From the ethyl acetate extract of the medicinal plant Graptophyllum glandulosum Turrill, five known compounds: Lupeol (1), Oleanolic acid (2), Chrysoeriol (3), N-methyl-isonicotinamide (4) and β-sitosterol 3-O-β-D-g...From the ethyl acetate extract of the medicinal plant Graptophyllum glandulosum Turrill, five known compounds: Lupeol (1), Oleanolic acid (2), Chrysoeriol (3), N-methyl-isonicotinamide (4) and β-sitosterol 3-O-β-D-glucopyranoside (5) were isolated. In addition, oxidation reactions carried out on lupeol (1) yielded two semi-synthetic compounds, including a previously unreported: (20R)-formyloxy-29-nor-lupan-3-one (1b) and one other well-known Lupenone (1a). The structures of natural and semi-synthetic compounds were determined by analysis of 1D-(1H, 13C), 2D-(COSY, HSQC and HMBC) NMR data in conjunction with mass spectrometry (TOFESIMS and HR-TOFESIMS) and by comparison with the reported data. The evaluation of antimicrobial activities of substrate (1) as well as semi-synthetic derivatives (1a and 1b) using broth microdilution method showed that compound 1b was the most active (16 ≤ MIC ≤ 32 μg/mL) against Escherichia coli, Staphylococcus aureus and Candida albicans compared to the starting material 1 (16 ≤ MIC ≤ 64 μg/mL) and derivative 1a (32 ≤ MIC ≤ 64 μg/mL).展开更多
In the present paper the isolation and characterization of seven major glycolipid classes (stigmasterol, acylated stigmasteryl glucoside, stigmasteryl glucoside, monogalactosyldiacylglycerol, digalactosyldiacylglycero...In the present paper the isolation and characterization of seven major glycolipid classes (stigmasterol, acylated stigmasteryl glucoside, stigmasteryl glucoside, monogalactosyldiacylglycerol, digalactosyldiacylglycerol, cerebroside and glucocerebroside) from Drymaria cordata (Linn.) Willd (Caryophyllaceae Family) are reported after an attempt has been made to congregate the traditional and pharmacological studies done on this important medicinal plant. Drymaria cordata is a weak spreading herb found widely dispersed in damp places all over the tropics of Africa, Asia and the Americas. There are many reports on its folk and traditional uses that include snake bite, skin diseases, peptic ulcer, headaches or nephritis, female infertility, sleeping disorders, convulsions, and febrile conditions in children. The plant has been examined on the basis of scientific in vitro and in vivo evaluations possessing the major pharmacological activities that include analgesic activity, antitussive activity, anxiolytic activity, antipyretic activity, antinociceptive activity, anti-inflammatory and antibacterial activities. The information summarized here is intended to serve as a reference tool for practitioners in the fields of ethnopharmacology, natural product chemistry and drug discovery related research.展开更多
Electrochemical reduction of CO_(2)(CO_(2)RR)has become a research hot spot in recent years in the context of carbon neutrality.HCOOH is one of the most promising products obtained by electrochemical reduction of CO_(...Electrochemical reduction of CO_(2)(CO_(2)RR)has become a research hot spot in recent years in the context of carbon neutrality.HCOOH is one of the most promising products obtained by electrochemical reduction of CO_(2) due to its high energy value as estimated by market price per energy unit and wide application in chemical industry.Biomass is the most abundant renewable resource in the natural world.Coupling biomass oxidative conversion with CO_(2)RR driven by renewable electricity would well achieve carbon negativity.In this work,we comprehensively reviewed the current research progress on CO_(2)RR to produce HCOOH and coupled system for conversion of biomass and its derivatives to produce value-added products.Sn-and Bi-based electrocatalysts are discussed for CO_(2)RR with regards to the structure of the catalyst and reaction mechanisms.Electro-oxidation reactions of biomass derived sugars,alcohols,furan aldehydes and even polymeric components of lignocellulose were reviewed as alternatives to replace oxygen evolution reaction(OER)in the conventional electrolysis process.It was recommended that to further improve the efficiency of the coupled system,future work should be focused on the development of more efficient and stable catalysts,careful design of the electrolytic cells for improving the mass transfer and development of environment-friendly processes for recovering the formed formate and biomass oxidation products.展开更多
Highly-efficient oxidation of 5-hydroxymethylfurtural(HMF) to 2,5-furandicarboxylic acid(FDCA) at low temperature with air as the oxidant is still challenging.Herein,inspired by the respirato ry electron transport cha...Highly-efficient oxidation of 5-hydroxymethylfurtural(HMF) to 2,5-furandicarboxylic acid(FDCA) at low temperature with air as the oxidant is still challenging.Herein,inspired by the respirato ry electron transport chain(ETC) of living cells mediated by electron carriers,we constructed artificial ETCs and transformed liquid flow fuel cells(LFFCs) to flexible reactors for efficient oxidation of HMF to produce FDCA under mild conditions.This LFFC reactor employed an electrodeposition modified nickel foam as an anode to promote HMF oxidation and(VO_(2))_(2)SO_(4) as a cathode electron carrier to facilitate the electron transfer to air.The reaction rate could be easily controlled by selecting the anode catalyst,adjusting the external loading and changing the cathodic electron carrier or oxidants.A maximal power density of 44.9 mW cm^(-2) at room temperature was achieved,while for FDCA production,short-circuit condition was preferred to achieve quick transfer of electrons.For a single batch operation with 0.1 M initial HMF,FDCA yield reached 97.1%.By fed-batch operation,FDCA concentration reached 144.5 g L^(-1) with a total yield of 96%.Ni^(2+)/Ni^(3+) redox couple was the active species mediating the electron transfer,while both experimental and DFT calculation results indicated that HMFCA pathway was the preferred reaction mechanism.展开更多
