Improving the accuracy of the evaluation of the performance of wind farms in large wind power bases located in complex terrain under the actual atmosphere is crucial to the sustainable development of wind power.To thi...Improving the accuracy of the evaluation of the performance of wind farms in large wind power bases located in complex terrain under the actual atmosphere is crucial to the sustainable development of wind power.To this end,this study combined the Weather Research and Forecasting(WRF)model with the Wind Farm Parameterization(WFP)method to investigate the wake characteristics and operational performance of large onshore wind farms in the complex terrain of Jiuquan City,Gansu Province,China.The research results showed that after verification,the systematic error of the WRF simulations was less than 3%.The WRF model and the WFP scheme simulated a significant warming phenomenon within the wind power base area,while a cooling effect was observed outside.The analysis of the wake effects indicated that the impact of PhaseⅠconstruction on PhaseⅡconstruction of the wind power base was minimal.During the operation of the entire wind power base,the wind speed within the wind farm decreased by approximately 10%,and the influence range of the predominant wind direction extended over a hundred kilometers downwind.The research conclusions provide a powerful scientific basis for optimizing design and operation,improving efficiency,minimizing the negative impacts on adjacent wind turbines,and ensuring the sustainable development of wind energy through dynamic planning and scientific assessment.展开更多
Doping plays a pivotal role in enhancing the performance of organic semiconductors(OSCs)for advanced optoelectronic and thermoelectric applications.In this study,we systematically investigated the doping performance a...Doping plays a pivotal role in enhancing the performance of organic semiconductors(OSCs)for advanced optoelectronic and thermoelectric applications.In this study,we systematically investigated the doping performance and applicability of the ionic dopant 4-isopropyl-4′-methyldiphenyliodonium tetrakis(penta-fluorophenyl-borate)(DPI-TPFB)as a p-dopant for OSCs.Using the p-type OSC PBBT-2T as a model system,we demonstrated that DPI-TPFB shows significant doping effect,as confirmed by ESR spectra,ultraviolet-visible-near-infrared(UV-vis-NIR)absorption,and work function analysis,and enhances the electronic conductivity of PBBT-2T films by over four orders of magnitude.Furthermore,DPI-TPFB exhibited broad doping applicability,effectively doping various p-type OSCs and even imparting p-type characteristics to the n-type OSC N2200,transforming its intrinsic n-type behavior into p-type.The application of DPI-TPFB-doped PBBT-2T films in organic thermoelectric devices(OTEs)was also explored,achieving a power factor of approximately 10μW·m^(-1)·K^(-2).These findings highlight the potential of DPI-TPFB as a versatile and efficient dopant for integration into organic optoelectronic and thermoelectric devices.展开更多
The scale and complexity of big data are growing continuously,posing severe challenges to traditional data processing methods,especially in the field of clustering analysis.To address this issue,this paper introduces ...The scale and complexity of big data are growing continuously,posing severe challenges to traditional data processing methods,especially in the field of clustering analysis.To address this issue,this paper introduces a new method named Big Data Tensor Multi-Cluster Distributed Incremental Update(BDTMCDIncreUpdate),which combines distributed computing,storage technology,and incremental update techniques to provide an efficient and effective means for clustering analysis.Firstly,the original dataset is divided into multiple subblocks,and distributed computing resources are utilized to process the sub-blocks in parallel,enhancing efficiency.Then,initial clustering is performed on each sub-block using tensor-based multi-clustering techniques to obtain preliminary results.When new data arrives,incremental update technology is employed to update the core tensor and factor matrix,ensuring that the clustering model can adapt to changes in data.Finally,by combining the updated core tensor and factor matrix with historical computational results,refined clustering results are obtained,achieving real-time adaptation to dynamic data.Through experimental simulation on the Aminer dataset,the BDTMCDIncreUpdate method has demonstrated outstanding performance in terms of accuracy(ACC)and normalized mutual information(NMI)metrics,achieving an accuracy rate of 90%and an NMI score of 0.85,which outperforms existing methods such as TClusInitUpdate and TKLClusUpdate in most scenarios.Therefore,the BDTMCDIncreUpdate method offers an innovative solution to the field of big data analysis,integrating distributed computing,incremental updates,and tensor-based multi-clustering techniques.It not only improves the efficiency and scalability in processing large-scale high-dimensional datasets but also has been validated for its effectiveness and accuracy through experiments.This method shows great potential in real-world applications where dynamic data growth is common,and it is of significant importance for advancing the development of data analysis technology.展开更多
Accurate seasonal precipitation forecasts,especially for extreme events,are crucial to preventing meteorological hazards and their potential impacts on national development,social activity,and security.However,the int...Accurate seasonal precipitation forecasts,especially for extreme events,are crucial to preventing meteorological hazards and their potential impacts on national development,social activity,and security.However,the intensity of summer precipitation is often largely underestimated in many current dynamic models.This study uses a deep learning method called Cycle-Consistent Generative Adversarial Networks(CycleGAN)to improve the seasonal forecasts for June-JulyAugust precipitation in southeastern China by the Nanjing University of Information Science and Technology Climate Forecast System(NUIST-CFS 1.0).The results suggest that the CycleGAN-based model significantly improves the accuracy in predicting the spatiotemporal distribution of summer precipitation compared to the traditional quantile mapping(QM)method.Using the unpaired bias-correction model,we can also obtain advanced forecasts of the frequency,intensity,and duration of extreme precipitation events over the dynamic model predictions.This study expands the potential applications of deep learning models toward improving seasonal precipitation forecasts.展开更多
