The negative impacts of natural hazards on communities at all scales have been increasing.Floods comprise one such natural hazard that has emerged as one of the most destructive in the US and worldwide.While a lot of ...The negative impacts of natural hazards on communities at all scales have been increasing.Floods comprise one such natural hazard that has emerged as one of the most destructive in the US and worldwide.While a lot of damage is estimated in terms of the cost of rebuilding infrastructure and direct loss of economy,the negative impacts of such disruptions go beyond the physical infrastructure.The impact on(and of)the social and institutional framework is rarely examined in conjunction with the physical and technical aspects.This paper examines flood vulnerability and risk of a community at an intersection of social,ecological,technical,and intuitional perspectives,and presents a framework for a holistic flood vulnerability and risk assessment that has a strong foundation in all four aspects of a resilient community.The study builds on the existing risk,vulnerability,and hazard assessment approaches,and refines them with a holistic perspective.The study uses a mixed method approach with qualitative and quantitative methodologies to assess flood occurrence probabilities,vulnerability,and risk from the social,ecological,technical,and institutional perspectives.A case study of the City of Atlanta is conducted using the framework to assess the overall vulnerability and risk of the city.The results of this analysis show that the regions that have the highest probability of flood hazard occurrence also appear to have the highest social,ecological,and technical vulnerabilities in the Atlanta area.While the results are intuitive,the applications support a focus on holistic resilience building across these four criteria.This study is potentially useful to practitioners,researchers,government agencies,and community organizations working to mitigate flood risk particularly as this risk continues to evolve with the changing climate.展开更多
Low-impact development (LID) technologies have a great potential to reduce water usage and stormwa- ter runoff and are therefore seen as sustainable improvements that can be made to traditional water infrastructure,...Low-impact development (LID) technologies have a great potential to reduce water usage and stormwa- ter runoff and are therefore seen as sustainable improvements that can be made to traditional water infrastructure, These technologies include bioretention areas, rainwater capturing, and xeriscaping, all of which can be used in residential zones, Within the City of Atlanta, residential water usage accounts for 53% of the total water consumption; therefore, residential zones offer significant impact potential for the implementation of LID, This study analyzes the use of LID strategies within the different residen- tial zones of the City of Atlanta from an ecological perspective by drawing analogies to natural ecosys- tems, The analysis shows that these technologies, especially with the addition of a graywater system, work to improve the conventional residential water network based upon these ecological metrics, The higher metric values suggest greater parity with healthy, natural ecosystems.展开更多
The increasing pace of urbanization means that cities and global organizations are looking for ways to increase energy efficiency and reduce emissions. Combined cooling, heating, and power (CCHP) systems have the po...The increasing pace of urbanization means that cities and global organizations are looking for ways to increase energy efficiency and reduce emissions. Combined cooling, heating, and power (CCHP) systems have the potential to improve the energy generation efficiency of a city or urban region by providing energy for heating, cooling, and electricity simultaneously. The purpose of this study is to estimate the water consumption for energy generation use, carbon dioxide (CO2) and NOx emissions, and economic impact of implementing CCHP systems for five generic building types within the Atlanta metropolitan region, under various operational scenarios following the building thermal (heating and cooling) demands. Operating the CCHP system to follow the hourly thermal demand reduces CO2 emissions for most building types both with and without net metering. The system can be economically beneficial for all building types depending on the price of natural gas, the implementation of net metering, and the cost structure assumed for the CCHP system. The greatest reduction in water consumption for energy production and NOx emissions occurs when there is net metering and when the system is operated to meet the maximum yearly thermal demand, although this scenario also results in an increase in greenhouse gas emissions and, in some cases, cost. CCHP systems are more economical for medium office, large office, and multifamilv residential buildings.展开更多
