Recent research suggests that both tropical ocean warming and stratospheric temperature anomalies due to ozone depletion have led to a poleward displacement of the midand high-latitude circulation of the Southern Hemi...Recent research suggests that both tropical ocean warming and stratospheric temperature anomalies due to ozone depletion have led to a poleward displacement of the midand high-latitude circulation of the Southern Hemisphere over the past century. In this study, we attempt to distinguish the influences of ocean warming and stratospheric cooling trends on seasonal changes of both the zonally symmetric and asymmetric components of the southern hemisphere circulation. Our analysis makes use of three data sets-the ERA40 reanalysis and results from two different runs of the GFDL global atmosphere and land model (AM2.1) for the period 1870 to 2004. A regression analysis was applied to two variables in each of the three data sets-the zonal component of the surface wind U(10 m) and the height at 300 hPa—to determine their correlation with zonally averaged polar stratospheric temperatures (T_polar—at 150 hPa, averaged over a band from 70S - 80S) and low-level equatorial temperatures (T_equator—at 850 hPa averaged over a band at 5S - 5N). Our analysis shows that the zonally symmetric surface winds have a considerably enhanced intensity in high latitudes of the southern hemisphere over the summer period, and that the stratospheric temperature trend, and thus ozone depletion, is the dominant contributor to that change. However, the climatic change of the asymmetric component of zonal wind component at z = 10 m (U10) as well as of 300hPa heights has been found to be large for both summer and winter periods. Our regression results show that correlation with T_equator (our proxy for global warming) explains most of the climatic changes for the asymmetric component of U10 and 300 hPa heights for summer and winter periods, suggesting the influence of warming of the global oceans on anticyclones south of the Indian Ocean and south-eastern Pacific Ocean.展开更多
Using a newly reported Pacific sea surface temperature data set, we extend a prior study that assigned El Niño episodes to distinct sequences. Within these sequences the episodes are phase-locked to subharmoni...Using a newly reported Pacific sea surface temperature data set, we extend a prior study that assigned El Niño episodes to distinct sequences. Within these sequences the episodes are phase-locked to subharmonics of the annual solar irradiance cycle having two- or three-year periodicity. There are 40 El Niño episodes occurring since 1872, each found within one of eighteen such sequences. Our list includes all previously reported events. Three El Niño episodes have already been observed in boreal winters of 2009, 2012 and 2015, illustrating a sequence of 3-year intervals that began in 2008. If the climate system remains in this state, the next El Niño is likely to occur in boreal winter of 2018.展开更多
文摘Recent research suggests that both tropical ocean warming and stratospheric temperature anomalies due to ozone depletion have led to a poleward displacement of the midand high-latitude circulation of the Southern Hemisphere over the past century. In this study, we attempt to distinguish the influences of ocean warming and stratospheric cooling trends on seasonal changes of both the zonally symmetric and asymmetric components of the southern hemisphere circulation. Our analysis makes use of three data sets-the ERA40 reanalysis and results from two different runs of the GFDL global atmosphere and land model (AM2.1) for the period 1870 to 2004. A regression analysis was applied to two variables in each of the three data sets-the zonal component of the surface wind U(10 m) and the height at 300 hPa—to determine their correlation with zonally averaged polar stratospheric temperatures (T_polar—at 150 hPa, averaged over a band from 70S - 80S) and low-level equatorial temperatures (T_equator—at 850 hPa averaged over a band at 5S - 5N). Our analysis shows that the zonally symmetric surface winds have a considerably enhanced intensity in high latitudes of the southern hemisphere over the summer period, and that the stratospheric temperature trend, and thus ozone depletion, is the dominant contributor to that change. However, the climatic change of the asymmetric component of zonal wind component at z = 10 m (U10) as well as of 300hPa heights has been found to be large for both summer and winter periods. Our regression results show that correlation with T_equator (our proxy for global warming) explains most of the climatic changes for the asymmetric component of U10 and 300 hPa heights for summer and winter periods, suggesting the influence of warming of the global oceans on anticyclones south of the Indian Ocean and south-eastern Pacific Ocean.
文摘Using a newly reported Pacific sea surface temperature data set, we extend a prior study that assigned El Niño episodes to distinct sequences. Within these sequences the episodes are phase-locked to subharmonics of the annual solar irradiance cycle having two- or three-year periodicity. There are 40 El Niño episodes occurring since 1872, each found within one of eighteen such sequences. Our list includes all previously reported events. Three El Niño episodes have already been observed in boreal winters of 2009, 2012 and 2015, illustrating a sequence of 3-year intervals that began in 2008. If the climate system remains in this state, the next El Niño is likely to occur in boreal winter of 2018.