oman,Petroleum Development Oman(PDO).展开更多
With the world’s largest oil reserves and production,Saudi Arabia is known as the'oil kingdom',and it is a competitive battlefield for international oil and gas prospecting businesses.BGP entered the market o...With the world’s largest oil reserves and production,Saudi Arabia is known as the'oil kingdom',and it is a competitive battlefield for international oil and gas prospecting businesses.BGP entered the market of Saudi Arabia in 1994.Since 2003,when it signed its first geophysical prospecting contract,BGP has won bids on 18seismic acquisition projects,all of which have been safely and efficiently operated.In 2012,as the successful bidder for the world’s current largest prospecting projects—S69,展开更多
In September 2013, President Xi Jinping proposed the joint building of the"Silk Road Economic Belt"for the first time in Kazakhstan. On October 3, 2013, on his visit to Indonesia, President Xi addressed the ...In September 2013, President Xi Jinping proposed the joint building of the"Silk Road Economic Belt"for the first time in Kazakhstan. On October 3, 2013, on his visit to Indonesia, President Xi addressed the Indonesian parliament, expressing China's willingness to strengthen maritime cooperation with ASEAN countries, to make good use of the China-ASEAN Maritime Cooperation Fund established by the Chinese government, to develop a good marine partnership, and to jointly build the21^(st)Century Maritime Silk Road.Indonesia is a beautiful"Nation of Thousand Islands"and faces China from across the South China Sea. It展开更多
In September 2013,President Xi Jinping proposed for the first time in Kazakhstan the joint building of the"Silk Road Ecoinomic Belt".On October 3,2013,on his visit to Indoinesia,Presicdent Xi addressed the I...In September 2013,President Xi Jinping proposed for the first time in Kazakhstan the joint building of the"Silk Road Ecoinomic Belt".On October 3,2013,on his visit to Indoinesia,Presicdent Xi addressed the Indonesian parliament,expressing China's willingness to strengthen umaritime cooperation with ASEAN countries,make good use of the China-ASEAN Maritime Cooperation Fund establishced by the Chinese government,develop a展开更多
On March 28th, 2018, in the BINTUNI BAY sea area of eastern Indonesia, with the last explosion and the successful collection of the last node, the Indonesia Ocean-Bottom Node (OBN) Project of British Petroleum(BP) con...On March 28th, 2018, in the BINTUNI BAY sea area of eastern Indonesia, with the last explosion and the successful collection of the last node, the Indonesia Ocean-Bottom Node (OBN) Project of British Petroleum(BP) concluded safely and successfully after 8 months of intense production. Highly regarded in the industry, this project was undertaken by BGP.展开更多
In mid-May,good news came from Tajikistan,the country of high mountains.The Tajikistan Bogda Mountain geological exploration and sampling project,which had been dormant for over a decade,achieved a key breakthrough af...In mid-May,good news came from Tajikistan,the country of high mountains.The Tajikistan Bogda Mountain geological exploration and sampling project,which had been dormant for over a decade,achieved a key breakthrough after years of careful research,multi-party collaboration,and optimization of various plans,launching a new round of field exploration and testing work.展开更多
The Jurassic Lianggaoshan Formation in eastern Sichuan Basin is a key target for shale oil exploration.It faces challenges in three-pressure prediction due to complex structural and sedimentary interactions,as well as...The Jurassic Lianggaoshan Formation in eastern Sichuan Basin is a key target for shale oil exploration.It faces challenges in three-pressure prediction due to complex structural and sedimentary interactions,as well as strong reservoir anisotropy.These issues often lead to wellbore instability and gas logging anomalies during drilling.This study presents an integrated workflow that combines residual moveout correction using correlation-based dynamic time warping(CDTW),high-resolution seismic waveform indication inversion,and three-pressure prediction of jointing well-seismic data.Applied to the LT1 well block,the workflow effectively corrects anisotropic residual moveout in image gathers,leading to a signal strength increase of over 10%in frequency bands above 30 Hz and enhancing event continuity.High-resolution rock mechanical parameters are obtained through seismic waveform inversion and regional calibration,enabling the prediction of three-dimensional pore pressure,collapse pressure and fracture pressure.The results are consistent with actual drilling gas shows and core data,confirming the method's accuracy and supporting mud weight planning and wellbore stability efforts.This cost-effective and technically robust approach proves highly reliable in complex environments with significant heterogeneity and anisotropy,assisting drilling decisions and risk management in eastern Sichuan and similar challenging geological settings.展开更多
Deblending is a data processing procedure used to separate the source interferences of blended seismic data,which are obtained by simultaneous sources with random time delays to reduce the cost of seismic acquisition....Deblending is a data processing procedure used to separate the source interferences of blended seismic data,which are obtained by simultaneous sources with random time delays to reduce the cost of seismic acquisition.There are three types of deblending algorithms,i.e.,filtering-type noise suppression algorithm,inversion-based algorithm and deep-learning based algorithm.We review the merits of these techniques,and propose to use a sparse inversion method for seismic data deblending.Filtering-based deblending approach is applicable to blended data with a low blending fold and simple geometry.Otherwise,it can suffer from signal distortion and noise leakage.At present,the deep learning based deblending methods are still under development and field data applications are limited due to the lack of high-quality training labels.In contrast,the inversion-based deblending approaches have gained industrial acceptance.Our used inversion approach transforms the pseudo-deblended data into the frequency-wavenumber-wavenumher(FKK)domain,and a sparse constraint is imposed for the coherent signal estimation.The estimated signal is used to predict the interference noise for subtraction from the original pseudo-deblended data.Via minimizing the data misfit,the signal can be iteratively updated with a shrinking threshold until the signal and interference are fully separated.The used FKK sparse inversion algorithm is very accurate and efficient compared with other sparse inversion methods,and it is widely applied in field cases.Synthetic example shows that the deblending error is less than 1%in average amplitudes and less than-40 dB in amplitude spectra.We present three field data examples of land,marine OBN(Ocean Bottom Nodes)and streamer acquisitions to demonstrate its successful applications in separating the source interferences efficiently and accurately.展开更多