Objective: Factors influencing survival among persons with Down syndrome (DS) are not well understood. We sought to evaluate survival of infants with DS and potential prognostic factors. Study design: Infants with DS ...Objective: Factors influencing survival among persons with Down syndrome (DS) are not well understood. We sought to evaluate survival of infants with DS and potential prognostic factors. Study design: Infants with DS who were born alive during 1979 to 1998 were identified using the Metropolitan Atlanta Congenital Defects Program (MACDP), a population based surveillance system. To document vital status, we used data from hospital records, the National Death Index (NDI), and Georgia vital records. We estimated survival probability using the Kaplan-Meier product limit method and hazard ratios using a Cox proportional hazards model. Results: Survival probability to 1 year was 92.9%(95%CI: 90.9-94.9) and to 10 years was 88.6%(95%CI: 85.0-92.2). Univariate analysis demonstrated that black maternal race, low birth weight, preterm birth, lower paternal education, presence of heart defects, and presence of other major congenital anomalies were important prognostic factors. After multivariate analysis, maternal race, presence of heart defects, low birth weight, and an interaction between maternal race and presence of heart defects were significantly associated with mortality risk. Conclusions: A racial disparity is apparent in survival for children with Down syndrome. Further study is needed to elucidate possible reasons for the racial disparity.展开更多
This research assessed the impact of efficiently expanding the biking network in Atlanta,Georgia,using dedicated lanes for bicycles.A total of three different conditions,i.e.,exist-ing,proposed(by the authors),and alt...This research assessed the impact of efficiently expanding the biking network in Atlanta,Georgia,using dedicated lanes for bicycles.A total of three different conditions,i.e.,exist-ing,proposed(by the authors),and alternative(suggested by the City of Atlanta)condi-tions,were modeled to see the effectiveness of bike infrastructure design improvement and expansion.Trajectory data collected from the VISSIM simulation model were used in the Federal Highway Administration(FHWA)’s surrogate safety assessment model(SSAM)to analyze the safety effect on the bike infrastructure improvement and expansion.Based on the results,both the proposed and alternative conditions resulted in safer travel through the network during the peak hour period without any apparent deterioration in delays.For instance,compared to the existing condition,the average stop delays decreased from 190 s to 164 s for the proposed and the alternative conditions.These findings showed that the introduction of bicycle lanes and narrower lanes for automobiles may not adversely affect the peak hour congestion.Also,fewer conflicts were observed in the sim-ulated network of proposed and alternative conditions compared to existing conditions.Conflicts involving bicyclists were also reduced since the bicyclists can use their own lanes and do not have to interact with automobile traffic in the sharrows.展开更多
Traumatic brain injury, chronic traumatic encephalopathy, and Alzheimer's disease are three distinct neurological disorders that share common pathophysiological mechanisms involving neuroinflammation. One sequela ...Traumatic brain injury, chronic traumatic encephalopathy, and Alzheimer's disease are three distinct neurological disorders that share common pathophysiological mechanisms involving neuroinflammation. One sequela of neuroinflammation includes the pathologic hyperphosphorylation of tau protein, an endogenous microtubule-associated protein that protects the integrity of neuronal cytoskeletons. Tau hyperphosphorylation results in protein misfolding and subsequent accumulation of tau tangles forming neurotoxic aggregates. These misfolded proteins are characteristic of traumatic brain injury, chronic traumatic encephalopathy, and Alzheimer's disease and can lead to downstream neuroinflammatory processes, including assembly and activation of the inflammasome complex. Inflammasomes refer to a family of multimeric protein units that, upon activation, release a cascade of signaling molecules resulting in caspase-induced cell death and inflammation mediated by the release of interleukin-1β cytokine. One specific inflammasome, the NOD-like receptor protein 3, has been proposed to be a key regulator of tau phosphorylation where it has been shown that prolonged NOD-like receptor protein 3 activation acts as a causal factor in pathological tau accumulation and spreading. This review begins by describing the epidemiology and pathophysiology of traumatic brain injury, chronic traumatic encephalopathy, and Alzheimer's disease. Next, we highlight neuroinflammation as an overriding theme and discuss the role of the NOD-like receptor protein 3 inflammasome in the formation of tau deposits and how such tauopathic entities spread throughout the brain. We then propose a novel framework linking traumatic brain injury, chronic traumatic encephalopathy, and Alzheimer's disease as inflammasomedependent pathologies that exist along a temporal continuum. Finally, we discuss potential therapeutic targets that may intercept this pathway and ultimately minimize long-term neurological decline.展开更多
