The mass-energy equation ?is derived in general from Newton’s equation of motion without use of electrodynamics, or Einstein’s Postulates which were presented in his superb 1905 paper on Special Relativity (SR). Thi...The mass-energy equation ?is derived in general from Newton’s equation of motion without use of electrodynamics, or Einstein’s Postulates which were presented in his superb 1905 paper on Special Relativity (SR). This was previously not thought to be possible. This novel derivation of an accelerated body of rest mass m0 is compared with the traditional SR inertial derivation. A discussion is given of pre-1905, electrostatic and electrodynamic derivations of the mass-energy relation yielding , as well as more recent ones. A concise pre-relativity history of the mass-energy relation is traced back to Newton in 1717.展开更多
Einstein’s Special Relativity (ESR) has enjoyed spectacular success as a mathematical construct and in terms of the experiments to which it has been subjected. Possible vulnerabilities of ESR will be explored that br...Einstein’s Special Relativity (ESR) has enjoyed spectacular success as a mathematical construct and in terms of the experiments to which it has been subjected. Possible vulnerabilities of ESR will be explored that break the symmetry of reciprocal observations of length, time, and mass. It is shown how Newton could also have derived length contraction . Einstein’s General Relativity (EGR) will also be discussed occasionally such as a changed perspective on gravitational waves due to a small change in ESR. Some additional questions addressed are: Did Einstein totally eliminate the Ether? Is the physical interpretation of ESR completely correct? Why should there be a maximum speed limit, and should it always be the same? The mass-energy equation is revisited to show that in 1717 Newton could have derived the modern , and not known that it violates the foundation of his mechanics. Tributes are paid to Einstein and others.展开更多
文摘The mass-energy equation ?is derived in general from Newton’s equation of motion without use of electrodynamics, or Einstein’s Postulates which were presented in his superb 1905 paper on Special Relativity (SR). This was previously not thought to be possible. This novel derivation of an accelerated body of rest mass m0 is compared with the traditional SR inertial derivation. A discussion is given of pre-1905, electrostatic and electrodynamic derivations of the mass-energy relation yielding , as well as more recent ones. A concise pre-relativity history of the mass-energy relation is traced back to Newton in 1717.
文摘Einstein’s Special Relativity (ESR) has enjoyed spectacular success as a mathematical construct and in terms of the experiments to which it has been subjected. Possible vulnerabilities of ESR will be explored that break the symmetry of reciprocal observations of length, time, and mass. It is shown how Newton could also have derived length contraction . Einstein’s General Relativity (EGR) will also be discussed occasionally such as a changed perspective on gravitational waves due to a small change in ESR. Some additional questions addressed are: Did Einstein totally eliminate the Ether? Is the physical interpretation of ESR completely correct? Why should there be a maximum speed limit, and should it always be the same? The mass-energy equation is revisited to show that in 1717 Newton could have derived the modern , and not known that it violates the foundation of his mechanics. Tributes are paid to Einstein and others.