For deep prospects in the foreland thrust belt,southern Junggar Basin,NW China,there are uncertainties in factors controlling the structural deformation,distribution of paleo-structures and detachment layers,and distr...For deep prospects in the foreland thrust belt,southern Junggar Basin,NW China,there are uncertainties in factors controlling the structural deformation,distribution of paleo-structures and detachment layers,and distribution of major hydrocarbon source rocks.Based on the latest 3D seismic,gravity-magnetic,and drilling data,together with the results of previous structural physical simulation and discrete element numerical simulation experiments,the spatial distribution of pre-existing paleo-structures and detachment layers in deep strata of southern Junggar Basin were systematically characterized,the structural deformation characteristics and formation mechanisms were analyzed,the distribution patterns of multiple hydrocarbon source rock suites were clarified,and hydrocarbon accumulation features in key zones were reassessed.The exploration targets in deep lower assemblages with possibility of breakthrough were expected.Key results are obtained in three aspects.First,structural deformation is controlled by two-stage paleo-structures and three detachment layers with distinct lateral variations:the Jurassic layer(moderate thickness,wide distribution),the Cretaceous layer(thickest but weak detachment),and the Paleogene layer(thin but long-distance lateral thrusting).Accordingly,a four-layer composite deformation sequence was identified,and the structural genetic model with paleo-bulge controlling zonation by segments laterally and multiple detachment layers controlling sequence vertically.Second,the Permian source rocks show a distribution pattern with narrow trough(west),multiple sags(central),and broad basin(east),which is depicted by combining high-precision gravity-magnetic data and time-frequency electromagnetic data for the first time,and the Jurassic source rocks feature thicker mudstones in the west and rich coals in the east according to the reassessment.Third,two petroleum systems and a four-layer composite hydrocarbon accumulation model are established depending on the structural deformation strength,trap effectiveness and source-trap configuration.The southern Junggar Basin is divided into three segments with ten zones,and a hierarchical exploration strategy is proposed for deep lower assemblages in this region,that is,focusing on five priority zones,expanding to three potential areas,and challenging two high-risk targets.展开更多
Existing studies indicate that gas hydrate-bearing formations exhibit notable seismic velocity dispersion and attenuation. The Shenhu area of the South China Sea hold significant gas hydrate resource potential;however...Existing studies indicate that gas hydrate-bearing formations exhibit notable seismic velocity dispersion and attenuation. The Shenhu area of the South China Sea hold significant gas hydrate resource potential;however, the relationship between seismic velocity dispersion, attenuation properties, and gas-hydrate saturation remains insufficiently understood. Furthermore, a significant mismatch exists between the real seismic angle gather near a well and the synthetic angle gather generated using the convolution method, and this discrepancy may arise from the seismic velocity dispersion and attenuation characteristics of the gas hydrate-bearing formations. In this paper, we develop a rock physics model that integrates White's and Dvorkin's models, accounting for varied types of gas-hydrate occurrence states,specifically tailored to the gas hydrate-bearing formations in the Shenhu area. This model is calibrated with well log data and employed to investigate how gas-hydrate saturation influences seismic velocity dispersion and attenuation. Numerical analysis reveals the coexistence of two types of gas-hydrate occurrence states in the region: high gas-hydrate saturation formations are dominated by loadbearing-type gas hydrate, and formations containing both gas hydrate and free gas may exhibit either load-bearing or pore-filling types. The seismic velocity dispersion and attenuation properties vary significantly depending on the gas-hydrate occurrence state. We further apply the proposed model to generate seismic velocity and attenuation logs at various frequencies. These logs are used in seismic forward modeling employing both the convolution method and the propagator matrix method. Well tie analysis indicates that the synthetic angle gather incorporating attenuation via the propagator matrix method aligns more closely with the real seismic angle gather than the convolution method. This study provides valuable insights into frequency-dependent amplitude versus offset(AVO) analysis and the seismic interpretation of gas hydrate-bearing formations in the South China Sea.展开更多
In the fields of reservoir fracture prediction and fracturing monitoring,shear-wave splitting analysis has exhibited notable technical advantages.Compared with compressional waves,it offers a more robust capability fo...In the fields of reservoir fracture prediction and fracturing monitoring,shear-wave splitting analysis has exhibited notable technical advantages.Compared with compressional waves,it offers a more robust capability for predicting the orientation and extent of fracture development systems or formation heterogeneity.In regions characterized by vertically or unidirectionally fractured thin interbedded formations,conventional shear-wave splitting analysis and correction methods based on the HTI(Horizontal Transverse Isotropy)medium model are inadequate.These methods fail to account for the increased propagation time difference between fast and slow shear-waves as they accumulate through layered media.This limitation arises because the subsurface medium in such scenarios is more accurately approximated by an orthotropic medium model.To address this challenge,shear-wave splitting analysis and correction methods based on orthotropic media have been developed and implemented.The method first determines the fracture orientation using established techniques,then separates the fast and slow shear-waves through wavefield rotation,and finally employs a matching algorithm to compute the instantaneous time difference between the fast and slow shear-waves.By introducing time-varying delay correction,this approach enables the accurate estimation of delay values that better reflect the actual properties of the subsurface medium.As a result,it enhances the precision of fracture detection in targeted formation intervals.The method has demonstrated excellent performance in both synthetic model and real-data applications.展开更多
Low-frequency vibroseis acquisition has become a routine operation in land seismic surveys,given the advantages of low-frequency signals in characterizing geological structures and enhancing the imaging of deep explor...Low-frequency vibroseis acquisition has become a routine operation in land seismic surveys,given the advantages of low-frequency signals in characterizing geological structures and enhancing the imaging of deep exploration targets.The two key points of low-frequency sweep design techniques include controlling the distortion and improving the output energy during the low-frequency stage.However,the vibrators are limited by the maximum fl ow provided by the hydraulic systems at the low-frequency stage,causing difficulty in satisfying exploration energy requirements.Initially,a theoretical analysis of the low-frequency acquisition performance of vibrators is conducted.A theoretical maximum output force below 10 Hz is obtained by guiding through theoretical formulas and combining actual vibrator parameters.Then,the signal is optimized according to the surface characteristics of the operation area.Finally,detailed application quality control and operational procedures are established.The new low-frequency sweep design method has overcome the maximum flow limitations of the hydraulic system,increased the low-frequency energy,and achieved broadband acquisition.The designed signal has been tested and applied on various types of ground surfaces in the Middle East desert region,yielding good performance.The proposed low-frequency sweep design method holds considerable value for the application of conventional vibroseis in low-frequency acquisition.展开更多