A remarkable marine heatwave,known as the“Blob”,occurred in the Northeast Pacific Ocean from late 2013 to early 2016,which displayed strong warm anomalies extending from the surface to a depth of 300 m.This study em...A remarkable marine heatwave,known as the“Blob”,occurred in the Northeast Pacific Ocean from late 2013 to early 2016,which displayed strong warm anomalies extending from the surface to a depth of 300 m.This study employed two assimilation schemes based on the global Climate Forecast System of Nanjing University of Information Science(NUIST-CFS 1.0)to investigate the impact of ocean data assimilation on the seasonal prediction of this extreme marine heatwave.The sea surface temperature(SST)nudging scheme assimilates SST only,while the deterministic ensemble Kalman filter(EnKF)scheme assimilates observations from the surface to the deep ocean.The latter notably improves the forecasting skill for subsurface temperature anomalies,especially at the depth of 100-300 m(the lower layer),outperforming the SST nudging scheme.It excels in predicting both horizontal and vertical heat transport in the lower layer,contributing to improved forecasts of the lower-layer warming during the Blob.These improvements stem from the assimilation of subsurface observational data,which are important in predicting the upper-ocean conditions.The results suggest that assimilating ocean data with the EnKF scheme significantly enhances the accuracy in predicting subsurface temperature anomalies during the Blob and offers better understanding of its underlying mechanisms.展开更多
Diatomic metasurfaces designed for interferometric mechanisms possess significant potential for the multidimensional manipulation of electromagnetic waves,including control over amplitude,phase,frequency,and polarizat...Diatomic metasurfaces designed for interferometric mechanisms possess significant potential for the multidimensional manipulation of electromagnetic waves,including control over amplitude,phase,frequency,and polarization.Geometric phase profiles with spin-selective properties are commonly associated with wavefront modulation,allowing the implementation of conjugate strategies within orthogonal circularly polarized channels.Simultaneous control of these characteristics in a single-layered diatomic metasurface will be an apparent technological extension.Here,spin-selective modulation of terahertz(THz)beams is realized by assembling a pair of meta-atoms with birefringent effects.The distinct modulation functions arise from geometric phase profiles characterized by multiple rotational properties,which introduce independent parametric factors that elucidate their physical significance.By arranging the key parameters,the proposed design strategy can be employed to realize independent amplitude and phase manipulation.A series of THz metasurface samples with specific modulation functions are characterized,experimentally demonstrating the accuracy of on-demand manipulation.This research paves the way for all-silicon meta-optics that may have great potential in imaging,sensing and detection.展开更多
BACKGROUND Esophageal carcinoma(EC)presents a significant public health issue in China,with its prognosis impacted by myriad factors.The creation of a reliable prog-nostic model for the overall survival(OS)of EC patie...BACKGROUND Esophageal carcinoma(EC)presents a significant public health issue in China,with its prognosis impacted by myriad factors.The creation of a reliable prog-nostic model for the overall survival(OS)of EC patients promises to greatly advance the customization of treatment approaches.AIM To create a more systematic and practical model that incorporates clinically significant indicators to support decision-making in clinical settings.METHODS This study utilized data from a prospective longitudinal cohort of 3127 EC patients treated at Chongqing University Cancer Hospital between January 1,2018,and December 12,2020.Utilizing the least absolute shrinkage and selection operator regression alongside multivariate Cox regression analyses helped pinpoint pertinent variables for constructing the model.Its efficacy was assessed by concordance index(C-index),area under the receiver operating characteristic curve(AUC),calibration curves,and decision curve analysis(DCA).RESULTS Nine variables were determined to be significant predictors of OS in EC patients:Body mass index(BMI),Karnofsky performance status,TNM stage,surgery,radiotherapy,chemotherapy,immunotherapy,platelet-to-lymphocyte ratio,and albumin-to-globulin ratio(ALB/GLB).The model demonstrated a C-index of 0.715(95%CI:0.701-0.729)in the training cohort and 0.711(95%CI:0.689-0.732)in the validation cohort.In the training cohort,AUCs for 1-year,3-year,and 5-year OS predictions were 0.773,0.787,and 0.750,respectively;in the validation cohort,they were 0.772,0.768,and 0.723,respectively,illustrating the model's precision.Calibration curves and DCA verified the model's predictive accuracy and net benefit.CONCLUSION A novel prognostic model for determining the OS of EC patients was successfully developed and validated to help clinicians in devising individualized treatment schemes for EC patients.展开更多
That herbs with the"hot"property used to treat"cold"syndromes is a guiding principle of clinical prescription and medication in traditional Chinese medicine(TCM).However,this theory of TCM is still...That herbs with the"hot"property used to treat"cold"syndromes is a guiding principle of clinical prescription and medication in traditional Chinese medicine(TCM).However,this theory of TCM is still in the‘black box'stage,and few in-depth studies have examined the biological mechanisms underpinning the hot properties of herbs.展开更多
The intensification of extreme precipitation(EP)under global warming presents a substantial risk to human safety and societal progress.Studying the specific impacts of global warming on rare EP events in China not onl...The intensification of extreme precipitation(EP)under global warming presents a substantial risk to human safety and societal progress.Studying the specific impacts of global warming on rare EP events in China not only enhances the comprehension of these shifts,but also paves the way for the development of proactive strategies to alleviate associated damages.Results from large-ensemble simulation data demonstrate that global warming has led to an enhancement in once-in-a-decade EP events in parts of western and central China over the past few decades,with the strengthening of the South Asia high(SAH)caused by global warming playing a dominant role.The strengthening of the SAH corresponds to an intensification and westward extension of the western Pacific subtropical high in the lower troposphere.The region between these two systems experiences enhanced upward motion and increased southwesterly water vapor transport,leading to a rise in climatological precipitation in western and central China,thereby raising the threshold for once-in-a-decade EP events.展开更多