The application of industrial solid wastes as environmentally functional materials for air pollutants control has gained much attention in recent years due to its potential to reduce air pollution in a cost-effective ...The application of industrial solid wastes as environmentally functional materials for air pollutants control has gained much attention in recent years due to its potential to reduce air pollution in a cost-effective manner.In this review,we investigate the development of industrialwaste-based functional materials for various gas pollutant removal and consider the relevant reaction mechanism according to different types of industrial solid waste.We see a recent effort towards achieving high-performance environmental functional materials via chemical or physical modification,in which the active components,pore size,and phase structure can be altered.The review will discuss the potential of using industrial solid wastes,these modified materials,or synthesized materials from raw waste precursors for the removal of air pollutants,including SO_(2),NO_(x),Hg^(0),H_(2)S,VOCs,and CO_(2).The challenges still need to be addressed to realize this potential and the prospects for future research fully.The suggestions for future directions include determining the optimal composition of these materials,calculating the real reaction rate and turnover frequency,developing effective treatment methods,and establishing chemical component databases of raw industrial solid waste for catalysts/adsorbent preparation.展开更多
Stroke and Alzheimer's disease are common neurological disorders and often occur in the same individuals.The comorbidity of the two neurological disorders represents a grave health threat to older populations.This...Stroke and Alzheimer's disease are common neurological disorders and often occur in the same individuals.The comorbidity of the two neurological disorders represents a grave health threat to older populations.This review presents a brief background of the development of novel concepts and their clinical potentials.The activity of glutamatergic N-methyl-D-aspartate receptors and N-methyl-D-aspartate receptor-mediated Ca^(2+)influx is critical for neuronal function.An ischemic insult induces prompt and excessive glutamate release and drastic increases of intracellular Ca^(2+)mainly via N-methyl-D-aspartate receptors,particularly of those at the extrasynaptic site.This Ca^(2+)-evoked neuronal cell death in the ischemic core is dominated by necrosis within a few hours and days known as acute excitotoxicity.Furthermore,mild but sustained Ca^(2+)increases under neurodegenerative conditions such as in the distant penumbra of the ischemic brain and early stages of Alzheimer's disease are not immediately toxic,but gradually set off deteriorating Ca^(2+)-dependent signals and neuronal cell loss mostly because of activation of programmed cell death pathways.Based on the Ca^(2+)hypothesis of Alzheimer's disease and recent advances,this Ca^(2+)-activated“silent”degenerative excitotoxicity evolves from years to decades and is recognized as a unique slow and chronic neuropathogenesis.The N-methyl-D-aspartate receptor subunit GluN3A,primarily at the extrasynaptic site,serves as a gatekeeper for the N-methyl-D-aspartate receptor activity and is neuroprotective against both acute and chronic excitotoxicity.Ischemic stroke and Alzheimer's disease,therefore,share an N-methyl-D-aspartate receptor-and Ca^(2+)-mediated mechanism,although with much different time courses.It is thus proposed that early interventions to control Ca^(2+)homeostasis at the preclinical stage are pivotal for individuals who are susceptible to sporadic late-onset Alzheimer's disease and Alzheimer's disease-related dementia.This early treatment simultaneously serves as a preconditioning therapy against ischemic stroke that often attacks the same individuals during abnormal aging.展开更多
Spinal cord injury remains a major cause of disability in young adults,and beyond acute decompression and rehabilitation,there are no pharmacological treatments to limit the progression of injury and optimize recovery...Spinal cord injury remains a major cause of disability in young adults,and beyond acute decompression and rehabilitation,there are no pharmacological treatments to limit the progression of injury and optimize recovery in this population.Following the thorough investigation of the complement system in triggering and propagating cerebral neuroinflammation,a similar role for complement in spinal neuroinflammation is a focus of ongoing research.In this work,we survey the current literature investigating the role of complement in spinal cord injury including the sources of complement proteins,triggers of complement activation,and role of effector functions in the pathology.We study relevant data demonstrating the different triggers of complement activation after spinal cord injury including direct binding to cellular debris,and or activation via antibody binding to damage-associated molecular patterns.Several effector functions of complement have been implicated in spinal cord injury,and we critically evaluate recent studies on the dual role of complement anaphylatoxins in spinal cord injury while emphasizing the lack of pathophysiological understanding of the role of opsonins in spinal cord injury.Following this pathophysiological review,we systematically review the different translational approaches used in preclinical models of spinal cord injury and discuss the challenges for future translation into human subjects.This review emphasizes the need for future studies to dissect the roles of different complement pathways in the pathology of spinal cord injury,to evaluate the phases of involvement of opsonins and anaphylatoxins,and to study the role of complement in white matter degeneration and regeneration using translational strategies to supplement genetic models.展开更多