With the continued expansion of oil and gas exploration,both in the eastern and western regions,the quality of seismic acquisition has become a key factor in oil and gas exploration in complex areas.However,convention...With the continued expansion of oil and gas exploration,both in the eastern and western regions,the quality of seismic acquisition has become a key factor in oil and gas exploration in complex areas.However,conventional seismic acquisition methods cannot efficiently avoid challenging acquisition locations and produce high-quality seismic data.In this regard,based on the curvelet transform,this paper proposes an irregular seismic acquisition method,which utilizes the high-precision characteristics of the curvelet transform and simulated annealing algorithm to establish a method for the evaluation of the coherence of irregular sampling matrices and design of observation systems.The method was verified using forward simulation and actual acquisition data.The results suggest the superior quality of seismic data gathered in complicated areas through this method over those acquired using traditional methods,which can provide technical guidance for the design of observation systems in complex areas.展开更多
Deep-water turbidite channels have attracted much attention as a focused issue in petroleum exploration and development. Extensive studies have been performed on the architecture of turbidite channels, and most resear...Deep-water turbidite channels have attracted much attention as a focused issue in petroleum exploration and development. Extensive studies have been performed on the architecture of turbidite channels, and most researches have focused on their geometric shapes, sedimentary processes and controlling factors. However, little attention has been paid to the distribution patterns, distribution laws and quantitative studies of composite sand bodies of turbidite channels. Taken one slope area of the Niger Delta Basin as an example, this study conducted a semi-quantitative to quantitative analysis on architecture of composite sand bodies of turbidite channels based on cores, well logging and seismic surveys. It is shown that turbidite channel systems can be classified as confined and unconfined channel systems. For confined channel systems, the vertical evolution process involves four stages. The sinuosity of a channel system is controlled by slope, with a negative power function relationship between them. When slope gradient reaches four degrees, the channel system is nearly straight. Based on the migration direction and migration amount of single channels within channel complexes, channel composite patterns can be divided into four classes(the lateral composite, en-echelon composite, swing composite and vertical composite) and several subclasses. Various channel composite patterns show specific distribution laws spatially. For meandering channel complexes at the middle-late evolution stage of confined channel systems, the lateral migration amongst single channels shows the features of integrity and succession. The sinuosity of single channels in the late period is greater than that in the early period, and cut-offs may occur locally when the sinuosity is larger than five degrees. This study provides a better understanding for the geological theory of deep-water sedimentary, and also improves exploitation benefits of this type of reservoirs.展开更多
This work aims to reveal the evolution of the porosity in the Triassic Yanchang Formation tight sandstone reservoir of the Xifeng-Ansai area of Ordos Basin. Based on destructive diagenesis (compaction and cementation...This work aims to reveal the evolution of the porosity in the Triassic Yanchang Formation tight sandstone reservoir of the Xifeng-Ansai area of Ordos Basin. Based on destructive diagenesis (compaction and cementation) and constructive diagenesis (dissolution) of sandstone reservoirs, this study analyzed the diagenesis characteristics of the tight sandstone reservoirs in this area, and discussed the relationship between sandstone diagenesis and porosity evolution in combination with present porosity profile characteristics of sandstone reservoir. The effect simulation principle was employed for the mathematical derivation and simulation of the evolution of porosity in the Yanchang Formation tight sandstone reservoirs. The result shows that compaction always occurs in tight sandstone reservoirs in the Yanchang Formation, and cementation occurs when the burial depth increases to a certain value and remains ever since. Dissolution occurs only at a certain stage of the evolution with window features. In the corresponding present porosity profile, diagenesis is characterized by segmentation. From the shallow to the deep, compaction, compaction, cementation and dissolution, compaction and cementation occur successively. Therefore, the evolution of sandstone porosity can be divided into normal compaction section, acidification and incremental porosity section, and normal compaction section after dissolution. The results show that the evolution of sandstone porosity can be decomposed into porosity reduction model and porosity increase model. The superposition of the two models at the same depth in the three stages or in the same geological time can constitute the evolution simulation of the total porosity in sandstone reservoirs. By simulating the evolution of sandstone reservoir porosity of the eighth member in Xifeng area and the sixth member in Ansai area, it shows that they are similar in the evolution process and trend. The difference is caused by the regional uplift or subsidence and burial depth.展开更多
Aliased surface waves are caused by large-space sampling intervals in three- dimensional seismic exploration and most current surface-wave suppression methods fail to account for. Thus, we propose a surface-wave suppr...Aliased surface waves are caused by large-space sampling intervals in three- dimensional seismic exploration and most current surface-wave suppression methods fail to account for. Thus, we propose a surface-wave suppression method using phase-shift and phase-filtering, named the PSPF method, in which linear phase-shift is performed to solve the coupled problem of surface and reflected waves in the FKXKY domain and then used phase and FKXKY filtering to attenuate the surface-wave energy. Processing of model and field data suggest that the PSPF method can reduce the surface-wave energy while maintaining the low-frequency information of the reflected waves.展开更多