Recent advances in additive manufacturing have enabled the construction of metallic lattice structures with tailored mechanical and functional properties.One potential application of metallic lattice struc-tures is in...Recent advances in additive manufacturing have enabled the construction of metallic lattice structures with tailored mechanical and functional properties.One potential application of metallic lattice struc-tures is in the impact load mitigation where an external kinetic energy is absorbed by the deformation/crushing of lattice cells.This has motivated a growing number of experimental and numerical studies,recently,on the crushing behavior of additively produced lattice structures.The present study overviews the dynamic and quasi-static crushing behavior of additively produced Ti64,316L,and AlSiMg alloy lattice structures.The first part of the study summarizes the main features of two most commonly used additive processing techniques for lattice structures,namely selective-laser-melt(SLM)and electro-beam-melt(EBM),along with a description of commonly observed process induced defects.In the second part,the deformation and strain rate sensitivities of the selected alloy lattices are outlined together with the most widely used dynamic test methods,followed by a part on the observed micro-structures of the SLM and EBM-processed Ti64,316L and AlSiMg alloys.Finally,the experimental and numerical studies on the quasi-static and dynamic compression behavior of the additively processed Ti64,316L,and AlSiMg alloy lattices are reviewed.The results of the experimental and numerical studies of the dynamic properties of various types of lattices,including graded,non-uniform strut size,hollow,non-uniform cell size,and bio-inspired,were tabulated together with the used dynamic testing methods.The dynamic tests have been noted to be mostly conducted in compression Split Hopkinson Pressure Bar(SHPB)or Taylor-and direct-impact tests using the SHPB set-up,in all of which relatively small-size test specimens were tested.The test specimen size effect on the compression behavior of the lattices was further emphasized.It has also been shown that the lattices of Ti64 and AlSiMg alloys are relatively brittle as compared with the lattices of 316L alloy.Finally,the challenges associated with modelling lattice structures were explained and the micro tension tests and multi-scale modeling techniques combining microstructural characteristics with macroscopic lattice dynamics were recommended to improve the accuracy of the numerical simulations of the dynamic compression deformations of metallic lattice structures.展开更多
Marine heatwaves(MHWs),which can exert devastating socioeconomic and ecological impacts,have attracted much public interest in recent years.In this study,we evaluate the sub-seasonal forecast skill of MHWs based on th...Marine heatwaves(MHWs),which can exert devastating socioeconomic and ecological impacts,have attracted much public interest in recent years.In this study,we evaluate the sub-seasonal forecast skill of MHWs based on the Nanjing University of Information Science&Technology Climate Forecast System version 1.1(NUIST CFS1.1)and analyze the related physical processes.Our results show that the model can accurately forecast the occurrence of MHWs on a global scale out to a lead time of 25 days.Notably,even at lead times of 51–55 days,the forecast skill in most tropical regions,as well as in the northeastern and southeastern Pacific,is superior to both random forecasts and persistence forecasts.Accurate predictions of sea level pressure,zonal currents,and mixed-layer depth are important for MHW forecasting.Furthermore,we also conduct forecast skill assessments for two well-documented MHW events.Due to its ability to correctly forecast the changes in heat flux anomalies at a lead time of 25 days,the model can accurately forecast the strong MHW event that occurred in the South China Sea in May–October 2020.However,the forecasting results were less than optimal for the strong MHW event that occurred along the Australian west coast in January–April 2011.Although the model accurately forecasts its occurrence,the forecast of its intensity is poor.Additionally,when the lead time exceeds 10 days,forecasts of the relevant physical processes of this MHW event are also inaccurate.展开更多
Coupling adsorption and in-situ Fenton-like oxidation process was developed for Methylene blue(MB) using refined iron-containing lowgrade attapulgite(ATP) clay, and the removal mechanism was investigated. The MB was i...Coupling adsorption and in-situ Fenton-like oxidation process was developed for Methylene blue(MB) using refined iron-containing lowgrade attapulgite(ATP) clay, and the removal mechanism was investigated. The MB was initially adsorbed on the porous ATPs, and then the enriched MB was removed by the H2O2-assisted Fenton-like oxidation with the iron-containing ATP catalyst. Under optimal conditions, the ATP powder exhibits the maximum removal efficiency of 100% with negligible iron leaching(1.5 mg L^(-1)) and no sludge formation. Furthermore,polysulfone/ATP(PSF/ATP) pellets were fabricated through a water-induced phase separation process to construct a fixed-bed reactor(FBR) for continuous contaminant removal. For the first cycle, the maximum adsorption capacity was 15.5 L with an outlet MB concentration of1.973 mg L-1(< 2 mg L^(-1), GB4287-2012) using the PSF/ATP pellets containing 50.0 g of ATP powders, and the maximum Fenton-like oxidation capacity was 35.5 L with the outlet concentration of 0.831 mg L^(-1). After five cycles, the total treated volume of the MB solution was ca. 255 L, and the efficiency remained above 99%. After 10 h of continuous treatment towards practical resin industrial wastewater, the chemical oxygen demand(COD) removal efficiency was still measured at 83.05%, costing 0.398 $ m^(-3). These results demonstrate the practical applicability of iron-containing low-grade ATP clay for textile water treatment.展开更多