Gastric cancer(GC)and gastroesophageal junction cancer(GEJC)represent a significant burden globally,with complications such as overt bleeding(OB)further exacerbating patient outcomes.A recent study by Yao et al evalua...Gastric cancer(GC)and gastroesophageal junction cancer(GEJC)represent a significant burden globally,with complications such as overt bleeding(OB)further exacerbating patient outcomes.A recent study by Yao et al evaluated the effectiveness and safety of systematic treatment in GC/GEJC patients presenting with OB.Using propensity score matching,the study balanced the comparison groups to investigate overall survival and treatment-related adverse events.The study's findings emphasize that systematic therapy can be safe and effective and contribute to the ongoing debate about the management of advanced GC/GEJC with OB,highlighting the complexities of treatment decisions in these high-risk patients.展开更多
With the continuous development of wearable electronics,wireless sensor networks and other micro-electronic devices,there is an increasingly urgent need for miniature,flexible and efficient nanopower generation techno...With the continuous development of wearable electronics,wireless sensor networks and other micro-electronic devices,there is an increasingly urgent need for miniature,flexible and efficient nanopower generation technology.Triboelectric nanogenerator(TENG)technology can convert small mechanical energy into electricity,which is expected to address this problem.As the core component of TENG,the choice of electrode materials significantly affects its performance.Traditional metal electrode materials often suffer from problems such as durability,which limits the further application of TENG.Graphene,as a novel electrode material,shows excellent prospects for application in TENG owing to its unique structure and excellent electrical properties.This review systematically summarizes the recent research progress and application prospects of TENGs based on graphene electrodes.Various precision processing methods of graphene electrodes are introduced,and the applications of graphene electrode-based TENGs in various scenarios as well as the enhancement of graphene electrodes for TENG performance are discussed.In addition,the future development of graphene electrode-based TENGs is also prospectively discussed,aiming to promote the continuous advancement of graphene electrode-based TENGs.展开更多
Smart contracts on the Ethereum blockchain continue to revolutionize decentralized applications (dApps) by allowing for self-executing agreements. However, bad actors have continuously found ways to exploit smart cont...Smart contracts on the Ethereum blockchain continue to revolutionize decentralized applications (dApps) by allowing for self-executing agreements. However, bad actors have continuously found ways to exploit smart contracts for personal financial gain, which undermines the integrity of the Ethereum blockchain. This paper proposes a computer program called SADA (Static and Dynamic Analyzer), a novel approach to smart contract vulnerability detection using multiple Large Language Model (LLM) agents to analyze and flag suspicious Solidity code for Ethereum smart contracts. SADA not only improves upon existing vulnerability detection methods but also paves the way for more secure smart contract development practices in the rapidly evolving blockchain ecosystem.展开更多
This study addresses security and ethical challenges in LLM-based Multi-Agent Systems, as exemplified in a blockchain fraud detection case study. Leveraging blockchain’s secure architecture, the framework involves sp...This study addresses security and ethical challenges in LLM-based Multi-Agent Systems, as exemplified in a blockchain fraud detection case study. Leveraging blockchain’s secure architecture, the framework involves specialized LLM Agents—ContractMining, Investigative, Ethics, and PerformanceMonitor, coordinated by a ManagerAgent. Baseline LLM models achieved 30% accuracy with a threshold method and 94% accuracy with a random-forest method. The Claude 3.5-powered LLM system reached an accuracy of 92%. Ethical evaluations revealed biases, highlighting the need for fairness-focused refinements. Our approach aims to develop trustworthy and reliable networks of agents capable of functioning even in adversarial environments. To our knowledge, no existing systems employ ethical LLM agents specifically designed to detect fraud, making this a novel contribution. Future work will focus on refining ethical frameworks, scaling the system, and benchmarking it against traditional methods to establish a robust, adaptable, and ethically grounded solution for blockchain fraud detection.展开更多