This study concentrates on the environmental pollution level of sediments in the six branches of Poyang Lake, the biggest fresh water lake in China. This is the first systematic report on the speciation analysis of he...This study concentrates on the environmental pollution level of sediments in the six branches of Poyang Lake, the biggest fresh water lake in China. This is the first systematic report on the speciation analysis of heavy metals (Cu, Co, Cd, Pb, and Ni) in the six branches of the lake. A reported analytical procedure involving a five-step sequential extraction is used for the partition of particulating heavy metals. The sediment samples are analyzed using flame atomic absorption spectroscopy (FAAS). Experimental results obtained from five replicate samples of fluvial bottom surface sediments at the sampling points demonstrated that the relative standard deviation of the sequential extraction procedure was generally better than 10% (Cd except). The average extracted contents of the five elements, analyzed after all five steps, are found to be (mg/kg) for Cu: 26.89, Co: 16.25, Cd: 1.08, Pb: 37.98, and Ni: 20.46. The content of the exchangeable species was generally lower. Except Cu, the percentage of the species bond to organic matter was lower than 20%. The fractions containing the most metal for Cu, Co, and Ni were the residues (52.26%, 45.28%, and 74.82%, respectively).展开更多
Sol-gel coatings containing various amounts of hydroxylated nanodiamond(HND)particles were applied on the magnesium alloy for corrosion protection.The micrometric defects in the sol-gel coating completely disappeared ...Sol-gel coatings containing various amounts of hydroxylated nanodiamond(HND)particles were applied on the magnesium alloy for corrosion protection.The micrometric defects in the sol-gel coating completely disappeared after adding 0.01,0.02 and 0.05 wt.%of the HND nanoparticles.The AFM analyses showed that average roughness of the sol-gel film is about 6.7 nm which increases to 16.1 and 20.2 nm after incorporating 0.005 and 0.02 wt.%of the HNDs,respectively.The corrosion resistance of the coatings was tested in Harrison’s solution by means of EIS technique after 15,30,60 and 120 min immersion.The corrosion resistance of the sol-gel coating was remarkably enhanced by incorporating different contents of the HNDs and the best result was obtained for 0.01 wt.%.The results of the EIS experiments were confirmed by the potentiodynamic polarization tests.The corrosion resistance enhancement was attributed to the film compactness(due to the chemical interaction with the HNDs),formation of tortuous pathways for diffusion of the corrosive solution,and filling of the defects by the nanoparticles.However,the beneficial effect of the HNDs on the corrosion resistance gradually diminished as the content of nanoparticle was increased.Finally,the micromorphology of the sol-gel nanocomposites was studied after the corrosion tests.展开更多
The inhibition effect of electrochemical noise, EIS and surface analysis to evaluate N'-bis (2-pyridylmethylidene)- 1,2-diiminoethane (BPIE) Schiff base against AZ91D alloy corrosion in 0.01 mol/L HCl was investig...The inhibition effect of electrochemical noise, EIS and surface analysis to evaluate N'-bis (2-pyridylmethylidene)- 1,2-diiminoethane (BPIE) Schiff base against AZ91D alloy corrosion in 0.01 mol/L HCl was investigated by different electrochemical methods. Potentiodynamic polarization curves revealed that the BPIE acts as a mixed-type corrosion inhibitor. Electrochemical impedance spectroscopy (EIS) measurements confirmed the corrosion inhibition effect of the BPIE. As the inhibitor concentration increased, the charge transfer resistance increased and the double layer capacitance decreased due to more inhibitor adsorption on the surface. The results obtained by analysis of electrochemical noise (EN) data in time and frequency domains are in good agreement with EIS and polarization results. Moreover, scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive X-ray (EDX) were used to investigate the corrosion inhibition of the BPIE. SEM images showed that the corrosion damage of the alloy surface reduced in the presence of BPIE. The intensity of the XRD peaks corresponding to magnesium-rich α phase increased in the presence of BPIE, indicating lower corrosion of alloy sample. Also, EDX analysis approved the corrosion inhibition performance of the BPIE. The studied Schiff base compound acts by physical adsorption on the alloy surface and its adsorption obeys the Langmuir isotherm.展开更多
Al-based MIL-53 MOF nanostructure was synthesized hydrothermally and then co-deposited in the electroless nickel coating on AM60B magnesium alloy using Zr pretreatment as an eco-friendly underlayer.The MIL-53(Al)nanos...Al-based MIL-53 MOF nanostructure was synthesized hydrothermally and then co-deposited in the electroless nickel coating on AM60B magnesium alloy using Zr pretreatment as an eco-friendly underlayer.The MIL-53(Al)nanostructure was synthesized in the form of layered semi-cube crystals with the surface area and mean pore diameter of 985.72 m^(2)g^(-1) and 2.00 nm,respectively.The SEM images captured with two various zooming scales from the surface of the plain and MOF containing electroless layers showed cauliflower-like morphology with even distribution of nodule size.Also,the sub-grains of the plain coating disappeared after incorporation of the MOF.Although,both the normal and nanostructure-containing electroless layers have crystalline-amorphous structure,but the nanocomposite coating showed less crystallinity.The average surface roughness of the plain electroless coating was about 309 nm,which decreased to about 222 nm after incorporation of the MOF.The XRD patterns showed that the characteristic peak of Ni broadened after incorporation of the MOF,probably due to the decreasing of the crystallinity.For the heat-treated normal and MOF containing coatings at 200℃ no phase transition takes place,but new peaks appeared for heat-treated coatings at 400℃ due to the crystallization and second-phase precipitation.The results of the EIS tests showed an increase in the amount of the charge transfer resistance(from 19 to 29 kΩcm^(2))after addition of the MOF,which means an improvement in the corrosion resistance.Also,low Jcorrof the composite coating represents its higher corrosion resistance with respect to the plain coating.The micro-hardness values of the composite coating before and after the heat treatment were higher than the plain coating.Also,the Ni-P-MOF coating has a lower wear rate both before and after the heat treatment due to an improvement in its micro-hardness.展开更多