EC-Earth3P-HR reproduces well the observed Boreal Summer Intraseasonal Oscillation(BSISO)and its impacts on tropical cyclone genesis(TCG)in the western North Pacific(WNP).Hence,the historical simulation(1950-1979)and ...EC-Earth3P-HR reproduces well the observed Boreal Summer Intraseasonal Oscillation(BSISO)and its impacts on tropical cyclone genesis(TCG)in the western North Pacific(WNP).Hence,the historical simulation(1950-1979)and future projection under the SSP5-8.5 scenario(2020-2049)in EC-Earth3P-HR are adopted to explore possible changes in the BSISO’s modification of WNP TCG under global warming to enhance the understanding of TC activities in the WNP.Results show that the BSISO circulation in the WNP shifts northeastward under global warming.This leads to enhanced convection in a northwest-southeast-oriented band crossing the WNP.Along the band,the BSISO-related TCG anomalies are enhanced.Analyses of genesis potential index show that changes in the BSISO-related mid-tropospheric relative humidity play the dominant role in modifying the BSISO’s impacts on WNP TCG under global warming.The enhanced BSISO convection in the band moistens the middle troposphere,which helps reduce the entrainment of generally dry mid-tropospheric air in the updrafts and the modification of the boundary layer by the downdraft of generally dry mid-tropospheric air,leading to enhanced TCG.展开更多
In recent years,torrential rain events caused by extratropical cyclones(ETCs)during the boreal midsummer(July-August)in Central and Eastern China have shown an increasing trend.For instence,in August 2024,two ETCs bro...In recent years,torrential rain events caused by extratropical cyclones(ETCs)during the boreal midsummer(July-August)in Central and Eastern China have shown an increasing trend.For instence,in August 2024,two ETCs brought large-scale heavy rainfall to North China,with daily precipitation exceeding 100 mm.Using reanalysis datasets and gridded precipitation data,the ETCs that affected Central and Eastern China during the boreal midsummer from 1981 to 2020 were objectively identified and tracked.ETCs causing precipitation were classified based on maximum daily precipitation,resulting in datasets for ETCs with torrential rain(daily precipitation exceeding 100 mm,referred to as ETC_R100)and heavy rain(daily precipitation exceeding 25 mm,referred to as ETC_R25).Comparative analysis can help highlight the characteristics of ETC_R100.This study compares the spatial distribution,movement paths,weather impacts,large-scale atmospheric circulation,and environmental conditions of these two types of precipitation-related ETCs.The following findings emerged:(1)ETC_R100 is driven by the combined forcing of upper-level troughs and warm-moist airflows at lower levels,exhibiting stronger thermal forcing than ETC_R25.(2)The moisture source for ETC_R100 are the Bay of Bengal and the Northwest Pacific,with moisture transported via the South China Sea.Compared to ETCs with nonextreme rainfall,ETC_R100 is characterized by greater atmospheric instability and better moisture conditions,resulting in higher precipitation intensity.(3)Regardless of the precipitation level,ETCs affected different regions but contributed significantly to precipitation in northern China,accounting for approximately 50%of the total precipitation.The results indicate that ETC_R100 differs significantly from ETCs with varying levels of precipitation in terms of statistical characteristics,weather impact,environmental conditions,and cyclogenesis conditions.展开更多
With brick-wall solar greenhouses in Changli area as the research object,using temperature dynamic monitoring and statistical methods,the greenhouse structure suitable for promoting early cultivation of local peach tr...With brick-wall solar greenhouses in Changli area as the research object,using temperature dynamic monitoring and statistical methods,the greenhouse structure suitable for promoting early cultivation of local peach trees was selected by studying the temperature data of the solar greenhouses during the winter solstice,and a prediction model for daily average temperature was constructed.The results showed that greenhouse Ⅰ had reasonable structural parameters and good daylight during the day.However,due to the low wall thickness and poor insulation material,the minimum temperature was significantly lower than other greenhouses.The thermal insulation performance of greenhouse Ⅱ and Ⅲ was better than that of greenhouse Ⅰ,but the depth-span ratio and the front roof lighting angle were smaller.During the winter solstice,the average temperature of the three greenhouses was between 10 and 15℃,which was suitable for early cultivation of peach trees.The prediction model of daily average temperature was obtained:Daily average temperature=1.02+0.69×Daily average temperature of the previous day+0.02×Maximum temperature of the previous day-0.01×Minimum temperature of the previous day.To sum up,the structural parameters of brick-wall solar greenhouses suitable for early cultivation of peach trees in Changli area were as follows:span 6.5-8.5 m,depth-span ratio 0.47,front roof lighting angle 30°and wall thickness greater than 55 cm.展开更多
Objective:Arrhythmia-induced cardiomyopathy(AIC)is a reversible dilated cardiomyopathy induced by rapid or irregular heartbeat.Acupuncture has a long history of use in the treatment of cardiac diseases,and Xinshu(BL15...Objective:Arrhythmia-induced cardiomyopathy(AIC)is a reversible dilated cardiomyopathy induced by rapid or irregular heartbeat.Acupuncture has a long history of use in the treatment of cardiac diseases,and Xinshu(BL15)is a key acupoint.However,the underlying mechanism of acupuncture at BL15 in the treatment of AIC has not yet been elucidated.Methods:AIC was induced in adult male Sprague-Dawley(SD)rats by continuous administration of acetylcholine(ACh)-CaCl2 and treatment with electroacupuncture(EA)at bilateral BL15.Echocardiography was used to evaluate cardiac function;the rotarod test for motor coordination and performance;hematoxylin and eosin(HE)staining for the morphology of ventricles;electrocardiogram for susceptibility,inducibility,and duration of atrial fibrillation(AF);and electrical and optical mapping in isolated rat hearts maintained by the Langendorff perfusion system for electrical conduction and intracellular handling,respectively.Reverse transcription quantitative polymerase chain reaction(RT-qPCR)and Western blotting were used to determine the levels of cardiac conduction and intracellular calcium-handling proteins in the ventricle.Results:The results showed that EA improved the ejection factor and morphological indices on echocardiography,restored motor coordination and performance,and alleviated ventricular dilation and AF onset.EA alleviates atrial conduction disorders,shortens APD80,and decreases calcium handling in rats with AIC.Cx43 was downregulated and CaMKII was upregulated,and both effects were reversed by EA treatment.Conclusion:Our study provides a novel AIC model with abnormal electrical propagation and calcium handling that can be protected by EA at BL15.This potential mechanism may be associated with the modulation of Cx43 and CaMKII expression.展开更多
