Background Monoglycerides have emerged as a promising alternative to conventional practices due to their biolog-ical activities,including antimicrobial properties.However,few studies have assessed the efficacy of mono...Background Monoglycerides have emerged as a promising alternative to conventional practices due to their biolog-ical activities,including antimicrobial properties.However,few studies have assessed the efficacy of monoglyceride blend on weaned pigs and their impacts on performance,immune response,and gut health using a disease chal-lenge model.Therefore,this study aimed to investigate the effects of dietary monoglycerides of short-and medium-chain fatty acids on the immunity and gut health of weaned pigs experimentally infected with an enterotoxigenic Escherichia coli F18.Results Pigs supplemented with high-dose zinc oxide(ZNO)had greater(P<0.05)growth performance than other treatments,but no difference was observed in average daily feed intake between ZNO and monoglycerides groups during the post-challenge period.Pigs in ZNO and antibiotic groups had lower(P<0.05)severity of diarrhea than control,but the severity of diarrhea was not different between antibiotic and monoglycerides groups.Pigs fed with monoglycerides or ZNO had lower(P<0.05)serum haptoglobin on d 2 or 5 post-inoculation than control.Pigs in ZNO had greater(P<0.05)goblet cell numbers per villus,villus area and height,and villus height:crypt depth ratio(VH:CD)in duodenum on d 5 post-inoculation than pigs in other treatments.Pigs supplemented with monoglyc-erides,ZNO,or antibiotics had reduced(P<0.05)ileal crypt depth compared with control on d 5 post-inoculation,contributing to the increase(P=0.06)in VH:CD.Consistently,pigs in ZNO expressed the lowest(P<0.05)TNFa,IL6,IL10,IL12,IL1A,IL1B,and PTGS2 in ileal mucosa on d 5 post-inoculation,and no difference was observed in the expres-sion of those genes between ZNO and monoglycerides.Supplementation of ZNO and antibiotic had significant impacts on metabolic pathways in the serum compared with control,particularly on carbohydrate and amino acid metabolism,while limited impacts on serum metabolites were observed in monoglycerides group when compared with control.Conclusions The results suggest that supplementation of monoglyceride blend may enhance disease resist-ance of weaned pigs by alleviating the severity of diarrhea and mitigating intestinal and systemic inflammation,although the effectiveness may not be comparable to high-dose zinc oxide.展开更多
ITR zeolite could be potentially used as catalysts in methanol to propylene(MTP),where their performance is strongly related to its Al distribution.However,the control of Al distribution in ITR zeolite poses a signifi...ITR zeolite could be potentially used as catalysts in methanol to propylene(MTP),where their performance is strongly related to its Al distribution.However,the control of Al distribution in ITR zeolite poses a significant synthetic challenge.Herein,we demonstrate the possibility to control the Al distribution in ITR zeolites using zeolite A as an aluminum source(A-ITR).The A-ITR exhibited similar crystallinity,nanosheet morphology,textual parameters,and acidic concentration with those of conventional ITR made zeolites using aluminum isopropoxide as an aluminum source(C-ITR).Characterizations of the zeolite product with^(27)Al MQ.MAS NMR spectra,^(27)Al MAS NMR spectra,and 1-hexene cracking reveal that the A-ITR zeolites have more Al species distributed in T6 and T8 sites located in relatively smaller micropores of the framework than C-ITR.As a result,the A-ITR gave enhanced catalyst lifetime and propylene selectivity due to the suppression of the aromatic cycle in the MTP reaction,compared with the C-ITR.This work provides an alternative approach to prepare efficient ITR zeolites for MTP reaction.展开更多
LiNiO_(2)(LNO)is one of the most promising cathode materials for lithium-ion batteries.Tungsten element in enhancing the stability of LNO has been researched extensively.However,the understanding of the specific dopin...LiNiO_(2)(LNO)is one of the most promising cathode materials for lithium-ion batteries.Tungsten element in enhancing the stability of LNO has been researched extensively.However,the understanding of the specific doping process and existing form of W are still not perfect.This study proposes a lithium-induced grain boundary phase W doping mechanism.The results demonstrate that the introduced W atomsfirst react with the lithium source to generate a Li–W–O phase at the grain boundary of primary particles.With the increase of lithium ratio,W atoms gradually diffuse from the grain boundary phase to the interior layered structure to achieve W doping.The feasibility of grain boundary phase doping is verified byfirst principles calculation.Furthermore,it is found that the Li2WO4 grain boundary phase is an excellent lithium ion conductor,which can protect the cathode surface and improve the rate performance.The doped W can alleviate the harmful H2↔H3 phase transition,thereby inhibiting the generation of microcracks,and improving the electrochemical performance.Consequently,the 0.3 wt%W-doped sample provides a significant improved capacity retention of 88.5%compared with the pristine LNO(80.7%)after 100 cycles at 2.8–4.3 V under 1C.展开更多