Application of a composite coating on AM60B magnesium alloy consisting of cerium-vanadium conversion coating and a hybrid sol-gel layer was investigated. Scanning electron microscopy and energy dispersive X-ray spectr...Application of a composite coating on AM60B magnesium alloy consisting of cerium-vanadium conversion coating and a hybrid sol-gel layer was investigated. Scanning electron microscopy and energy dispersive X-ray spectroscopy analyses revealed a cracked nodular structure for the cerium-vanadium conversion coating which was mainly composed of O, Ce, V, and Mg atoms. All the cracks in the conversion coating were completely sealed by a thin, compact and defect-free hybrid sol?gel film. Potentiodynamic polarization and electrochemical impedance spectroscopy experiments in Harrison’s solution showed that the cerium-vanadium conversion coating provides minimal protection against corrosion while the composite coating significantly increases the corrosion resistance of the magnesium alloy. Sol-gel film provides protection against corrosion by sealing cracks in the cerium-vanadium conversion coating and acting as a barrier. Scanning electron microscopy analyses after polarization tests confirmed the results obtained by the electrochemical tests.展开更多
Application o f defect-free,adherent,and corrosion protective sol-gel film on the magnesium alloys is generally difficult.In this study,two novel sol-gel/conversion coating composites were successfully deposited on AM...Application o f defect-free,adherent,and corrosion protective sol-gel film on the magnesium alloys is generally difficult.In this study,two novel sol-gel/conversion coating composites were successfully deposited on AM60B magnesium alloy in order to provide sufficient protection against the corrosion.The first composite(Ti-Zr/hybrid)was obtained via combination o f a hybrid sol-gel film(synthesized by mixing tetraethoxysilane(TEOS),and 3-glycidyloxypropyl-trimethoxysilane(GPTMS))as outer layer and Ti-Zr conversion coating as primer.Also,the second composite(Ti-Zr/PTMS)was applied in a similar manner by combination o f phenyl-trimethoxysilane(PTMS)so lgel film with the Ti-Zr conversion coating.The morphology and elemental composition of the Ti-Zr conversion film were assessed by the Scanning Electron Microscopy(SEM)and Energy Dispersive X-ray Spectroscopy(EDS),respectively.A cracky conversion film was applied on the alloy surface after immersion in the Ti-Zr conversion coating bath which was mainly composed of MgO,T i02,Zr02,and MgF2 compounds.Uniform,but not-adherent PTMS and hybrid sol-gel films(pure sol-gel films)with obvious defects were directly deposited onto the magnesium alloy without the Ti-Zr pretreatment which were morphologically characterized by the SEM.However,formation o f relatively uniform and completely defect-free Ti-Zr/hybrid and Ti-Zr/PTMS composites after using the Ti-Zr conversion coating as pretreatment was revealed by the SEM observations.In addition,the defects of the Ti-Zr conversion coating were completely filled by the sol-gel layers.The Ti-Zr/PTMS and Ti-Zr/hybrid composite coatings were provided much better corrosion protection capacity than the pure PTMS and hybrid sol-gel films,respectively which was confirmed by the Electrochemical Impedance Spectroscopy(EIS)and Potentiodynamic Polarization(PDP)examinations in 0.05 M NaCl solution.展开更多
Lignocellulosic biomass has attracted great interest in recent years for energy production due to its renewability and carbon-neutral nature.There are various ways to convert lignocellulose to gaseous,liquid and solid...Lignocellulosic biomass has attracted great interest in recent years for energy production due to its renewability and carbon-neutral nature.There are various ways to convert lignocellulose to gaseous,liquid and solid fuels via thermochemical,chemical or biological approaches.Typical biomass derived fuels include syngas,bio-gas,bio-oil,bioethanol and biochar,all of which could be used as fuels for furnace,engine,turbine or fuel cells.Direct biomass fuel cells mediated by various electron carriers provide a new direction of lignocellulose conversion.Various metal and non-metal based carriers have been screened for mediating the electron transfer from biomass to oxygen thus generating electricity.The power density of direct biomass fuel cells can be over 100 mW cm^(-2),which shows promise for practical applications.Lignocellulose and its isolated components,primarily cellulose and lignin,have also been paid considerable attention as sustainable carbonaceous materials for preparation of electrodes for supercapacitors,lithium-ion batteries and lithium-sulfur batteries.In this paper,we have provided a state-of-the-art review on the research progress of lignocellulosic biomass as feedstock and materials for power generation and energy storage focusing on the chemistry aspects of the processes.It was recommended that process integration should be performed to reduce the cost for thermochemical and biological conversion of lignocellulose to biofuels,while efforts should be made to increase efficiency and improve the properties for biomass fuelled fuel cells and biomass derived electrodes for energy storage.展开更多
Electrochemically promoted electroless plating(EPEP)was used for the application of pretreatment-free Ni-P coating on AM60B magnesium alloy at low temperatures and the obtained coating was characterized by SEM,AFM,EDS...Electrochemically promoted electroless plating(EPEP)was used for the application of pretreatment-free Ni-P coating on AM60B magnesium alloy at low temperatures and the obtained coating was characterized by SEM,AFM,EDS and XRD techniques.Compact,uniform,and medium-phosphorus Ni-P coating with mixed crystalline-amorphous microstructure was obtained by applying a cathodic current density of4mA/cm^2at50℃.Also,island-like nickel clusters were deposited on the alloy surface under the same plating condition but without applying the cathodic current.In addition,the durability of the magnesium alloy against corrosion was strongly improved after plating via EPEP technique which was revealed by electrochemical examinations in3.5%NaCl(mass fraction)corrosive electrolyte.The results of the electrochemical examinations were confirmed by microscopic observations.Thickness,microhardness,porosity and adhesive strength of the deposits were also qualified.展开更多