This paper evaluates a representation of winter stratospheric circulation in the Antarctic that is based on CRA-40, a 40-year global reanalysis dataset released by the China Meteorological Administration, and compares...This paper evaluates a representation of winter stratospheric circulation in the Antarctic that is based on CRA-40, a 40-year global reanalysis dataset released by the China Meteorological Administration, and compares it with representations based on two other state-of-the-art reanalysis datasets: the fifth-generation atmospheric reanalysis provided by the European Centre for Medium-Range Weather Forecasts(ERA-5) and the Modern-Era Retrospective analysis for Research and Applications, version 2(MERRA-2). In terms of climatology, we find that CRA-40 portrays a stronger and colder polar vortex in the middle and lower stratosphere than ERA-5, but a weaker and warmer one than MERRA-2. However, disagreement among the three reanalyses is confined mainly to the period before1999, and is largely reduced after that time. On the interannual timescale, portrayals of the intensity and area of the 10-hPa polar vortex are quite consistent among the three reanalyses, with correlation coefficients greater than 0.9 between each pair of reanalyses. In addition, the central dates of most sudden stratospheric deceleration(SSD) events at 10 hPa in the three reanalyses differ by less than one day, indicating that CRA-40 is also highly consistent with the other two reanalysis datasets regarding daily evolution. Our analyses suggest that CRA-40 performs comparably to ERA-5 and MERRA-2 in characterizing winter circulation in the Antarctic middle and lower stratosphere.展开更多
Feature selection methods rooted in rough sets confront two notable limitations:their high computa-tional complexity and sensitivity to noise,rendering them impractical for managing large-scale and noisy datasets.The ...Feature selection methods rooted in rough sets confront two notable limitations:their high computa-tional complexity and sensitivity to noise,rendering them impractical for managing large-scale and noisy datasets.The primary issue stems from these methods’undue reliance on all samples.To overcome these challenges,we introduce the concept of cross-similarity grounded in a robust fuzzy relation and design a rapid and robust feature selection algorithm.Firstly,we construct a robust fuzzy relation by introducing a truncation parameter.Then,based on this fuzzy relation,we propose the concept of cross-similarity,which emphasizes the sample-to-sample similarity relations that uniquely determine feature importance,rather than considering all such relations equally.After studying the manifestations and properties of cross-similarity across different fuzzy granularities,we propose a forward greedy feature selection algorithm that leverages cross-similarity as the foundation for information measurement.This algorithm significantly reduces the time complexity from O(m2n2)to O(mn2).Experimental findings reveal that the average runtime of five state-of-the-art comparison algorithms is roughly 3.7 times longer than our algorithm,while our algorithm achieves an average accuracy that surpasses those of the five comparison algorithms by approximately 3.52%.This underscores the effectiveness of our approach.This paper paves the way for applying feature selection algorithms grounded in fuzzy rough sets to large-scale gene datasets.展开更多
Electrocatalytic water splitting(EWS)driven by renewable energy is vital for clean hydrogen(H2)production and reducing reliance on fossil fuels.While IrO_(2) and RuO_(2) are the leading electrocatalysts for the oxygen...Electrocatalytic water splitting(EWS)driven by renewable energy is vital for clean hydrogen(H2)production and reducing reliance on fossil fuels.While IrO_(2) and RuO_(2) are the leading electrocatalysts for the oxygen evolution reaction(OER)and Pt for the hydrogen evolution reaction(HER)in acidic environments,the need for efficient,stable,and affordable materials persists.Recently,transition-metal borides(TMBs),particularly metal diborides(MDbs),have gained attention due to their unique layered crystal structures with multicentered boron bonds,offering remarkable physicochemical properties.Their nearly 2D structures boost electrochemical performance by offering high conductivity and a large active surface area,making them well-suited for advanced energy storage and conversion technologies.This review provides a comprehensive overview of the critical factors for water splitting,the crystal and electronic structures of MDbs,and their synthetic strategies.Furthermore,it examines the relationship between catalytic performance and intermediate adsorption as elucidated by first-principle calculations.The review also highlights the latest experimental advancements in MDb-based electrocatalysts and addresses the current challenges and future directions for their development.展开更多
This paper introduces an advanced and efficient method for distributed drone-based fruit recognition and localization, tailored to satisfy the precision and security requirements of autonomous agricultural operations....This paper introduces an advanced and efficient method for distributed drone-based fruit recognition and localization, tailored to satisfy the precision and security requirements of autonomous agricultural operations. Our method incorporates depth information to ensure precise localization and utilizes a streamlined detection network centered on the RepVGG module. This module replaces the traditional C2f module, enhancing detection performance while maintaining speed. To bolster the detection of small, distant fruits in complex settings, we integrate Selective Kernel Attention (SKAttention) and a specialized small-target detection layer. This adaptation allows the system to manage difficult conditions, such as variable lighting and obstructive foliage. To reinforce security, the tasks of recognition and localization are distributed among multiple drones, enhancing resilience against tampering and data manipulation. This distribution also optimizes resource allocation through collaborative processing. The model remains lightweight and is optimized for rapid and accurate detection, which is essential for real-time applications. Our proposed system, validated with a D435 depth camera, achieves a mean Average Precision (mAP) of 0.943 and a frame rate of 169 FPS, which represents a significant improvement over the baseline by 0.039 percentage points and 25 FPS, respectively. Additionally, the average localization error is reduced to 0.82 cm, highlighting the model’s high precision. These enhancements render our system highly effective for secure, autonomous fruit-picking operations, effectively addressing significant performance and cybersecurity challenges in agriculture. This approach establishes a foundation for reliable, efficient, and secure distributed fruit-picking applications, facilitating the advancement of autonomous systems in contemporary agricultural practices.展开更多