The Weiyuan Structure is the largest surface structure in the Sichuan Basin. However, the abundance of the Dengying Formation gas reservoir in the Weiyuan Structure is low. The height of the gas column is 244 m, but t...The Weiyuan Structure is the largest surface structure in the Sichuan Basin. However, the abundance of the Dengying Formation gas reservoir in the Weiyuan Structure is low. The height of the gas column is 244 m, but the integrated abundance is only 26.4%. After nearly 40 years of exploration, the Gaoshi1 Well and Moxi8 Well yielded gas flows that marked an important exploration success after the discovery of the Sinian Dengying Formation gas reservoir in the Weiyuan Structure, Sichuan Basin, Lower-Paleozoic in 1964. Combined with research examples of oil and gas migration and gas chimneys around the world, the authors used comprehensive geological-geophysical-geochemical research methods to provide a reasonable explanation of the low abundance of the gas reservoir in the Weiyuan Structure based on the surface and subsurface data. The latest research results show that(1) currently, the Weiyuan Structure is the apex of the Dengying Formation in the Mid-Sichuan Basin. The Guang'an, Longnüsi, Gaoshiti-Moxi, and Weiyuan structures are a series of traps in the Dengying Formation with gradual uplifting spill and closure points during the regional uplift of the Himalayan period. The natural gas of the Dengying Formation accumulated in different ways over a wide range and long distance in the Sichuan Basin.(2) At approximately 40 Ma, the Weiyuan area started to uplift and form the present structure, and it is the only outcropped area with the Triassic Jialingjiang Formation and Leikoupo Formation in the surface of the Sichuan Basin(except the steep structural belt in East Sichuan). Caused by the uplift and denudation, the core of the Weiyuan Structure has formed an escaping "skylight" for natural gas. The evidence of a gas chimney includes(1) the component percentage of non-hydrocarbon gas, which decreased from the bottom to the top,(2) the pressure coefficient is normal because the gas reservoir from the Upper Sinian to the Lower Permian commonly have a normal pressure coefficient(an average of 1.0), and(3) the isotope geochemistry of the argon mostly represents abiogenic characteristics of a deep source, and the 40 Ar/36 Ar ratio is as high as 2 855–5 222 in the Upper Permian. All of these characteristics provide sufficient evidence for a gas chimney effect. The characteristics of low abundance in the Weiyuan Structure can be a reference example for studying the late reconstruction of deep oil and gas reservoirs in the superimposed basins of western China.展开更多
The oolitic shoals of the Triassic carbonate platform margin in the Yudongzi (鱼洞子) outcrop of Erlangmiao (二郎庙) area in the northwestern Sichuan (四川) basin present a scarce opportunity to quantitatively d...The oolitic shoals of the Triassic carbonate platform margin in the Yudongzi (鱼洞子) outcrop of Erlangmiao (二郎庙) area in the northwestern Sichuan (四川) basin present a scarce opportunity to quantitatively describe their diagenesis and its effects on the acoustic velocity. Using a detailed field geologic survey, profiles illustration of typical depositional system, and systematic testing, five types of diagenesis have been identified in the oolitic shoals: micritization, cementation, compaction and pressolution, dissolution, and dolomitisation. The cementation is composed of four subtypes (micrite cements, fibrous calcite cements, granular calcite cements, and blocky calcite cements). The dissolution is formed from three subtypes (freshwater selective dissolution, burial non-selective dissolution, and burial selective dissolution). The dolomitisation is composed of three subtypes (fine-crystalline dolomites, microcrystalline dolomites, and medium-crystalline dolomites). In order to quantitatively describe the diagenetic fabric of oolitic shoals, the micritic grain content, calcite cement content, mean pore diameter, pore types, dolomite content, and dolomite types have been evaluated. Based on these data, the relationship between the acoustic velocity and diagenesis of oolitic shoals hasbeen established. The results show that the diagenetic fabric is linearly related with the acoustic velocity, and the general trend observed is as expected a decrease of velocity as the micritic grain content, mean pore diameter and dolomite content increase, or the sparite cement content decreases. This study will demonstrate that the transformation of diagenetic facies will probably make the petrophysicai properties ofEffects of Diagenesis on the Acoustic Velocity of the Triassic Oolitic Shoals in the Yudongzi Outcropthe oolitic shoals regularly changed. The reflection configuration of diagenetic facies in the oolitic shoals can be shown in the synthetic seismic model simulated according to the P-wave impedance and S-wave impedance.展开更多
The resolution of seismic data is critical to seismic data processing and the subsequent interpretation of fine structures. In conventional resolution improvement methods, the seismic data is assumed stationary and th...The resolution of seismic data is critical to seismic data processing and the subsequent interpretation of fine structures. In conventional resolution improvement methods, the seismic data is assumed stationary and the noise level not changes with space, whereas the actual situation does not satisfy this assumption, so that results after resolution improvement processing is not up to the expected effect. To solve these problems, we propose a seismic resolution improvement method based on the secondary time-frequency spectrum. First, we propose the secondary time-frequency spectrum based on S transform (ST) and discuss the reflection coefficient sequence and time-dependent wavelet in the secondary time frequency spectrum. Second, using the secondary time frequency spectrum, we design a two- dimensional filter to extract the amplitude spectrum of the time-dependent wavelet. Then, we discuss the improvement of the resolution operator in noisy environments and propose a novel approach for determining the broad frequency range of the resolution operator in the time- fi'equency-space domain. Finally, we apply the proposed method to synthetic and real data and compare the results of the traditional spectrum-modeling deconvolution and Q compensation method. The results suggest that the proposed method does not need to estimate the Q value and the resolution is not limited by the bandwidth of the source. Thus, the resolution of the seismic data is improved sufficiently based on the signal-to-noise ratio (SNR).展开更多
High-frequency electromagnetic sounding is an electromagnetic exploration method using the natural high-frequency electromagnetic field as a field source. It has higher resolution and greater depth penetration than th...High-frequency electromagnetic sounding is an electromagnetic exploration method using the natural high-frequency electromagnetic field as a field source. It has higher resolution and greater depth penetration than the direct current method and is especially fit for geothermal energy exploration and low- and mid-level groundwater detection. We introduce a successful application of high-frequency electromagnetic sounding for evaluating geothermal water resources. The high frequency electromagnetic system (MT-USA with a frequency range from 10 KHz to 1 Hz) is first applied to sample field data from China. A remote reference station is used to assure sampled data quality. We then perform 2D inversion image processing with the electrical method data. The results basically indicate the spatial distribution of underground geothermal water and provide favorable clues to finding the sources of the subsurface geothermal water in this area.展开更多
文摘Strategic initiative:Entering Oman for a new strategy In 2004,the International Department of CNPC’s BGP took a crucial step in the Middle East market by successfully securing a seismic exploration project for the national oil company of Oman,Petroleum Development Oman(PDO).