Continuous noise resistance calculation(CNRC)technique was used for online determination of the electroless nickel deposition rate on zirconium pretreated magnesium alloy.For this purpose,the noise resistance(R_n) var...Continuous noise resistance calculation(CNRC)technique was used for online determination of the electroless nickel deposition rate on zirconium pretreated magnesium alloy.For this purpose,the noise resistance(R_n) variation with time was calculated for the pretreated alloy surface in the electroless plating solution.The CNRC results were described by energy dispersive X-ray spectroscopy(EDS)and scanning electron microscopy(SEM)techniques.Also,potentiodynamic polarization and gravimetric measurements were used for determination of the electroless deposition rate at the same time period and the results were compared with the CNRC results.The Rn variation with plating time shows that the electroless plating consists of different stages with various deposition rates.The results of the CNRC and polarization methods were not in acceptable agreement due to the limitations of the polarization method for online monitoring of the deposition rate.However,the results of the gravimetric measurements were in complete agreement with the CNRC technique and so,the CNRC can be considered as suitable tool for online evaluation of the electroless deposition rate.展开更多
Performic acid (PFA) is an oxidant used in chemical processing, synthesis and bleaching. The macro kinetic models of synthesis, hydrolysis and decomposition of PFA were investigated via formic acid-autocatalyzed rea...Performic acid (PFA) is an oxidant used in chemical processing, synthesis and bleaching. The macro kinetic models of synthesis, hydrolysis and decomposition of PFA were investigated via formic acid-autocatalyzed reaction. It was found that the intrinsic activation energies of PFA synthesis and hydrolysis were 75.2 kJ·mol^-1 and 40.4 kJ·mol^-1 respectively. The observed activation energy of PFA decomposition was 95.4 kJ·mol^-1. The experi-mental results indicated that the decomposition of PFA was liable to occur even at the ambient temperature. Both the spontaneous decomposition and the radical-introduced decomposition contributed to the decomposition of PFA.展开更多
Sintered zinc aluminum coating (SZAC) was prepared using zinc flakes, aluminum flakes and CrO 3 as main raw materials. The corrosion behavior of SZAC in 3.5%NaCl solution was studied by means of SEM, EDS, EIS and so o...Sintered zinc aluminum coating (SZAC) was prepared using zinc flakes, aluminum flakes and CrO 3 as main raw materials. The corrosion behavior of SZAC in 3.5%NaCl solution was studied by means of SEM, EDS, EIS and so on. Results indicate that aluminum corroded in advance of zinc to produce speculate or spherical substances, which attaches to SZAC and adds mass to it. Corrosion production passivates metal powders in SZAC, causes E corr of SZAC to increase gradually, and causes the arising of the third time constant in EIS, which corresponds to the insulation of corrosion production.展开更多
8-hydroxyquinoline(8-HQ)intercalated layered double hydroxides(LDH)film as underlayer and sol-gel layer was combined for active corrosion protection of the AM60B magnesium alloy.The LDH,LDH/sol-gel,and LDH@HQ/sol-gel ...8-hydroxyquinoline(8-HQ)intercalated layered double hydroxides(LDH)film as underlayer and sol-gel layer was combined for active corrosion protection of the AM60B magnesium alloy.The LDH,LDH/sol-gel,and LDH@HQ/sol-gel coatings were analyzed using the scanning electron microscopy(SEM),field emission scanning electron microscopy(FESEM),energy dispersive X-ray spectroscopy(EDS),X-ray diffraction(XRD),atomic force microscopy(AFM),and electrochemical impedance spectroscopy(EIS)methods.The SEM images showed that the surface was entirely coated by the LDH film composed of vertically-grown nanosheets.The same morphology was observed for the LDH/sol-gel and LDH@HQ/sol-gel coatings.Also,almost the same topography was observed for both composite coatings except that the LDH@HQ/sol-gel coating had relatively higher surface roughness.Although the LDH film had the same impedance behavior as the alloy sample in 3.5wt%NaCl solution,its corrosion resistance was much higher,which could be due to its barrier properties as well as to the trap-ping of the chloride ions.Similar to the LDH film,the corrosion resistance of the LDH/sol-gel composite diminished with increasing the ex-posure time.However,its values were much higher than that of the LDH film,which was mainly related to the sealing of the solution path-ways.The LDH@HQ/sol-gel composite showed much better anti-corrosion properties than the LDH/sol-gel coating due to the adsorption of the 8-HQ on the damaged areas through the complexation.展开更多
A series of CO3O4 spinel catalysts modified by Sm were prepared by co-precipitation method and tested for CH4 and CO oxidation. The addition of a small amount of Sm into Co3O4 led to an improvement in the catalytic ac...A series of CO3O4 spinel catalysts modified by Sm were prepared by co-precipitation method and tested for CH4 and CO oxidation. The addition of a small amount of Sm into Co3O4 led to an improvement in the catalytic activity for both reactions. Co0.98Sm0. 02 and Co0.95Sm0.05, the two samples with Co/Sm molar ratio of 0.98/0.02 and 0.95/0.05 in sequence, showed the similar and the highest activity for CH4 oxidation, with CH4 complete conversion at 450 ℃. In contrast, Coo.90Smo l0 was the most active sample for CO oxidation, with CO complete conversion at 120 ℃. The catalysts were characterized by techniques of N2 adsor- tion-desorption with Brunauer-Emmett-Teller technique (N2-BET), X-ray powder diffraction (XRD), thermal gravity analy- sis-differential scanning calorimetry (TGA-DSC), Hz temperature programmed reduction (H2-TPR) and X-ray photoelectron spec- troscopy analysis (XPS). Compared with pure Co3O4, for CO1-xSmx catalysts with 0.02≤x≤0.10, the addition of a small amount of Sm resulted in the formation of spinel Co3O4 and amorphous SmCoO3, hence increasing the number of Co3+ and the active surface oxygen species, which was responsible for the improvement of the activity. C00.95Sm0.05 catalyst showed not only high thermal stability and activity but also good reaction durability in the presence of 5% water vapor for CH4 oxidation.展开更多