基金funded by“The Factors Affecting the Accuracy of Wind Resource Assessment and Comprehensive Post-Evaluation Techniques for Operating Wind Power Projects,”grant number YJ24.002“The Research and Application of Future Medium to Long Term Wind Resource Assessment for Wind Farms Based on Artificial Intelligence Project,”grant number 2023021。
文摘Improving the accuracy of the evaluation of the performance of wind farms in large wind power bases located in complex terrain under the actual atmosphere is crucial to the sustainable development of wind power.To this end,this study combined the Weather Research and Forecasting(WRF)model with the Wind Farm Parameterization(WFP)method to investigate the wake characteristics and operational performance of large onshore wind farms in the complex terrain of Jiuquan City,Gansu Province,China.The research results showed that after verification,the systematic error of the WRF simulations was less than 3%.The WRF model and the WFP scheme simulated a significant warming phenomenon within the wind power base area,while a cooling effect was observed outside.The analysis of the wake effects indicated that the impact of PhaseⅠconstruction on PhaseⅡconstruction of the wind power base was minimal.During the operation of the entire wind power base,the wind speed within the wind farm decreased by approximately 10%,and the influence range of the predominant wind direction extended over a hundred kilometers downwind.The research conclusions provide a powerful scientific basis for optimizing design and operation,improving efficiency,minimizing the negative impacts on adjacent wind turbines,and ensuring the sustainable development of wind energy through dynamic planning and scientific assessment.
基金supported by the Fundamental Research Program of Shanxi Province(Nos.202303021212159 and 202303021222190)the National Natural Science Foundation of China(No.62222403)+2 种基金the Higher Education Institutions Science and Technology Innovation Program of Shanxi Province(No.2023L160)the Scientific Research Fund of Hunan Provincial Education Department(No.23B0842)the Natural Science Foundation of Shanxi Normal University(Nos.JCYJ2024017 and JCYJ2023015)。
文摘Doping plays a pivotal role in enhancing the performance of organic semiconductors(OSCs)for advanced optoelectronic and thermoelectric applications.In this study,we systematically investigated the doping performance and applicability of the ionic dopant 4-isopropyl-4′-methyldiphenyliodonium tetrakis(penta-fluorophenyl-borate)(DPI-TPFB)as a p-dopant for OSCs.Using the p-type OSC PBBT-2T as a model system,we demonstrated that DPI-TPFB shows significant doping effect,as confirmed by ESR spectra,ultraviolet-visible-near-infrared(UV-vis-NIR)absorption,and work function analysis,and enhances the electronic conductivity of PBBT-2T films by over four orders of magnitude.Furthermore,DPI-TPFB exhibited broad doping applicability,effectively doping various p-type OSCs and even imparting p-type characteristics to the n-type OSC N2200,transforming its intrinsic n-type behavior into p-type.The application of DPI-TPFB-doped PBBT-2T films in organic thermoelectric devices(OTEs)was also explored,achieving a power factor of approximately 10μW·m^(-1)·K^(-2).These findings highlight the potential of DPI-TPFB as a versatile and efficient dopant for integration into organic optoelectronic and thermoelectric devices.
基金sponsored by the National Natural Science Foundation of China(Nos.61972208,62102194 and 62102196)National Natural Science Foundation of China(Youth Project)(No.62302237)+3 种基金Six Talent Peaks Project of Jiangsu Province(No.RJFW-111),China Postdoctoral Science Foundation Project(No.2018M640509)Postgraduate Research and Practice Innovation Program of Jiangsu Province(Nos.KYCX22_1019,KYCX23_1087,KYCX22_1027,KYCX23_1087,SJCX24_0339 and SJCX24_0346)Innovative Training Program for College Students of Nanjing University of Posts and Telecommunications(No.XZD2019116)Nanjing University of Posts and Telecommunications College Students Innovation Training Program(Nos.XZD2019116,XYB2019331).
文摘The scale and complexity of big data are growing continuously,posing severe challenges to traditional data processing methods,especially in the field of clustering analysis.To address this issue,this paper introduces a new method named Big Data Tensor Multi-Cluster Distributed Incremental Update(BDTMCDIncreUpdate),which combines distributed computing,storage technology,and incremental update techniques to provide an efficient and effective means for clustering analysis.Firstly,the original dataset is divided into multiple subblocks,and distributed computing resources are utilized to process the sub-blocks in parallel,enhancing efficiency.Then,initial clustering is performed on each sub-block using tensor-based multi-clustering techniques to obtain preliminary results.When new data arrives,incremental update technology is employed to update the core tensor and factor matrix,ensuring that the clustering model can adapt to changes in data.Finally,by combining the updated core tensor and factor matrix with historical computational results,refined clustering results are obtained,achieving real-time adaptation to dynamic data.Through experimental simulation on the Aminer dataset,the BDTMCDIncreUpdate method has demonstrated outstanding performance in terms of accuracy(ACC)and normalized mutual information(NMI)metrics,achieving an accuracy rate of 90%and an NMI score of 0.85,which outperforms existing methods such as TClusInitUpdate and TKLClusUpdate in most scenarios.Therefore,the BDTMCDIncreUpdate method offers an innovative solution to the field of big data analysis,integrating distributed computing,incremental updates,and tensor-based multi-clustering techniques.It not only improves the efficiency and scalability in processing large-scale high-dimensional datasets but also has been validated for its effectiveness and accuracy through experiments.This method shows great potential in real-world applications where dynamic data growth is common,and it is of significant importance for advancing the development of data analysis technology.
