A closed-form analytic solution of two-dimensional scattering and diffraction of plane SH waves by a semi- cylindrical hill with a semi-cylindrical concentric tunnel inside an elastic half-space is presented using the...A closed-form analytic solution of two-dimensional scattering and diffraction of plane SH waves by a semi- cylindrical hill with a semi-cylindrical concentric tunnel inside an elastic half-space is presented using the cylindrical wave functions expansion method.The solution is reduced to solving a set of infinite linear algebraic equations.Fourier expansion theorem with the form of complex exponential function and cosine function is used.Numerical solutions are obtained by truncation of the infinite equations.The accuracy of the presented numerical results is carefully verified.展开更多
Evolutionary computation based on the idea of biologic evolution is one type of global optimization algorithm that uses self-adaptation,self-organization and random searching to solve optimization problems.The evoluti...Evolutionary computation based on the idea of biologic evolution is one type of global optimization algorithm that uses self-adaptation,self-organization and random searching to solve optimization problems.The evolutionary-simplex algorithm is introduced in this paper.It contains floating encoding which combines the evolutionary computation and the simplex algorithm to overcome the problems encountered in the genetic algorithm and evolutionary strategy methods. Numerical experiments are performed using seven typical functions to verify the algorithm.An inverse analysis method to identify structural physical parameters based on incomplete dynamic responses obtained from the analysis in the time domain is presented by using the evolutionary-simplex algorithm.The modal evolutionary-simplex algorithm converted from the time domain to the modal domain is proposed to improve the inverse efficiency.Numerical calculations for a 50-DOF system show that when compared with other methods,the evolutionary-simplex algorithm offers advantages of high precision, efficient searching ability,strong ability to resist noise,independence of initial value,and good adaptation to incomplete information conditions.展开更多
Following the Chichi Earthquake (ML=7.3) in 1999, sediment-related disasters, such as landslides and debris flows, have become more frequent in Taiwan. Because engineering structures cannot be fully and rapidly empl...Following the Chichi Earthquake (ML=7.3) in 1999, sediment-related disasters, such as landslides and debris flows, have become more frequent in Taiwan. Because engineering structures cannot be fully and rapidly emplaeed, the government has initiated non-structural hazard mitigation programs. Initially, community debris flow evacuation drills were promoted in 2000. Typhoon Toraji caused numerous debris flow events in July 2001, and some communities evacuated according to the drills, significantly reducing the numbers of possible casualties. Based on that result, the government expanded the program for evacuation drills. Secondly, the early warning system created after the Chichi Earthquake will prevent many potential future casualties. Rainfall threshold values for debris flow warnings in different areas are determined from information received from local weather stations and modified for local geomorphologic situations. Real- time information is gradually being integrated to create a debris flow disaster warning system, the goal of which is to provide warnings to zones in which debris flows are likely. The warning system was launched in 2005 and has two levels of alarms: yellow and red. The final, red alarm triggers enforced evacuation. Overall, the decrease in casualties from debris flows during the decade after the Chichi Earthquake is not the result of a decrease in number or severity of sediment related disasters, but is more directly related to the gradually improved early warning and evacuation system. However, the compound hazards resulting from Typhoon Morakotin 2009 remind us of the ongoing need for improving the existing mitigation system.展开更多
The distinct element method(DEM)has been used successfully for the dynamic analysis of rigid block sys- tems.One of many difficulties associated with DEM is modeling of damping.In this paper,new procedures are propose...The distinct element method(DEM)has been used successfully for the dynamic analysis of rigid block sys- tems.One of many difficulties associated with DEM is modeling of damping.In this paper,new procedures are proposed for the damping modeling and its numerical implementation in distinct element analysis of rigid muhi-block systems.The stiff- ness proportional damping is constructed for the prescribed damping ratio,based on the non-zero fundamental frequency ef- fective during the time interval while the boundary conditions remain essentially constant.At this time interval,the funda- mental frequency can be estimated without complete eigenvalue analysis.The damping coefficients will vary while the damp- ing ratio remains the same throughout the entire analysis.A new numerical procedure is developed to prevent unnecessary energy loss that can occur during the separation phases.These procedures were implemented in the development of the dis- tinet element method for the dynamic analyses of piled multi-block systems.The analysis results |or the single-block and two-block systems were in a good agreement with the analytic predictions.Applications to the seismic analyses of piled four- block systems revealed that the new procedures can make a significant difference and may lead to much-improved results.展开更多
This experimental study aims to examine the influence of many crucial parameters on the workability and compressive strength of Ready-Mix Concrete (RMC). The study utilized two distinct varieties of superplasticizers ...This experimental study aims to examine the influence of many crucial parameters on the workability and compressive strength of Ready-Mix Concrete (RMC). The study utilized two distinct varieties of superplasticizers obtained from the local market. The fine aggregates utilized in this study were sourced from Sylhet sand, whereas the coarse aggregates were comprised of boulder crushed stone chips. The experimental procedures adhered to the requirements outlined by ASTM. A comprehensive investigation was conducted on a range of concrete compositions that used diverse chemical admixtures. The slump test was performed at regular intervals of 15 minutes until the slump value reached or fell below 3 cm after the mixing of the concrete. In the scenario involving two-stage admixture dosage, the second stage of admixture was introduced once the slump reached or dropped below 3 cm, following which the casting process was initiated. The process of curing concrete specimens consists of two distinct stages: the main stage and the final stage. Cylindrical specimens, with a diameter of 4 inches and a height of 8 inches, were manufactured for the purpose of evaluating their compressive strength at both 7 and 28 days. During the experimental trials, the water-cement (w/c) ratio was kept consistent, while different dosages of admixture were applied. The findings of the study indicate that the utilization of a two-stage dose of admixture resulted in enhanced and extended workability, along with higher strength of the concrete in comparison to specimens that did not incorporate any admixture. This research study enhances the comprehension of optimizing qualities of ready-mix concrete (RMC) by varying the superplasticizer, providing useful insights for the building sector.展开更多
文摘A closed-form analytic solution of two-dimensional scattering and diffraction of plane SH waves by a semi- cylindrical hill with a semi-cylindrical concentric tunnel inside an elastic half-space is presented using the cylindrical wave functions expansion method.The solution is reduced to solving a set of infinite linear algebraic equations.Fourier expansion theorem with the form of complex exponential function and cosine function is used.Numerical solutions are obtained by truncation of the infinite equations.The accuracy of the presented numerical results is carefully verified.