The effect of a salicylic Schiff base componnd (Salcn) on the corrosion of AZ91 alloy in 30% ethylene glycol aqueous solution (30% EG/W) was investigated by electrochemical methods. Scanning electron microscope wa...The effect of a salicylic Schiff base componnd (Salcn) on the corrosion of AZ91 alloy in 30% ethylene glycol aqueous solution (30% EG/W) was investigated by electrochemical methods. Scanning electron microscope was used to observe the alloy surface in corrosive solution before and after the addition of inhibitor. There was no significant corrosion inhibition at the room temperature but high inhibition efficiencies were obtained at elevated temperatures due to the formation of chemisorbed inhibitor monolayer. As the inhibitor concentration increased, the inhibition efficiency increased probably due to more inhibitor adsorption on the alloy surface.展开更多
Extractive electrospray ionization source (EESI) was adapted for ion-ion reaction, which was demonstrated by using a linear quadrupole ion trap mass spectrometer for the first ion-ion reaction of biopolymers in the ...Extractive electrospray ionization source (EESI) was adapted for ion-ion reaction, which was demonstrated by using a linear quadrupole ion trap mass spectrometer for the first ion-ion reaction of biopolymers in the atmospheric pressure ambient.展开更多
The acrylonitrile-butadiene-styrene (ABS) surface was etched by dipping it into chromic acid-sulfuric acid containing a trace amount of palladium. The surface roughness, activity, and valence bond were characterized...The acrylonitrile-butadiene-styrene (ABS) surface was etched by dipping it into chromic acid-sulfuric acid containing a trace amount of palladium. The surface roughness, activity, and valence bond were characterized by atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). The results showed that with the increase of Pd concentration in the etching solution the ABS surface roughness reduced. The ratio of O to C increases and forms a large amount of O=C?O functional groups by dipping into Pd contained etching solution, thus the amount of colloids palladium adsorption increases. The carboxyl group acts as the ad- sorption site for the Pd/Sn catalyst.展开更多
文摘From the ethyl acetate extract of the medicinal plant Graptophyllum glandulosum Turrill, five known compounds: Lupeol (1), Oleanolic acid (2), Chrysoeriol (3), N-methyl-isonicotinamide (4) and β-sitosterol 3-O-β-D-glucopyranoside (5) were isolated. In addition, oxidation reactions carried out on lupeol (1) yielded two semi-synthetic compounds, including a previously unreported: (20R)-formyloxy-29-nor-lupan-3-one (1b) and one other well-known Lupenone (1a). The structures of natural and semi-synthetic compounds were determined by analysis of 1D-(1H, 13C), 2D-(COSY, HSQC and HMBC) NMR data in conjunction with mass spectrometry (TOFESIMS and HR-TOFESIMS) and by comparison with the reported data. The evaluation of antimicrobial activities of substrate (1) as well as semi-synthetic derivatives (1a and 1b) using broth microdilution method showed that compound 1b was the most active (16 ≤ MIC ≤ 32 μg/mL) against Escherichia coli, Staphylococcus aureus and Candida albicans compared to the starting material 1 (16 ≤ MIC ≤ 64 μg/mL) and derivative 1a (32 ≤ MIC ≤ 64 μg/mL).
文摘In the present paper the isolation and characterization of seven major glycolipid classes (stigmasterol, acylated stigmasteryl glucoside, stigmasteryl glucoside, monogalactosyldiacylglycerol, digalactosyldiacylglycerol, cerebroside and glucocerebroside) from Drymaria cordata (Linn.) Willd (Caryophyllaceae Family) are reported after an attempt has been made to congregate the traditional and pharmacological studies done on this important medicinal plant. Drymaria cordata is a weak spreading herb found widely dispersed in damp places all over the tropics of Africa, Asia and the Americas. There are many reports on its folk and traditional uses that include snake bite, skin diseases, peptic ulcer, headaches or nephritis, female infertility, sleeping disorders, convulsions, and febrile conditions in children. The plant has been examined on the basis of scientific in vitro and in vivo evaluations possessing the major pharmacological activities that include analgesic activity, antitussive activity, anxiolytic activity, antipyretic activity, antinociceptive activity, anti-inflammatory and antibacterial activities. The information summarized here is intended to serve as a reference tool for practitioners in the fields of ethnopharmacology, natural product chemistry and drug discovery related research.
基金supported by the National Key R&D Program of China(2022YFA2105900)the National Natural Science Foundation of China(No.22178197)。
文摘Electrochemical reduction of CO_(2)(CO_(2)RR)has become a research hot spot in recent years in the context of carbon neutrality.HCOOH is one of the most promising products obtained by electrochemical reduction of CO_(2) due to its high energy value as estimated by market price per energy unit and wide application in chemical industry.Biomass is the most abundant renewable resource in the natural world.Coupling biomass oxidative conversion with CO_(2)RR driven by renewable electricity would well achieve carbon negativity.In this work,we comprehensively reviewed the current research progress on CO_(2)RR to produce HCOOH and coupled system for conversion of biomass and its derivatives to produce value-added products.Sn-and Bi-based electrocatalysts are discussed for CO_(2)RR with regards to the structure of the catalyst and reaction mechanisms.Electro-oxidation reactions of biomass derived sugars,alcohols,furan aldehydes and even polymeric components of lignocellulose were reviewed as alternatives to replace oxygen evolution reaction(OER)in the conventional electrolysis process.It was recommended that to further improve the efficiency of the coupled system,future work should be focused on the development of more efficient and stable catalysts,careful design of the electrolytic cells for improving the mass transfer and development of environment-friendly processes for recovering the formed formate and biomass oxidation products.