基金supported by the National Key Research and Development Program of China(Grant No.2020YFA0608000)the National Natural Science Foundation of China(Grant No.42030605)+1 种基金CAAI-MindSpore Academic Fund Research Projects(CAAIXSJLJJ2023MindSpore11)the program of China Scholarships Council(No.CXXM2101180001)。
文摘Accurate seasonal precipitation forecasts,especially for extreme events,are crucial to preventing meteorological hazards and their potential impacts on national development,social activity,and security.However,the intensity of summer precipitation is often largely underestimated in many current dynamic models.This study uses a deep learning method called Cycle-Consistent Generative Adversarial Networks(CycleGAN)to improve the seasonal forecasts for June-JulyAugust precipitation in southeastern China by the Nanjing University of Information Science and Technology Climate Forecast System(NUIST-CFS 1.0).The results suggest that the CycleGAN-based model significantly improves the accuracy in predicting the spatiotemporal distribution of summer precipitation compared to the traditional quantile mapping(QM)method.Using the unpaired bias-correction model,we can also obtain advanced forecasts of the frequency,intensity,and duration of extreme precipitation events over the dynamic model predictions.This study expands the potential applications of deep learning models toward improving seasonal precipitation forecasts.
基金supported by the National Natural Science Foundation of China [grant number 42030605]the National Key R&D Program of China [grant number 2020YFA0608004]。
文摘A remarkable marine heatwave,known as the“Blob”,occurred in the Northeast Pacific Ocean from late 2013 to early 2016,which displayed strong warm anomalies extending from the surface to a depth of 300 m.This study employed two assimilation schemes based on the global Climate Forecast System of Nanjing University of Information Science(NUIST-CFS 1.0)to investigate the impact of ocean data assimilation on the seasonal prediction of this extreme marine heatwave.The sea surface temperature(SST)nudging scheme assimilates SST only,while the deterministic ensemble Kalman filter(EnKF)scheme assimilates observations from the surface to the deep ocean.The latter notably improves the forecasting skill for subsurface temperature anomalies,especially at the depth of 100-300 m(the lower layer),outperforming the SST nudging scheme.It excels in predicting both horizontal and vertical heat transport in the lower layer,contributing to improved forecasts of the lower-layer warming during the Blob.These improvements stem from the assimilation of subsurface observational data,which are important in predicting the upper-ocean conditions.The results suggest that assimilating ocean data with the EnKF scheme significantly enhances the accuracy in predicting subsurface temperature anomalies during the Blob and offers better understanding of its underlying mechanisms.
基金supports from National Key Research and Development Program of China(2021YFB2800703)Sichuan Province Science and Technology Support Program(25QNJJ2419)+1 种基金National Natural Science Foundation of China(U22A2008,12404484)Laoshan Laboratory Science and Technology Innovation Project(LSKJ202200801).
文摘Diatomic metasurfaces designed for interferometric mechanisms possess significant potential for the multidimensional manipulation of electromagnetic waves,including control over amplitude,phase,frequency,and polarization.Geometric phase profiles with spin-selective properties are commonly associated with wavefront modulation,allowing the implementation of conjugate strategies within orthogonal circularly polarized channels.Simultaneous control of these characteristics in a single-layered diatomic metasurface will be an apparent technological extension.Here,spin-selective modulation of terahertz(THz)beams is realized by assembling a pair of meta-atoms with birefringent effects.The distinct modulation functions arise from geometric phase profiles characterized by multiple rotational properties,which introduce independent parametric factors that elucidate their physical significance.By arranging the key parameters,the proposed design strategy can be employed to realize independent amplitude and phase manipulation.A series of THz metasurface samples with specific modulation functions are characterized,experimentally demonstrating the accuracy of on-demand manipulation.This research paves the way for all-silicon meta-optics that may have great potential in imaging,sensing and detection.
文摘BACKGROUND Esophageal carcinoma(EC)presents a significant public health issue in China,with its prognosis impacted by myriad factors.The creation of a reliable prog-nostic model for the overall survival(OS)of EC patients promises to greatly advance the customization of treatment approaches.AIM To create a more systematic and practical model that incorporates clinically significant indicators to support decision-making in clinical settings.METHODS This study utilized data from a prospective longitudinal cohort of 3127 EC patients treated at Chongqing University Cancer Hospital between January 1,2018,and December 12,2020.Utilizing the least absolute shrinkage and selection operator regression alongside multivariate Cox regression analyses helped pinpoint pertinent variables for constructing the model.Its efficacy was assessed by concordance index(C-index),area under the receiver operating characteristic curve(AUC),calibration curves,and decision curve analysis(DCA).RESULTS Nine variables were determined to be significant predictors of OS in EC patients:Body mass index(BMI),Karnofsky performance status,TNM stage,surgery,radiotherapy,chemotherapy,immunotherapy,platelet-to-lymphocyte ratio,and albumin-to-globulin ratio(ALB/GLB).The model demonstrated a C-index of 0.715(95%CI:0.701-0.729)in the training cohort and 0.711(95%CI:0.689-0.732)in the validation cohort.In the training cohort,AUCs for 1-year,3-year,and 5-year OS predictions were 0.773,0.787,and 0.750,respectively;in the validation cohort,they were 0.772,0.768,and 0.723,respectively,illustrating the model's precision.Calibration curves and DCA verified the model's predictive accuracy and net benefit.CONCLUSION A novel prognostic model for determining the OS of EC patients was successfully developed and validated to help clinicians in devising individualized treatment schemes for EC patients.