基金National Natural Science Foundation of China(Grant No.50278006)
文摘Evolutionary computation based on the idea of biologic evolution is one type of global optimization algorithm that uses self-adaptation,self-organization and random searching to solve optimization problems.The evolutionary-simplex algorithm is introduced in this paper.It contains floating encoding which combines the evolutionary computation and the simplex algorithm to overcome the problems encountered in the genetic algorithm and evolutionary strategy methods. Numerical experiments are performed using seven typical functions to verify the algorithm.An inverse analysis method to identify structural physical parameters based on incomplete dynamic responses obtained from the analysis in the time domain is presented by using the evolutionary-simplex algorithm.The modal evolutionary-simplex algorithm converted from the time domain to the modal domain is proposed to improve the inverse efficiency.Numerical calculations for a 50-DOF system show that when compared with other methods,the evolutionary-simplex algorithm offers advantages of high precision, efficient searching ability,strong ability to resist noise,independence of initial value,and good adaptation to incomplete information conditions.
基金supported by the Soil and Water Conservation Bureau,Council of Agriculture,and National Basic Research Program of China (2008CB425802)
文摘Following the Chichi Earthquake (ML=7.3) in 1999, sediment-related disasters, such as landslides and debris flows, have become more frequent in Taiwan. Because engineering structures cannot be fully and rapidly emplaeed, the government has initiated non-structural hazard mitigation programs. Initially, community debris flow evacuation drills were promoted in 2000. Typhoon Toraji caused numerous debris flow events in July 2001, and some communities evacuated according to the drills, significantly reducing the numbers of possible casualties. Based on that result, the government expanded the program for evacuation drills. Secondly, the early warning system created after the Chichi Earthquake will prevent many potential future casualties. Rainfall threshold values for debris flow warnings in different areas are determined from information received from local weather stations and modified for local geomorphologic situations. Real- time information is gradually being integrated to create a debris flow disaster warning system, the goal of which is to provide warnings to zones in which debris flows are likely. The warning system was launched in 2005 and has two levels of alarms: yellow and red. The final, red alarm triggers enforced evacuation. Overall, the decrease in casualties from debris flows during the decade after the Chichi Earthquake is not the result of a decrease in number or severity of sediment related disasters, but is more directly related to the gradually improved early warning and evacuation system. However, the compound hazards resulting from Typhoon Morakotin 2009 remind us of the ongoing need for improving the existing mitigation system.
文摘The distinct element method(DEM)has been used successfully for the dynamic analysis of rigid block sys- tems.One of many difficulties associated with DEM is modeling of damping.In this paper,new procedures are proposed for the damping modeling and its numerical implementation in distinct element analysis of rigid muhi-block systems.The stiff- ness proportional damping is constructed for the prescribed damping ratio,based on the non-zero fundamental frequency ef- fective during the time interval while the boundary conditions remain essentially constant.At this time interval,the funda- mental frequency can be estimated without complete eigenvalue analysis.The damping coefficients will vary while the damp- ing ratio remains the same throughout the entire analysis.A new numerical procedure is developed to prevent unnecessary energy loss that can occur during the separation phases.These procedures were implemented in the development of the dis- tinet element method for the dynamic analyses of piled multi-block systems.The analysis results |or the single-block and two-block systems were in a good agreement with the analytic predictions.Applications to the seismic analyses of piled four- block systems revealed that the new procedures can make a significant difference and may lead to much-improved results.
文摘This experimental study aims to examine the influence of many crucial parameters on the workability and compressive strength of Ready-Mix Concrete (RMC). The study utilized two distinct varieties of superplasticizers obtained from the local market. The fine aggregates utilized in this study were sourced from Sylhet sand, whereas the coarse aggregates were comprised of boulder crushed stone chips. The experimental procedures adhered to the requirements outlined by ASTM. A comprehensive investigation was conducted on a range of concrete compositions that used diverse chemical admixtures. The slump test was performed at regular intervals of 15 minutes until the slump value reached or fell below 3 cm after the mixing of the concrete. In the scenario involving two-stage admixture dosage, the second stage of admixture was introduced once the slump reached or dropped below 3 cm, following which the casting process was initiated. The process of curing concrete specimens consists of two distinct stages: the main stage and the final stage. Cylindrical specimens, with a diameter of 4 inches and a height of 8 inches, were manufactured for the purpose of evaluating their compressive strength at both 7 and 28 days. During the experimental trials, the water-cement (w/c) ratio was kept consistent, while different dosages of admixture were applied. The findings of the study indicate that the utilization of a two-stage dose of admixture resulted in enhanced and extended workability, along with higher strength of the concrete in comparison to specimens that did not incorporate any admixture. This research study enhances the comprehension of optimizing qualities of ready-mix concrete (RMC) by varying the superplasticizer, providing useful insights for the building sector.