基金supported by the National Key R&D Program of China(2022YFA2105900)the National Natural Science Foundation of China(22178197)。
文摘Highly-efficient oxidation of 5-hydroxymethylfurtural(HMF) to 2,5-furandicarboxylic acid(FDCA) at low temperature with air as the oxidant is still challenging.Herein,inspired by the respirato ry electron transport chain(ETC) of living cells mediated by electron carriers,we constructed artificial ETCs and transformed liquid flow fuel cells(LFFCs) to flexible reactors for efficient oxidation of HMF to produce FDCA under mild conditions.This LFFC reactor employed an electrodeposition modified nickel foam as an anode to promote HMF oxidation and(VO_(2))_(2)SO_(4) as a cathode electron carrier to facilitate the electron transfer to air.The reaction rate could be easily controlled by selecting the anode catalyst,adjusting the external loading and changing the cathodic electron carrier or oxidants.A maximal power density of 44.9 mW cm^(-2) at room temperature was achieved,while for FDCA production,short-circuit condition was preferred to achieve quick transfer of electrons.For a single batch operation with 0.1 M initial HMF,FDCA yield reached 97.1%.By fed-batch operation,FDCA concentration reached 144.5 g L^(-1) with a total yield of 96%.Ni^(2+)/Ni^(3+) redox couple was the active species mediating the electron transfer,while both experimental and DFT calculation results indicated that HMFCA pathway was the preferred reaction mechanism.
基金This work was supported by the Natural Science Foundation of Jiangxi Province (No. 0520002).
文摘This study concentrates on the environmental pollution level of sediments in the six branches of Poyang Lake, the biggest fresh water lake in China. This is the first systematic report on the speciation analysis of heavy metals (Cu, Co, Cd, Pb, and Ni) in the six branches of the lake. A reported analytical procedure involving a five-step sequential extraction is used for the partition of particulating heavy metals. The sediment samples are analyzed using flame atomic absorption spectroscopy (FAAS). Experimental results obtained from five replicate samples of fluvial bottom surface sediments at the sampling points demonstrated that the relative standard deviation of the sequential extraction procedure was generally better than 10% (Cd except). The average extracted contents of the five elements, analyzed after all five steps, are found to be (mg/kg) for Cu: 26.89, Co: 16.25, Cd: 1.08, Pb: 37.98, and Ni: 20.46. The content of the exchangeable species was generally lower. Except Cu, the percentage of the species bond to organic matter was lower than 20%. The fractions containing the most metal for Cu, Co, and Ni were the residues (52.26%, 45.28%, and 74.82%, respectively).
文摘Sol-gel coatings containing various amounts of hydroxylated nanodiamond(HND)particles were applied on the magnesium alloy for corrosion protection.The micrometric defects in the sol-gel coating completely disappeared after adding 0.01,0.02 and 0.05 wt.%of the HND nanoparticles.The AFM analyses showed that average roughness of the sol-gel film is about 6.7 nm which increases to 16.1 and 20.2 nm after incorporating 0.005 and 0.02 wt.%of the HNDs,respectively.The corrosion resistance of the coatings was tested in Harrison’s solution by means of EIS technique after 15,30,60 and 120 min immersion.The corrosion resistance of the sol-gel coating was remarkably enhanced by incorporating different contents of the HNDs and the best result was obtained for 0.01 wt.%.The results of the EIS experiments were confirmed by the potentiodynamic polarization tests.The corrosion resistance enhancement was attributed to the film compactness(due to the chemical interaction with the HNDs),formation of tortuous pathways for diffusion of the corrosive solution,and filling of the defects by the nanoparticles.However,the beneficial effect of the HNDs on the corrosion resistance gradually diminished as the content of nanoparticle was increased.Finally,the micromorphology of the sol-gel nanocomposites was studied after the corrosion tests.
文摘The inhibition effect of electrochemical noise, EIS and surface analysis to evaluate N'-bis (2-pyridylmethylidene)- 1,2-diiminoethane (BPIE) Schiff base against AZ91D alloy corrosion in 0.01 mol/L HCl was investigated by different electrochemical methods. Potentiodynamic polarization curves revealed that the BPIE acts as a mixed-type corrosion inhibitor. Electrochemical impedance spectroscopy (EIS) measurements confirmed the corrosion inhibition effect of the BPIE. As the inhibitor concentration increased, the charge transfer resistance increased and the double layer capacitance decreased due to more inhibitor adsorption on the surface. The results obtained by analysis of electrochemical noise (EN) data in time and frequency domains are in good agreement with EIS and polarization results. Moreover, scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive X-ray (EDX) were used to investigate the corrosion inhibition of the BPIE. SEM images showed that the corrosion damage of the alloy surface reduced in the presence of BPIE. The intensity of the XRD peaks corresponding to magnesium-rich α phase increased in the presence of BPIE, indicating lower corrosion of alloy sample. Also, EDX analysis approved the corrosion inhibition performance of the BPIE. The studied Schiff base compound acts by physical adsorption on the alloy surface and its adsorption obeys the Langmuir isotherm.
基金the Iran National Science Foundation(INSF)and University of Mohaghegh Ardabil for financial support of this study。
文摘Al-based MIL-53 MOF nanostructure was synthesized hydrothermally and then co-deposited in the electroless nickel coating on AM60B magnesium alloy using Zr pretreatment as an eco-friendly underlayer.The MIL-53(Al)nanostructure was synthesized in the form of layered semi-cube crystals with the surface area and mean pore diameter of 985.72 m^(2)g^(-1) and 2.00 nm,respectively.The SEM images captured with two various zooming scales from the surface of the plain and MOF containing electroless layers showed cauliflower-like morphology with even distribution of nodule size.Also,the sub-grains of the plain coating disappeared after incorporation of the MOF.Although,both the normal and nanostructure-containing electroless layers have crystalline-amorphous structure,but the nanocomposite coating showed less crystallinity.The average surface roughness of the plain electroless coating was about 309 nm,which decreased to about 222 nm after incorporation of the MOF.The XRD patterns showed that the characteristic peak of Ni broadened after incorporation of the MOF,probably due to the decreasing of the crystallinity.For the heat-treated normal and MOF containing coatings at 200℃ no phase transition takes place,but new peaks appeared for heat-treated coatings at 400℃ due to the crystallization and second-phase precipitation.The results of the EIS tests showed an increase in the amount of the charge transfer resistance(from 19 to 29 kΩcm^(2))after addition of the MOF,which means an improvement in the corrosion resistance.Also,low Jcorrof the composite coating represents its higher corrosion resistance with respect to the plain coating.The micro-hardness values of the composite coating before and after the heat treatment were higher than the plain coating.Also,the Ni-P-MOF coating has a lower wear rate both before and after the heat treatment due to an improvement in its micro-hardness.