文摘The negative impacts of natural hazards on communities at all scales have been increasing.Floods comprise one such natural hazard that has emerged as one of the most destructive in the US and worldwide.While a lot of damage is estimated in terms of the cost of rebuilding infrastructure and direct loss of economy,the negative impacts of such disruptions go beyond the physical infrastructure.The impact on(and of)the social and institutional framework is rarely examined in conjunction with the physical and technical aspects.This paper examines flood vulnerability and risk of a community at an intersection of social,ecological,technical,and intuitional perspectives,and presents a framework for a holistic flood vulnerability and risk assessment that has a strong foundation in all four aspects of a resilient community.The study builds on the existing risk,vulnerability,and hazard assessment approaches,and refines them with a holistic perspective.The study uses a mixed method approach with qualitative and quantitative methodologies to assess flood occurrence probabilities,vulnerability,and risk from the social,ecological,technical,and institutional perspectives.A case study of the City of Atlanta is conducted using the framework to assess the overall vulnerability and risk of the city.The results of this analysis show that the regions that have the highest probability of flood hazard occurrence also appear to have the highest social,ecological,and technical vulnerabilities in the Atlanta area.While the results are intuitive,the applications support a focus on holistic resilience building across these four criteria.This study is potentially useful to practitioners,researchers,government agencies,and community organizations working to mitigate flood risk particularly as this risk continues to evolve with the changing climate.
基金This work was supported by a grant for "Resilient Interdependent Infrastructure Processes and Systems (RIPS) Type 2: Participatory Modeling of Complex Urban Infrastructure Systems (Model Urban SysTems)" (#0836046) from the National Science Foundation, Division of Emerging Frontiers in Research and Innovations (EFRI). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation. The authors acknowledge the work of Jeong et al. for the use of data and support in this analysis.
文摘Low-impact development (LID) technologies have a great potential to reduce water usage and stormwa- ter runoff and are therefore seen as sustainable improvements that can be made to traditional water infrastructure, These technologies include bioretention areas, rainwater capturing, and xeriscaping, all of which can be used in residential zones, Within the City of Atlanta, residential water usage accounts for 53% of the total water consumption; therefore, residential zones offer significant impact potential for the implementation of LID, This study analyzes the use of LID strategies within the different residen- tial zones of the City of Atlanta from an ecological perspective by drawing analogies to natural ecosys- tems, The analysis shows that these technologies, especially with the addition of a graywater system, work to improve the conventional residential water network based upon these ecological metrics, The higher metric values suggest greater parity with healthy, natural ecosystems.
基金This work was partially supported by the Brook Byers Institute for Sustainable Systems, the Hightower Chair, Georgia Research Alliance, and grants (083604, 1441208) from the US National Science Foundation Program for Emerging Frontiers in Research and Innovation (EFRI).
文摘The increasing pace of urbanization means that cities and global organizations are looking for ways to increase energy efficiency and reduce emissions. Combined cooling, heating, and power (CCHP) systems have the potential to improve the energy generation efficiency of a city or urban region by providing energy for heating, cooling, and electricity simultaneously. The purpose of this study is to estimate the water consumption for energy generation use, carbon dioxide (CO2) and NOx emissions, and economic impact of implementing CCHP systems for five generic building types within the Atlanta metropolitan region, under various operational scenarios following the building thermal (heating and cooling) demands. Operating the CCHP system to follow the hourly thermal demand reduces CO2 emissions for most building types both with and without net metering. The system can be economically beneficial for all building types depending on the price of natural gas, the implementation of net metering, and the cost structure assumed for the CCHP system. The greatest reduction in water consumption for energy production and NOx emissions occurs when there is net metering and when the system is operated to meet the maximum yearly thermal demand, although this scenario also results in an increase in greenhouse gas emissions and, in some cases, cost. CCHP systems are more economical for medium office, large office, and multifamilv residential buildings.