文摘With the world’s largest oil reserves and production,Saudi Arabia is known as the'oil kingdom',and it is a competitive battlefield for international oil and gas prospecting businesses.BGP entered the market of Saudi Arabia in 1994.Since 2003,when it signed its first geophysical prospecting contract,BGP has won bids on 18seismic acquisition projects,all of which have been safely and efficiently operated.In 2012,as the successful bidder for the world’s current largest prospecting projects—S69,
文摘In September 2013, President Xi Jinping proposed the joint building of the"Silk Road Economic Belt"for the first time in Kazakhstan. On October 3, 2013, on his visit to Indonesia, President Xi addressed the Indonesian parliament, expressing China's willingness to strengthen maritime cooperation with ASEAN countries, to make good use of the China-ASEAN Maritime Cooperation Fund established by the Chinese government, to develop a good marine partnership, and to jointly build the21^(st)Century Maritime Silk Road.Indonesia is a beautiful"Nation of Thousand Islands"and faces China from across the South China Sea. It
文摘In September 2013,President Xi Jinping proposed for the first time in Kazakhstan the joint building of the"Silk Road Ecoinomic Belt".On October 3,2013,on his visit to Indoinesia,Presicdent Xi addressed the Indonesian parliament,expressing China's willingness to strengthen umaritime cooperation with ASEAN countries,make good use of the China-ASEAN Maritime Cooperation Fund establishced by the Chinese government,develop a
文摘On March 28th, 2018, in the BINTUNI BAY sea area of eastern Indonesia, with the last explosion and the successful collection of the last node, the Indonesia Ocean-Bottom Node (OBN) Project of British Petroleum(BP) concluded safely and successfully after 8 months of intense production. Highly regarded in the industry, this project was undertaken by BGP.
文摘In mid-May,good news came from Tajikistan,the country of high mountains.The Tajikistan Bogda Mountain geological exploration and sampling project,which had been dormant for over a decade,achieved a key breakthrough after years of careful research,multi-party collaboration,and optimization of various plans,launching a new round of field exploration and testing work.
基金supported by Science and Technology Cooperation Project of the CNPC-SWPU Innovation Alliance(No.2020CX010202).
文摘The Jurassic Lianggaoshan Formation in eastern Sichuan Basin is a key target for shale oil exploration.It faces challenges in three-pressure prediction due to complex structural and sedimentary interactions,as well as strong reservoir anisotropy.These issues often lead to wellbore instability and gas logging anomalies during drilling.This study presents an integrated workflow that combines residual moveout correction using correlation-based dynamic time warping(CDTW),high-resolution seismic waveform indication inversion,and three-pressure prediction of jointing well-seismic data.Applied to the LT1 well block,the workflow effectively corrects anisotropic residual moveout in image gathers,leading to a signal strength increase of over 10%in frequency bands above 30 Hz and enhancing event continuity.High-resolution rock mechanical parameters are obtained through seismic waveform inversion and regional calibration,enabling the prediction of three-dimensional pore pressure,collapse pressure and fracture pressure.The results are consistent with actual drilling gas shows and core data,confirming the method's accuracy and supporting mud weight planning and wellbore stability efforts.This cost-effective and technically robust approach proves highly reliable in complex environments with significant heterogeneity and anisotropy,assisting drilling decisions and risk management in eastern Sichuan and similar challenging geological settings.
基金supported by National Science and Technology Major Project(Grant No.2017ZX05018-001)。
文摘Deblending is a data processing procedure used to separate the source interferences of blended seismic data,which are obtained by simultaneous sources with random time delays to reduce the cost of seismic acquisition.There are three types of deblending algorithms,i.e.,filtering-type noise suppression algorithm,inversion-based algorithm and deep-learning based algorithm.We review the merits of these techniques,and propose to use a sparse inversion method for seismic data deblending.Filtering-based deblending approach is applicable to blended data with a low blending fold and simple geometry.Otherwise,it can suffer from signal distortion and noise leakage.At present,the deep learning based deblending methods are still under development and field data applications are limited due to the lack of high-quality training labels.In contrast,the inversion-based deblending approaches have gained industrial acceptance.Our used inversion approach transforms the pseudo-deblended data into the frequency-wavenumber-wavenumher(FKK)domain,and a sparse constraint is imposed for the coherent signal estimation.The estimated signal is used to predict the interference noise for subtraction from the original pseudo-deblended data.Via minimizing the data misfit,the signal can be iteratively updated with a shrinking threshold until the signal and interference are fully separated.The used FKK sparse inversion algorithm is very accurate and efficient compared with other sparse inversion methods,and it is widely applied in field cases.Synthetic example shows that the deblending error is less than 1%in average amplitudes and less than-40 dB in amplitude spectra.We present three field data examples of land,marine OBN(Ocean Bottom Nodes)and streamer acquisitions to demonstrate its successful applications in separating the source interferences efficiently and accurately.