文摘Application of a composite coating on AM60B magnesium alloy consisting of cerium-vanadium conversion coating and a hybrid sol-gel layer was investigated. Scanning electron microscopy and energy dispersive X-ray spectroscopy analyses revealed a cracked nodular structure for the cerium-vanadium conversion coating which was mainly composed of O, Ce, V, and Mg atoms. All the cracks in the conversion coating were completely sealed by a thin, compact and defect-free hybrid sol?gel film. Potentiodynamic polarization and electrochemical impedance spectroscopy experiments in Harrison’s solution showed that the cerium-vanadium conversion coating provides minimal protection against corrosion while the composite coating significantly increases the corrosion resistance of the magnesium alloy. Sol-gel film provides protection against corrosion by sealing cracks in the cerium-vanadium conversion coating and acting as a barrier. Scanning electron microscopy analyses after polarization tests confirmed the results obtained by the electrochemical tests.
文摘Application o f defect-free,adherent,and corrosion protective sol-gel film on the magnesium alloys is generally difficult.In this study,two novel sol-gel/conversion coating composites were successfully deposited on AM60B magnesium alloy in order to provide sufficient protection against the corrosion.The first composite(Ti-Zr/hybrid)was obtained via combination o f a hybrid sol-gel film(synthesized by mixing tetraethoxysilane(TEOS),and 3-glycidyloxypropyl-trimethoxysilane(GPTMS))as outer layer and Ti-Zr conversion coating as primer.Also,the second composite(Ti-Zr/PTMS)was applied in a similar manner by combination o f phenyl-trimethoxysilane(PTMS)so lgel film with the Ti-Zr conversion coating.The morphology and elemental composition of the Ti-Zr conversion film were assessed by the Scanning Electron Microscopy(SEM)and Energy Dispersive X-ray Spectroscopy(EDS),respectively.A cracky conversion film was applied on the alloy surface after immersion in the Ti-Zr conversion coating bath which was mainly composed of MgO,T i02,Zr02,and MgF2 compounds.Uniform,but not-adherent PTMS and hybrid sol-gel films(pure sol-gel films)with obvious defects were directly deposited onto the magnesium alloy without the Ti-Zr pretreatment which were morphologically characterized by the SEM.However,formation o f relatively uniform and completely defect-free Ti-Zr/hybrid and Ti-Zr/PTMS composites after using the Ti-Zr conversion coating as pretreatment was revealed by the SEM observations.In addition,the defects of the Ti-Zr conversion coating were completely filled by the sol-gel layers.The Ti-Zr/PTMS and Ti-Zr/hybrid composite coatings were provided much better corrosion protection capacity than the pure PTMS and hybrid sol-gel films,respectively which was confirmed by the Electrochemical Impedance Spectroscopy(EIS)and Potentiodynamic Polarization(PDP)examinations in 0.05 M NaCl solution.
基金supported by the National Natural Science Foundation of China(No.21878176)National Key Research and Development Program of China(No.2018YFA0902200)financially supported by the Imperial College President’s PhD Scholarship Scheme。
文摘Lignocellulosic biomass has attracted great interest in recent years for energy production due to its renewability and carbon-neutral nature.There are various ways to convert lignocellulose to gaseous,liquid and solid fuels via thermochemical,chemical or biological approaches.Typical biomass derived fuels include syngas,bio-gas,bio-oil,bioethanol and biochar,all of which could be used as fuels for furnace,engine,turbine or fuel cells.Direct biomass fuel cells mediated by various electron carriers provide a new direction of lignocellulose conversion.Various metal and non-metal based carriers have been screened for mediating the electron transfer from biomass to oxygen thus generating electricity.The power density of direct biomass fuel cells can be over 100 mW cm^(-2),which shows promise for practical applications.Lignocellulose and its isolated components,primarily cellulose and lignin,have also been paid considerable attention as sustainable carbonaceous materials for preparation of electrodes for supercapacitors,lithium-ion batteries and lithium-sulfur batteries.In this paper,we have provided a state-of-the-art review on the research progress of lignocellulosic biomass as feedstock and materials for power generation and energy storage focusing on the chemistry aspects of the processes.It was recommended that process integration should be performed to reduce the cost for thermochemical and biological conversion of lignocellulose to biofuels,while efforts should be made to increase efficiency and improve the properties for biomass fuelled fuel cells and biomass derived electrodes for energy storage.
文摘Electrochemically promoted electroless plating(EPEP)was used for the application of pretreatment-free Ni-P coating on AM60B magnesium alloy at low temperatures and the obtained coating was characterized by SEM,AFM,EDS and XRD techniques.Compact,uniform,and medium-phosphorus Ni-P coating with mixed crystalline-amorphous microstructure was obtained by applying a cathodic current density of4mA/cm^2at50℃.Also,island-like nickel clusters were deposited on the alloy surface under the same plating condition but without applying the cathodic current.In addition,the durability of the magnesium alloy against corrosion was strongly improved after plating via EPEP technique which was revealed by electrochemical examinations in3.5%NaCl(mass fraction)corrosive electrolyte.The results of the electrochemical examinations were confirmed by microscopic observations.Thickness,microhardness,porosity and adhesive strength of the deposits were also qualified.
文摘Continuous noise resistance calculation(CNRC)technique was used for online determination of the electroless nickel deposition rate on zirconium pretreated magnesium alloy.For this purpose,the noise resistance(R_n) variation with time was calculated for the pretreated alloy surface in the electroless plating solution.The CNRC results were described by energy dispersive X-ray spectroscopy(EDS)and scanning electron microscopy(SEM)techniques.Also,potentiodynamic polarization and gravimetric measurements were used for determination of the electroless deposition rate at the same time period and the results were compared with the CNRC results.The Rn variation with plating time shows that the electroless plating consists of different stages with various deposition rates.The results of the CNRC and polarization methods were not in acceptable agreement due to the limitations of the polarization method for online monitoring of the deposition rate.However,the results of the gravimetric measurements were in complete agreement with the CNRC technique and so,the CNRC can be considered as suitable tool for online evaluation of the electroless deposition rate.