文摘Objective: Factors influencing survival among persons with Down syndrome (DS) are not well understood. We sought to evaluate survival of infants with DS and potential prognostic factors. Study design: Infants with DS who were born alive during 1979 to 1998 were identified using the Metropolitan Atlanta Congenital Defects Program (MACDP), a population based surveillance system. To document vital status, we used data from hospital records, the National Death Index (NDI), and Georgia vital records. We estimated survival probability using the Kaplan-Meier product limit method and hazard ratios using a Cox proportional hazards model. Results: Survival probability to 1 year was 92.9%(95%CI: 90.9-94.9) and to 10 years was 88.6%(95%CI: 85.0-92.2). Univariate analysis demonstrated that black maternal race, low birth weight, preterm birth, lower paternal education, presence of heart defects, and presence of other major congenital anomalies were important prognostic factors. After multivariate analysis, maternal race, presence of heart defects, low birth weight, and an interaction between maternal race and presence of heart defects were significantly associated with mortality risk. Conclusions: A racial disparity is apparent in survival for children with Down syndrome. Further study is needed to elucidate possible reasons for the racial disparity.
文摘This research assessed the impact of efficiently expanding the biking network in Atlanta,Georgia,using dedicated lanes for bicycles.A total of three different conditions,i.e.,exist-ing,proposed(by the authors),and alternative(suggested by the City of Atlanta)condi-tions,were modeled to see the effectiveness of bike infrastructure design improvement and expansion.Trajectory data collected from the VISSIM simulation model were used in the Federal Highway Administration(FHWA)’s surrogate safety assessment model(SSAM)to analyze the safety effect on the bike infrastructure improvement and expansion.Based on the results,both the proposed and alternative conditions resulted in safer travel through the network during the peak hour period without any apparent deterioration in delays.For instance,compared to the existing condition,the average stop delays decreased from 190 s to 164 s for the proposed and the alternative conditions.These findings showed that the introduction of bicycle lanes and narrower lanes for automobiles may not adversely affect the peak hour congestion.Also,fewer conflicts were observed in the sim-ulated network of proposed and alternative conditions compared to existing conditions.Conflicts involving bicyclists were also reduced since the bicyclists can use their own lanes and do not have to interact with automobile traffic in the sharrows.
文摘Traumatic brain injury, chronic traumatic encephalopathy, and Alzheimer's disease are three distinct neurological disorders that share common pathophysiological mechanisms involving neuroinflammation. One sequela of neuroinflammation includes the pathologic hyperphosphorylation of tau protein, an endogenous microtubule-associated protein that protects the integrity of neuronal cytoskeletons. Tau hyperphosphorylation results in protein misfolding and subsequent accumulation of tau tangles forming neurotoxic aggregates. These misfolded proteins are characteristic of traumatic brain injury, chronic traumatic encephalopathy, and Alzheimer's disease and can lead to downstream neuroinflammatory processes, including assembly and activation of the inflammasome complex. Inflammasomes refer to a family of multimeric protein units that, upon activation, release a cascade of signaling molecules resulting in caspase-induced cell death and inflammation mediated by the release of interleukin-1β cytokine. One specific inflammasome, the NOD-like receptor protein 3, has been proposed to be a key regulator of tau phosphorylation where it has been shown that prolonged NOD-like receptor protein 3 activation acts as a causal factor in pathological tau accumulation and spreading. This review begins by describing the epidemiology and pathophysiology of traumatic brain injury, chronic traumatic encephalopathy, and Alzheimer's disease. Next, we highlight neuroinflammation as an overriding theme and discuss the role of the NOD-like receptor protein 3 inflammasome in the formation of tau deposits and how such tauopathic entities spread throughout the brain. We then propose a novel framework linking traumatic brain injury, chronic traumatic encephalopathy, and Alzheimer's disease as inflammasomedependent pathologies that exist along a temporal continuum. Finally, we discuss potential therapeutic targets that may intercept this pathway and ultimately minimize long-term neurological decline.
基金supported by National Natural Science Foundation of China(Grant No.52270106 and 22266021)Yunnan Major Scientific and Technological Projects(grant No.202202AG050005)Yunnan Fundamental Research Projects(grant No.202201AT070116).