基金Supported by the Science and Technology Special Project of CNPC(2023YQX10111)Key Research and Development Special Project of Xinjiang Uygur Autonomous Region(2024B01015-3)。
文摘For deep prospects in the foreland thrust belt,southern Junggar Basin,NW China,there are uncertainties in factors controlling the structural deformation,distribution of paleo-structures and detachment layers,and distribution of major hydrocarbon source rocks.Based on the latest 3D seismic,gravity-magnetic,and drilling data,together with the results of previous structural physical simulation and discrete element numerical simulation experiments,the spatial distribution of pre-existing paleo-structures and detachment layers in deep strata of southern Junggar Basin were systematically characterized,the structural deformation characteristics and formation mechanisms were analyzed,the distribution patterns of multiple hydrocarbon source rock suites were clarified,and hydrocarbon accumulation features in key zones were reassessed.The exploration targets in deep lower assemblages with possibility of breakthrough were expected.Key results are obtained in three aspects.First,structural deformation is controlled by two-stage paleo-structures and three detachment layers with distinct lateral variations:the Jurassic layer(moderate thickness,wide distribution),the Cretaceous layer(thickest but weak detachment),and the Paleogene layer(thin but long-distance lateral thrusting).Accordingly,a four-layer composite deformation sequence was identified,and the structural genetic model with paleo-bulge controlling zonation by segments laterally and multiple detachment layers controlling sequence vertically.Second,the Permian source rocks show a distribution pattern with narrow trough(west),multiple sags(central),and broad basin(east),which is depicted by combining high-precision gravity-magnetic data and time-frequency electromagnetic data for the first time,and the Jurassic source rocks feature thicker mudstones in the west and rich coals in the east according to the reassessment.Third,two petroleum systems and a four-layer composite hydrocarbon accumulation model are established depending on the structural deformation strength,trap effectiveness and source-trap configuration.The southern Junggar Basin is divided into three segments with ten zones,and a hierarchical exploration strategy is proposed for deep lower assemblages in this region,that is,focusing on five priority zones,expanding to three potential areas,and challenging two high-risk targets.
基金supported by National Natural Science Foundation of China(W2431028,42122029)SINOPEC Fundamental Research Program(P24258)CNPC Investigations on fundamental experiments and advanced theoretical methods in geophysical prospecting applications(2022DQ0604-02).
文摘Existing studies indicate that gas hydrate-bearing formations exhibit notable seismic velocity dispersion and attenuation. The Shenhu area of the South China Sea hold significant gas hydrate resource potential;however, the relationship between seismic velocity dispersion, attenuation properties, and gas-hydrate saturation remains insufficiently understood. Furthermore, a significant mismatch exists between the real seismic angle gather near a well and the synthetic angle gather generated using the convolution method, and this discrepancy may arise from the seismic velocity dispersion and attenuation characteristics of the gas hydrate-bearing formations. In this paper, we develop a rock physics model that integrates White's and Dvorkin's models, accounting for varied types of gas-hydrate occurrence states,specifically tailored to the gas hydrate-bearing formations in the Shenhu area. This model is calibrated with well log data and employed to investigate how gas-hydrate saturation influences seismic velocity dispersion and attenuation. Numerical analysis reveals the coexistence of two types of gas-hydrate occurrence states in the region: high gas-hydrate saturation formations are dominated by loadbearing-type gas hydrate, and formations containing both gas hydrate and free gas may exhibit either load-bearing or pore-filling types. The seismic velocity dispersion and attenuation properties vary significantly depending on the gas-hydrate occurrence state. We further apply the proposed model to generate seismic velocity and attenuation logs at various frequencies. These logs are used in seismic forward modeling employing both the convolution method and the propagator matrix method. Well tie analysis indicates that the synthetic angle gather incorporating attenuation via the propagator matrix method aligns more closely with the real seismic angle gather than the convolution method. This study provides valuable insights into frequency-dependent amplitude versus offset(AVO) analysis and the seismic interpretation of gas hydrate-bearing formations in the South China Sea.
基金supported by the research project of the China National Petroleum Corporation under grant numbers 2021ZG02 and 2023ZZ05。
文摘In the fields of reservoir fracture prediction and fracturing monitoring,shear-wave splitting analysis has exhibited notable technical advantages.Compared with compressional waves,it offers a more robust capability for predicting the orientation and extent of fracture development systems or formation heterogeneity.In regions characterized by vertically or unidirectionally fractured thin interbedded formations,conventional shear-wave splitting analysis and correction methods based on the HTI(Horizontal Transverse Isotropy)medium model are inadequate.These methods fail to account for the increased propagation time difference between fast and slow shear-waves as they accumulate through layered media.This limitation arises because the subsurface medium in such scenarios is more accurately approximated by an orthotropic medium model.To address this challenge,shear-wave splitting analysis and correction methods based on orthotropic media have been developed and implemented.The method first determines the fracture orientation using established techniques,then separates the fast and slow shear-waves through wavefield rotation,and finally employs a matching algorithm to compute the instantaneous time difference between the fast and slow shear-waves.By introducing time-varying delay correction,this approach enables the accurate estimation of delay values that better reflect the actual properties of the subsurface medium.As a result,it enhances the precision of fracture detection in targeted formation intervals.The method has demonstrated excellent performance in both synthetic model and real-data applications.
基金The authors would like to express their sincere appreciation to the research project of CNPC Geophysical Key Lab(2022DQ0604-4)National Natural Science Foundation of China(Grant No.42074141).
文摘Low-frequency vibroseis acquisition has become a routine operation in land seismic surveys,given the advantages of low-frequency signals in characterizing geological structures and enhancing the imaging of deep exploration targets.The two key points of low-frequency sweep design techniques include controlling the distortion and improving the output energy during the low-frequency stage.However,the vibrators are limited by the maximum fl ow provided by the hydraulic systems at the low-frequency stage,causing difficulty in satisfying exploration energy requirements.Initially,a theoretical analysis of the low-frequency acquisition performance of vibrators is conducted.A theoretical maximum output force below 10 Hz is obtained by guiding through theoretical formulas and combining actual vibrator parameters.Then,the signal is optimized according to the surface characteristics of the operation area.Finally,detailed application quality control and operational procedures are established.The new low-frequency sweep design method has overcome the maximum flow limitations of the hydraulic system,increased the low-frequency energy,and achieved broadband acquisition.The designed signal has been tested and applied on various types of ground surfaces in the Middle East desert region,yielding good performance.The proposed low-frequency sweep design method holds considerable value for the application of conventional vibroseis in low-frequency acquisition.
