In the canonical view of lunar evolution,mare basalts are regarded as secondary partial melts of deep-seated lunar mantle formed as cumulates from a lunar magma ocean(LMO)during the early stage of lunar magmatism[1].M...In the canonical view of lunar evolution,mare basalts are regarded as secondary partial melts of deep-seated lunar mantle formed as cumulates from a lunar magma ocean(LMO)during the early stage of lunar magmatism[1].Mare basalts filled mainly near-side lunar basins and occupied approximately 17%of the lunar surface[2].Mare volcanism is a long-lived process(1.0 to 4.4 Ga)that primarily involved the emplacement of lunar basins during the era of large impact basin formation(3.5-3.8 Ga)[1].Some earlier pulses of volcanism(prior to 3.9 Ga)also existed on the moon but covered only a small area(2%)in the form of cryp-tomare basalts[3].Ancient lunar basalts are relatively enriched in Al,K,and rare earth elements(REEs).Representative rocks include high-Al,high-K,K-REE-P-rich rock(KREEP)and some cryp-tomare basalts[1],which were emplaced at the surface during a continuous episode contemporaneous with lunar crust formation[1].Younger patches of mare volcanism(as late as 1.0 Ga)have been recognized via remote sensing techniques[2].However,only the Chang’E 5(CE5)samples provided solid evidence for 2.0 Ga young volcanic activity[4,5].Mare volcanism on the lunar far side,while relatively sparse,follows a similar temporal distribution pat-tern[6].展开更多
基金supported by the National Key Research and Development Program of China(2021YFA0716100)the Science and Technology Development Fund,Macao SAR(002/2024/SKL)+1 种基金the National Natural Science Foundation of China(42202260)the Minor Planet Foundation of China.
文摘In the canonical view of lunar evolution,mare basalts are regarded as secondary partial melts of deep-seated lunar mantle formed as cumulates from a lunar magma ocean(LMO)during the early stage of lunar magmatism[1].Mare basalts filled mainly near-side lunar basins and occupied approximately 17%of the lunar surface[2].Mare volcanism is a long-lived process(1.0 to 4.4 Ga)that primarily involved the emplacement of lunar basins during the era of large impact basin formation(3.5-3.8 Ga)[1].Some earlier pulses of volcanism(prior to 3.9 Ga)also existed on the moon but covered only a small area(2%)in the form of cryp-tomare basalts[3].Ancient lunar basalts are relatively enriched in Al,K,and rare earth elements(REEs).Representative rocks include high-Al,high-K,K-REE-P-rich rock(KREEP)and some cryp-tomare basalts[1],which were emplaced at the surface during a continuous episode contemporaneous with lunar crust formation[1].Younger patches of mare volcanism(as late as 1.0 Ga)have been recognized via remote sensing techniques[2].However,only the Chang’E 5(CE5)samples provided solid evidence for 2.0 Ga young volcanic activity[4,5].Mare volcanism on the lunar far side,while relatively sparse,follows a similar temporal distribution pat-tern[6].