文摘The application of industrial solid wastes as environmentally functional materials for air pollutants control has gained much attention in recent years due to its potential to reduce air pollution in a cost-effective manner.In this review,we investigate the development of industrialwaste-based functional materials for various gas pollutant removal and consider the relevant reaction mechanism according to different types of industrial solid waste.We see a recent effort towards achieving high-performance environmental functional materials via chemical or physical modification,in which the active components,pore size,and phase structure can be altered.The review will discuss the potential of using industrial solid wastes,these modified materials,or synthesized materials from raw waste precursors for the removal of air pollutants,including SO_(2),NO_(x),Hg^(0),H_(2)S,VOCs,and CO_(2).The challenges still need to be addressed to realize this potential and the prospects for future research fully.The suggestions for future directions include determining the optimal composition of these materials,calculating the real reaction rate and turnover frequency,developing effective treatment methods,and establishing chemical component databases of raw industrial solid waste for catalysts/adsorbent preparation.
基金supported by National Health Institute(NIH)grant NS099596(to LW and SPY),NS114221(to LW and SPY)Veterans Affair(VA)SPiRE grant RX003865(to SPY)+1 种基金supported by the O.Wayne Rollins Endowment Fund(to SPY)John E.Steinhaus Endowment Fund(to LW)。
文摘Stroke and Alzheimer's disease are common neurological disorders and often occur in the same individuals.The comorbidity of the two neurological disorders represents a grave health threat to older populations.This review presents a brief background of the development of novel concepts and their clinical potentials.The activity of glutamatergic N-methyl-D-aspartate receptors and N-methyl-D-aspartate receptor-mediated Ca^(2+)influx is critical for neuronal function.An ischemic insult induces prompt and excessive glutamate release and drastic increases of intracellular Ca^(2+)mainly via N-methyl-D-aspartate receptors,particularly of those at the extrasynaptic site.This Ca^(2+)-evoked neuronal cell death in the ischemic core is dominated by necrosis within a few hours and days known as acute excitotoxicity.Furthermore,mild but sustained Ca^(2+)increases under neurodegenerative conditions such as in the distant penumbra of the ischemic brain and early stages of Alzheimer's disease are not immediately toxic,but gradually set off deteriorating Ca^(2+)-dependent signals and neuronal cell loss mostly because of activation of programmed cell death pathways.Based on the Ca^(2+)hypothesis of Alzheimer's disease and recent advances,this Ca^(2+)-activated“silent”degenerative excitotoxicity evolves from years to decades and is recognized as a unique slow and chronic neuropathogenesis.The N-methyl-D-aspartate receptor subunit GluN3A,primarily at the extrasynaptic site,serves as a gatekeeper for the N-methyl-D-aspartate receptor activity and is neuroprotective against both acute and chronic excitotoxicity.Ischemic stroke and Alzheimer's disease,therefore,share an N-methyl-D-aspartate receptor-and Ca^(2+)-mediated mechanism,although with much different time courses.It is thus proposed that early interventions to control Ca^(2+)homeostasis at the preclinical stage are pivotal for individuals who are susceptible to sporadic late-onset Alzheimer's disease and Alzheimer's disease-related dementia.This early treatment simultaneously serves as a preconditioning therapy against ischemic stroke that often attacks the same individuals during abnormal aging.