基金innovation consortium project of China Petroleum and Southwest Petroleum University(No.2020CX010201)Sichuan Science and Technology Program(No.2024NSFSC0081)。
文摘With the continued expansion of oil and gas exploration,both in the eastern and western regions,the quality of seismic acquisition has become a key factor in oil and gas exploration in complex areas.However,conventional seismic acquisition methods cannot efficiently avoid challenging acquisition locations and produce high-quality seismic data.In this regard,based on the curvelet transform,this paper proposes an irregular seismic acquisition method,which utilizes the high-precision characteristics of the curvelet transform and simulated annealing algorithm to establish a method for the evaluation of the coherence of irregular sampling matrices and design of observation systems.The method was verified using forward simulation and actual acquisition data.The results suggest the superior quality of seismic data gathered in complicated areas through this method over those acquired using traditional methods,which can provide technical guidance for the design of observation systems in complex areas.
基金granted by the National Science and Technology Major Project of the Ministry of Science and Technology of China (Grant No.2011ZX05030-005 and No.2011ZX05009-003)the National Natural Science Foundation of China (Grant No. 40902035)
文摘Deep-water turbidite channels have attracted much attention as a focused issue in petroleum exploration and development. Extensive studies have been performed on the architecture of turbidite channels, and most researches have focused on their geometric shapes, sedimentary processes and controlling factors. However, little attention has been paid to the distribution patterns, distribution laws and quantitative studies of composite sand bodies of turbidite channels. Taken one slope area of the Niger Delta Basin as an example, this study conducted a semi-quantitative to quantitative analysis on architecture of composite sand bodies of turbidite channels based on cores, well logging and seismic surveys. It is shown that turbidite channel systems can be classified as confined and unconfined channel systems. For confined channel systems, the vertical evolution process involves four stages. The sinuosity of a channel system is controlled by slope, with a negative power function relationship between them. When slope gradient reaches four degrees, the channel system is nearly straight. Based on the migration direction and migration amount of single channels within channel complexes, channel composite patterns can be divided into four classes(the lateral composite, en-echelon composite, swing composite and vertical composite) and several subclasses. Various channel composite patterns show specific distribution laws spatially. For meandering channel complexes at the middle-late evolution stage of confined channel systems, the lateral migration amongst single channels shows the features of integrity and succession. The sinuosity of single channels in the late period is greater than that in the early period, and cut-offs may occur locally when the sinuosity is larger than five degrees. This study provides a better understanding for the geological theory of deep-water sedimentary, and also improves exploitation benefits of this type of reservoirs.
基金financially supported by the National Natural Science Foundation of China (grant No.41502147)Sichuan Province University Scientific Innovation Team Construction Project (USITCP)+1 种基金the Yong Scholars Development Fund of SWPU (grant No.201499010089)the National Science and Technology Major Project (grant No.2011ZX05001-001-04)
文摘This work aims to reveal the evolution of the porosity in the Triassic Yanchang Formation tight sandstone reservoir of the Xifeng-Ansai area of Ordos Basin. Based on destructive diagenesis (compaction and cementation) and constructive diagenesis (dissolution) of sandstone reservoirs, this study analyzed the diagenesis characteristics of the tight sandstone reservoirs in this area, and discussed the relationship between sandstone diagenesis and porosity evolution in combination with present porosity profile characteristics of sandstone reservoir. The effect simulation principle was employed for the mathematical derivation and simulation of the evolution of porosity in the Yanchang Formation tight sandstone reservoirs. The result shows that compaction always occurs in tight sandstone reservoirs in the Yanchang Formation, and cementation occurs when the burial depth increases to a certain value and remains ever since. Dissolution occurs only at a certain stage of the evolution with window features. In the corresponding present porosity profile, diagenesis is characterized by segmentation. From the shallow to the deep, compaction, compaction, cementation and dissolution, compaction and cementation occur successively. Therefore, the evolution of sandstone porosity can be divided into normal compaction section, acidification and incremental porosity section, and normal compaction section after dissolution. The results show that the evolution of sandstone porosity can be decomposed into porosity reduction model and porosity increase model. The superposition of the two models at the same depth in the three stages or in the same geological time can constitute the evolution simulation of the total porosity in sandstone reservoirs. By simulating the evolution of sandstone reservoir porosity of the eighth member in Xifeng area and the sixth member in Ansai area, it shows that they are similar in the evolution process and trend. The difference is caused by the regional uplift or subsidence and burial depth.
基金supported by the National Natural Science Foundation of China(No.41274124)the National Science and Technology Major Project(No.2016ZX05014-001-008HZ)
文摘Aliased surface waves are caused by large-space sampling intervals in three- dimensional seismic exploration and most current surface-wave suppression methods fail to account for. Thus, we propose a surface-wave suppression method using phase-shift and phase-filtering, named the PSPF method, in which linear phase-shift is performed to solve the coupled problem of surface and reflected waves in the FKXKY domain and then used phase and FKXKY filtering to attenuate the surface-wave energy. Processing of model and field data suggest that the PSPF method can reduce the surface-wave energy while maintaining the low-frequency information of the reflected waves.