基金Supported by the International Cooperation Project of the Ministry of Science and Technology of China (2010DFB40170)the National Basic Research Program of China (973 Program) (2011CB707406)
文摘Performic acid (PFA) is an oxidant used in chemical processing, synthesis and bleaching. The macro kinetic models of synthesis, hydrolysis and decomposition of PFA were investigated via formic acid-autocatalyzed reaction. It was found that the intrinsic activation energies of PFA synthesis and hydrolysis were 75.2 kJ·mol^-1 and 40.4 kJ·mol^-1 respectively. The observed activation energy of PFA decomposition was 95.4 kJ·mol^-1. The experi-mental results indicated that the decomposition of PFA was liable to occur even at the ambient temperature. Both the spontaneous decomposition and the radical-introduced decomposition contributed to the decomposition of PFA.
文摘Sintered zinc aluminum coating (SZAC) was prepared using zinc flakes, aluminum flakes and CrO 3 as main raw materials. The corrosion behavior of SZAC in 3.5%NaCl solution was studied by means of SEM, EDS, EIS and so on. Results indicate that aluminum corroded in advance of zinc to produce speculate or spherical substances, which attaches to SZAC and adds mass to it. Corrosion production passivates metal powders in SZAC, causes E corr of SZAC to increase gradually, and causes the arising of the third time constant in EIS, which corresponds to the insulation of corrosion production.
文摘8-hydroxyquinoline(8-HQ)intercalated layered double hydroxides(LDH)film as underlayer and sol-gel layer was combined for active corrosion protection of the AM60B magnesium alloy.The LDH,LDH/sol-gel,and LDH@HQ/sol-gel coatings were analyzed using the scanning electron microscopy(SEM),field emission scanning electron microscopy(FESEM),energy dispersive X-ray spectroscopy(EDS),X-ray diffraction(XRD),atomic force microscopy(AFM),and electrochemical impedance spectroscopy(EIS)methods.The SEM images showed that the surface was entirely coated by the LDH film composed of vertically-grown nanosheets.The same morphology was observed for the LDH/sol-gel and LDH@HQ/sol-gel coatings.Also,almost the same topography was observed for both composite coatings except that the LDH@HQ/sol-gel coating had relatively higher surface roughness.Although the LDH film had the same impedance behavior as the alloy sample in 3.5wt%NaCl solution,its corrosion resistance was much higher,which could be due to its barrier properties as well as to the trap-ping of the chloride ions.Similar to the LDH film,the corrosion resistance of the LDH/sol-gel composite diminished with increasing the ex-posure time.However,its values were much higher than that of the LDH film,which was mainly related to the sealing of the solution path-ways.The LDH@HQ/sol-gel composite showed much better anti-corrosion properties than the LDH/sol-gel coating due to the adsorption of the 8-HQ on the damaged areas through the complexation.
基金supported by National Natural Science Foundation of China(21263015,21203088)Education Department of Jiangxi Province(GJJ12045)
文摘A series of CO3O4 spinel catalysts modified by Sm were prepared by co-precipitation method and tested for CH4 and CO oxidation. The addition of a small amount of Sm into Co3O4 led to an improvement in the catalytic activity for both reactions. Co0.98Sm0. 02 and Co0.95Sm0.05, the two samples with Co/Sm molar ratio of 0.98/0.02 and 0.95/0.05 in sequence, showed the similar and the highest activity for CH4 oxidation, with CH4 complete conversion at 450 ℃. In contrast, Coo.90Smo l0 was the most active sample for CO oxidation, with CO complete conversion at 120 ℃. The catalysts were characterized by techniques of N2 adsor- tion-desorption with Brunauer-Emmett-Teller technique (N2-BET), X-ray powder diffraction (XRD), thermal gravity analy- sis-differential scanning calorimetry (TGA-DSC), Hz temperature programmed reduction (H2-TPR) and X-ray photoelectron spec- troscopy analysis (XPS). Compared with pure Co3O4, for CO1-xSmx catalysts with 0.02≤x≤0.10, the addition of a small amount of Sm resulted in the formation of spinel Co3O4 and amorphous SmCoO3, hence increasing the number of Co3+ and the active surface oxygen species, which was responsible for the improvement of the activity. C00.95Sm0.05 catalyst showed not only high thermal stability and activity but also good reaction durability in the presence of 5% water vapor for CH4 oxidation.
基金the Research Council of the University of Mohaghegh Ardabili for its financial support of this study
文摘The effect of a salicylic Schiff base componnd (Salcn) on the corrosion of AZ91 alloy in 30% ethylene glycol aqueous solution (30% EG/W) was investigated by electrochemical methods. Scanning electron microscope was used to observe the alloy surface in corrosive solution before and after the addition of inhibitor. There was no significant corrosion inhibition at the room temperature but high inhibition efficiencies were obtained at elevated temperatures due to the formation of chemisorbed inhibitor monolayer. As the inhibitor concentration increased, the inhibition efficiency increased probably due to more inhibitor adsorption on the alloy surface.
文摘Extractive electrospray ionization source (EESI) was adapted for ion-ion reaction, which was demonstrated by using a linear quadrupole ion trap mass spectrometer for the first ion-ion reaction of biopolymers in the atmospheric pressure ambient.
基金the National Doctorial Research Foundation of China (No.20030213007).
文摘The acrylonitrile-butadiene-styrene (ABS) surface was etched by dipping it into chromic acid-sulfuric acid containing a trace amount of palladium. The surface roughness, activity, and valence bond were characterized by atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). The results showed that with the increase of Pd concentration in the etching solution the ABS surface roughness reduced. The ratio of O to C increases and forms a large amount of O=C?O functional groups by dipping into Pd contained etching solution, thus the amount of colloids palladium adsorption increases. The carboxyl group acts as the ad- sorption site for the Pd/Sn catalyst.