基金supported by the Department of Veterans Affairs(VA Merit Award BX004256)(to AMA)Emory Department of Neurosurgery Catalyst GrantEmory Medical Care Foundation Grant(to AMA and JG)。
文摘Spinal cord injury remains a major cause of disability in young adults,and beyond acute decompression and rehabilitation,there are no pharmacological treatments to limit the progression of injury and optimize recovery in this population.Following the thorough investigation of the complement system in triggering and propagating cerebral neuroinflammation,a similar role for complement in spinal neuroinflammation is a focus of ongoing research.In this work,we survey the current literature investigating the role of complement in spinal cord injury including the sources of complement proteins,triggers of complement activation,and role of effector functions in the pathology.We study relevant data demonstrating the different triggers of complement activation after spinal cord injury including direct binding to cellular debris,and or activation via antibody binding to damage-associated molecular patterns.Several effector functions of complement have been implicated in spinal cord injury,and we critically evaluate recent studies on the dual role of complement anaphylatoxins in spinal cord injury while emphasizing the lack of pathophysiological understanding of the role of opsonins in spinal cord injury.Following this pathophysiological review,we systematically review the different translational approaches used in preclinical models of spinal cord injury and discuss the challenges for future translation into human subjects.This review emphasizes the need for future studies to dissect the roles of different complement pathways in the pathology of spinal cord injury,to evaluate the phases of involvement of opsonins and anaphylatoxins,and to study the role of complement in white matter degeneration and regeneration using translational strategies to supplement genetic models.
文摘Gastric cancer(GC)and gastroesophageal junction cancer(GEJC)represent a significant burden globally,with complications such as overt bleeding(OB)further exacerbating patient outcomes.A recent study by Yao et al evaluated the effectiveness and safety of systematic treatment in GC/GEJC patients presenting with OB.Using propensity score matching,the study balanced the comparison groups to investigate overall survival and treatment-related adverse events.The study's findings emphasize that systematic therapy can be safe and effective and contribute to the ongoing debate about the management of advanced GC/GEJC with OB,highlighting the complexities of treatment decisions in these high-risk patients.
基金supported by the National Natural Science Foundation of China(grant No.52422511,U20A6004)the Guangdong Basic and Applied Basic Research Foundation(grant No.2022B1515120011)Guangzhou Basic and Applied Basic Research Foundation(grant No.2024A04J6362).
文摘With the continuous development of wearable electronics,wireless sensor networks and other micro-electronic devices,there is an increasingly urgent need for miniature,flexible and efficient nanopower generation technology.Triboelectric nanogenerator(TENG)technology can convert small mechanical energy into electricity,which is expected to address this problem.As the core component of TENG,the choice of electrode materials significantly affects its performance.Traditional metal electrode materials often suffer from problems such as durability,which limits the further application of TENG.Graphene,as a novel electrode material,shows excellent prospects for application in TENG owing to its unique structure and excellent electrical properties.This review systematically summarizes the recent research progress and application prospects of TENGs based on graphene electrodes.Various precision processing methods of graphene electrodes are introduced,and the applications of graphene electrode-based TENGs in various scenarios as well as the enhancement of graphene electrodes for TENG performance are discussed.In addition,the future development of graphene electrode-based TENGs is also prospectively discussed,aiming to promote the continuous advancement of graphene electrode-based TENGs.
文摘Smart contracts on the Ethereum blockchain continue to revolutionize decentralized applications (dApps) by allowing for self-executing agreements. However, bad actors have continuously found ways to exploit smart contracts for personal financial gain, which undermines the integrity of the Ethereum blockchain. This paper proposes a computer program called SADA (Static and Dynamic Analyzer), a novel approach to smart contract vulnerability detection using multiple Large Language Model (LLM) agents to analyze and flag suspicious Solidity code for Ethereum smart contracts. SADA not only improves upon existing vulnerability detection methods but also paves the way for more secure smart contract development practices in the rapidly evolving blockchain ecosystem.
文摘This study addresses security and ethical challenges in LLM-based Multi-Agent Systems, as exemplified in a blockchain fraud detection case study. Leveraging blockchain’s secure architecture, the framework involves specialized LLM Agents—ContractMining, Investigative, Ethics, and PerformanceMonitor, coordinated by a ManagerAgent. Baseline LLM models achieved 30% accuracy with a threshold method and 94% accuracy with a random-forest method. The Claude 3.5-powered LLM system reached an accuracy of 92%. Ethical evaluations revealed biases, highlighting the need for fairness-focused refinements. Our approach aims to develop trustworthy and reliable networks of agents capable of functioning even in adversarial environments. To our knowledge, no existing systems employ ethical LLM agents specifically designed to detect fraud, making this a novel contribution. Future work will focus on refining ethical frameworks, scaling the system, and benchmarking it against traditional methods to establish a robust, adaptable, and ethically grounded solution for blockchain fraud detection.