基金financially supported by the Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu University of Technologythe 973 Program of China (No. 2012CB214805)+1 种基金the SINOPEC research project (No. P16109)the National Science and Technology Major Project of China (No. 2017ZX05005003-007)
文摘The Weiyuan Structure is the largest surface structure in the Sichuan Basin. However, the abundance of the Dengying Formation gas reservoir in the Weiyuan Structure is low. The height of the gas column is 244 m, but the integrated abundance is only 26.4%. After nearly 40 years of exploration, the Gaoshi1 Well and Moxi8 Well yielded gas flows that marked an important exploration success after the discovery of the Sinian Dengying Formation gas reservoir in the Weiyuan Structure, Sichuan Basin, Lower-Paleozoic in 1964. Combined with research examples of oil and gas migration and gas chimneys around the world, the authors used comprehensive geological-geophysical-geochemical research methods to provide a reasonable explanation of the low abundance of the gas reservoir in the Weiyuan Structure based on the surface and subsurface data. The latest research results show that(1) currently, the Weiyuan Structure is the apex of the Dengying Formation in the Mid-Sichuan Basin. The Guang'an, Longnüsi, Gaoshiti-Moxi, and Weiyuan structures are a series of traps in the Dengying Formation with gradual uplifting spill and closure points during the regional uplift of the Himalayan period. The natural gas of the Dengying Formation accumulated in different ways over a wide range and long distance in the Sichuan Basin.(2) At approximately 40 Ma, the Weiyuan area started to uplift and form the present structure, and it is the only outcropped area with the Triassic Jialingjiang Formation and Leikoupo Formation in the surface of the Sichuan Basin(except the steep structural belt in East Sichuan). Caused by the uplift and denudation, the core of the Weiyuan Structure has formed an escaping "skylight" for natural gas. The evidence of a gas chimney includes(1) the component percentage of non-hydrocarbon gas, which decreased from the bottom to the top,(2) the pressure coefficient is normal because the gas reservoir from the Upper Sinian to the Lower Permian commonly have a normal pressure coefficient(an average of 1.0), and(3) the isotope geochemistry of the argon mostly represents abiogenic characteristics of a deep source, and the 40 Ar/36 Ar ratio is as high as 2 855–5 222 in the Upper Permian. All of these characteristics provide sufficient evidence for a gas chimney effect. The characteristics of low abundance in the Weiyuan Structure can be a reference example for studying the late reconstruction of deep oil and gas reservoirs in the superimposed basins of western China.
基金supported by the SINOPEC Forward Looking Project of China (No. YPH08114)
文摘The oolitic shoals of the Triassic carbonate platform margin in the Yudongzi (鱼洞子) outcrop of Erlangmiao (二郎庙) area in the northwestern Sichuan (四川) basin present a scarce opportunity to quantitatively describe their diagenesis and its effects on the acoustic velocity. Using a detailed field geologic survey, profiles illustration of typical depositional system, and systematic testing, five types of diagenesis have been identified in the oolitic shoals: micritization, cementation, compaction and pressolution, dissolution, and dolomitisation. The cementation is composed of four subtypes (micrite cements, fibrous calcite cements, granular calcite cements, and blocky calcite cements). The dissolution is formed from three subtypes (freshwater selective dissolution, burial non-selective dissolution, and burial selective dissolution). The dolomitisation is composed of three subtypes (fine-crystalline dolomites, microcrystalline dolomites, and medium-crystalline dolomites). In order to quantitatively describe the diagenetic fabric of oolitic shoals, the micritic grain content, calcite cement content, mean pore diameter, pore types, dolomite content, and dolomite types have been evaluated. Based on these data, the relationship between the acoustic velocity and diagenesis of oolitic shoals hasbeen established. The results show that the diagenetic fabric is linearly related with the acoustic velocity, and the general trend observed is as expected a decrease of velocity as the micritic grain content, mean pore diameter and dolomite content increase, or the sparite cement content decreases. This study will demonstrate that the transformation of diagenetic facies will probably make the petrophysicai properties ofEffects of Diagenesis on the Acoustic Velocity of the Triassic Oolitic Shoals in the Yudongzi Outcropthe oolitic shoals regularly changed. The reflection configuration of diagenetic facies in the oolitic shoals can be shown in the synthetic seismic model simulated according to the P-wave impedance and S-wave impedance.
基金financially supported by the National 973 Project(No.2014CB239006)the National Natural Science Foundation of China(No.41104069 and 41274124)the Fundamental Research Funds for Central Universities(No.R1401005A)
文摘The resolution of seismic data is critical to seismic data processing and the subsequent interpretation of fine structures. In conventional resolution improvement methods, the seismic data is assumed stationary and the noise level not changes with space, whereas the actual situation does not satisfy this assumption, so that results after resolution improvement processing is not up to the expected effect. To solve these problems, we propose a seismic resolution improvement method based on the secondary time-frequency spectrum. First, we propose the secondary time-frequency spectrum based on S transform (ST) and discuss the reflection coefficient sequence and time-dependent wavelet in the secondary time frequency spectrum. Second, using the secondary time frequency spectrum, we design a two- dimensional filter to extract the amplitude spectrum of the time-dependent wavelet. Then, we discuss the improvement of the resolution operator in noisy environments and propose a novel approach for determining the broad frequency range of the resolution operator in the time- fi'equency-space domain. Finally, we apply the proposed method to synthetic and real data and compare the results of the traditional spectrum-modeling deconvolution and Q compensation method. The results suggest that the proposed method does not need to estimate the Q value and the resolution is not limited by the bandwidth of the source. Thus, the resolution of the seismic data is improved sufficiently based on the signal-to-noise ratio (SNR).
文摘High-frequency electromagnetic sounding is an electromagnetic exploration method using the natural high-frequency electromagnetic field as a field source. It has higher resolution and greater depth penetration than the direct current method and is especially fit for geothermal energy exploration and low- and mid-level groundwater detection. We introduce a successful application of high-frequency electromagnetic sounding for evaluating geothermal water resources. The high frequency electromagnetic system (MT-USA with a frequency range from 10 KHz to 1 Hz) is first applied to sample field data from China. A remote reference station is used to assure sampled data quality. We then perform 2D inversion image processing with the electrical method data. The results basically indicate the spatial distribution of underground geothermal water and provide favorable clues to finding the sources of the subsurface geothermal water in this area.