文摘Background Monoglycerides have emerged as a promising alternative to conventional practices due to their biolog-ical activities,including antimicrobial properties.However,few studies have assessed the efficacy of monoglyceride blend on weaned pigs and their impacts on performance,immune response,and gut health using a disease chal-lenge model.Therefore,this study aimed to investigate the effects of dietary monoglycerides of short-and medium-chain fatty acids on the immunity and gut health of weaned pigs experimentally infected with an enterotoxigenic Escherichia coli F18.Results Pigs supplemented with high-dose zinc oxide(ZNO)had greater(P<0.05)growth performance than other treatments,but no difference was observed in average daily feed intake between ZNO and monoglycerides groups during the post-challenge period.Pigs in ZNO and antibiotic groups had lower(P<0.05)severity of diarrhea than control,but the severity of diarrhea was not different between antibiotic and monoglycerides groups.Pigs fed with monoglycerides or ZNO had lower(P<0.05)serum haptoglobin on d 2 or 5 post-inoculation than control.Pigs in ZNO had greater(P<0.05)goblet cell numbers per villus,villus area and height,and villus height:crypt depth ratio(VH:CD)in duodenum on d 5 post-inoculation than pigs in other treatments.Pigs supplemented with monoglyc-erides,ZNO,or antibiotics had reduced(P<0.05)ileal crypt depth compared with control on d 5 post-inoculation,contributing to the increase(P=0.06)in VH:CD.Consistently,pigs in ZNO expressed the lowest(P<0.05)TNFa,IL6,IL10,IL12,IL1A,IL1B,and PTGS2 in ileal mucosa on d 5 post-inoculation,and no difference was observed in the expres-sion of those genes between ZNO and monoglycerides.Supplementation of ZNO and antibiotic had significant impacts on metabolic pathways in the serum compared with control,particularly on carbohydrate and amino acid metabolism,while limited impacts on serum metabolites were observed in monoglycerides group when compared with control.Conclusions The results suggest that supplementation of monoglyceride blend may enhance disease resist-ance of weaned pigs by alleviating the severity of diarrhea and mitigating intestinal and systemic inflammation,although the effectiveness may not be comparable to high-dose zinc oxide.
基金supported by the National Key Research and Development Program of China(2022YFA1503602)the National Natural Science Foundation of China(22288101,U21B20101 and 22172141)+1 种基金the BASF International Network of Centers of Excellence projectthe Zhejiang Provincial Natural Science Foundation of China(LR24B030001)。
文摘ITR zeolite could be potentially used as catalysts in methanol to propylene(MTP),where their performance is strongly related to its Al distribution.However,the control of Al distribution in ITR zeolite poses a significant synthetic challenge.Herein,we demonstrate the possibility to control the Al distribution in ITR zeolites using zeolite A as an aluminum source(A-ITR).The A-ITR exhibited similar crystallinity,nanosheet morphology,textual parameters,and acidic concentration with those of conventional ITR made zeolites using aluminum isopropoxide as an aluminum source(C-ITR).Characterizations of the zeolite product with^(27)Al MQ.MAS NMR spectra,^(27)Al MAS NMR spectra,and 1-hexene cracking reveal that the A-ITR zeolites have more Al species distributed in T6 and T8 sites located in relatively smaller micropores of the framework than C-ITR.As a result,the A-ITR gave enhanced catalyst lifetime and propylene selectivity due to the suppression of the aromatic cycle in the MTP reaction,compared with the C-ITR.This work provides an alternative approach to prepare efficient ITR zeolites for MTP reaction.
基金supported by the National Natural Science Foundation of China(No.52122407,No.52174285,52404317)the Science and Technology Innovation Program of Hunan Province(No.2022RC3048).
文摘LiNiO_(2)(LNO)is one of the most promising cathode materials for lithium-ion batteries.Tungsten element in enhancing the stability of LNO has been researched extensively.However,the understanding of the specific doping process and existing form of W are still not perfect.This study proposes a lithium-induced grain boundary phase W doping mechanism.The results demonstrate that the introduced W atomsfirst react with the lithium source to generate a Li–W–O phase at the grain boundary of primary particles.With the increase of lithium ratio,W atoms gradually diffuse from the grain boundary phase to the interior layered structure to achieve W doping.The feasibility of grain boundary phase doping is verified byfirst principles calculation.Furthermore,it is found that the Li2WO4 grain boundary phase is an excellent lithium ion conductor,which can protect the cathode surface and improve the rate performance.The doped W can alleviate the harmful H2↔H3 phase transition,thereby inhibiting the generation of microcracks,and improving the electrochemical performance.Consequently,the 0.3 wt%W-doped sample provides a significant improved capacity retention of 88.5%compared with the pristine LNO(80.7%)after 100 cycles at 2.8–4.3 V under 1C.