基金supported by the Chief Scientist of Qi-Huang Project of the National Traditional Chinese Medicine Inheritance and Innovation“One Hundred Million”Talent Project,China(Grant No.:[2021]No.7)the National Famous Old Traditional Chinese Medicine Experts Inheritance Studio Construction Program of National Administration of Traditional Chinese Medicine,China(Grant No.:[2022]No.75)+3 种基金the Seventh Batch of National Famous Old Traditional Chinese Medicine Experts Experience Heritage Construction Program of National Administration of Traditional Chinese Medicine,China(Grant No.:[2022]No.76)Heilongjiang Touyan Innovation Team Program,China(Grant No.:[2019]No.5)the Natural Science Foundation of Zhejiang Province(Grant No.:LQN25H280009)the Research Project of Zhejiang Chinese Medical University,China(Grant No.:2023RCZXZK22).
文摘That herbs with the"hot"property used to treat"cold"syndromes is a guiding principle of clinical prescription and medication in traditional Chinese medicine(TCM).However,this theory of TCM is still in the‘black box'stage,and few in-depth studies have examined the biological mechanisms underpinning the hot properties of herbs.
基金supported by the National Natural Science Foundation of China[grant number 42088101]the National Key Research and Development Program of China[grant number 2022YFF0801702]。
文摘The intensification of extreme precipitation(EP)under global warming presents a substantial risk to human safety and societal progress.Studying the specific impacts of global warming on rare EP events in China not only enhances the comprehension of these shifts,but also paves the way for the development of proactive strategies to alleviate associated damages.Results from large-ensemble simulation data demonstrate that global warming has led to an enhancement in once-in-a-decade EP events in parts of western and central China over the past few decades,with the strengthening of the South Asia high(SAH)caused by global warming playing a dominant role.The strengthening of the SAH corresponds to an intensification and westward extension of the western Pacific subtropical high in the lower troposphere.The region between these two systems experiences enhanced upward motion and increased southwesterly water vapor transport,leading to a rise in climatological precipitation in western and central China,thereby raising the threshold for once-in-a-decade EP events.
基金the European Union's Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement No 101034425 for the project titled A2M2TECHThe Scientific and Technological Research Council of Türkiye (TUBITAK) with grant No 120C158 for the same A2M2TECH project under the TUBITAK's 2236/B program
文摘Recent advances in additive manufacturing have enabled the construction of metallic lattice structures with tailored mechanical and functional properties.One potential application of metallic lattice struc-tures is in the impact load mitigation where an external kinetic energy is absorbed by the deformation/crushing of lattice cells.This has motivated a growing number of experimental and numerical studies,recently,on the crushing behavior of additively produced lattice structures.The present study overviews the dynamic and quasi-static crushing behavior of additively produced Ti64,316L,and AlSiMg alloy lattice structures.The first part of the study summarizes the main features of two most commonly used additive processing techniques for lattice structures,namely selective-laser-melt(SLM)and electro-beam-melt(EBM),along with a description of commonly observed process induced defects.In the second part,the deformation and strain rate sensitivities of the selected alloy lattices are outlined together with the most widely used dynamic test methods,followed by a part on the observed micro-structures of the SLM and EBM-processed Ti64,316L and AlSiMg alloys.Finally,the experimental and numerical studies on the quasi-static and dynamic compression behavior of the additively processed Ti64,316L,and AlSiMg alloy lattices are reviewed.The results of the experimental and numerical studies of the dynamic properties of various types of lattices,including graded,non-uniform strut size,hollow,non-uniform cell size,and bio-inspired,were tabulated together with the used dynamic testing methods.The dynamic tests have been noted to be mostly conducted in compression Split Hopkinson Pressure Bar(SHPB)or Taylor-and direct-impact tests using the SHPB set-up,in all of which relatively small-size test specimens were tested.The test specimen size effect on the compression behavior of the lattices was further emphasized.It has also been shown that the lattices of Ti64 and AlSiMg alloys are relatively brittle as compared with the lattices of 316L alloy.Finally,the challenges associated with modelling lattice structures were explained and the micro tension tests and multi-scale modeling techniques combining microstructural characteristics with macroscopic lattice dynamics were recommended to improve the accuracy of the numerical simulations of the dynamic compression deformations of metallic lattice structures.
基金supported by National Natural Science Foundation of China(Grant Nos.42030605 and 42088101)National Key R&D Program of China(Grant No.2020YFA0608004)High Performance Computing of Nanjing University of Information Science&Technology for their support of this work。
文摘Marine heatwaves(MHWs),which can exert devastating socioeconomic and ecological impacts,have attracted much public interest in recent years.In this study,we evaluate the sub-seasonal forecast skill of MHWs based on the Nanjing University of Information Science&Technology Climate Forecast System version 1.1(NUIST CFS1.1)and analyze the related physical processes.Our results show that the model can accurately forecast the occurrence of MHWs on a global scale out to a lead time of 25 days.Notably,even at lead times of 51–55 days,the forecast skill in most tropical regions,as well as in the northeastern and southeastern Pacific,is superior to both random forecasts and persistence forecasts.Accurate predictions of sea level pressure,zonal currents,and mixed-layer depth are important for MHW forecasting.Furthermore,we also conduct forecast skill assessments for two well-documented MHW events.Due to its ability to correctly forecast the changes in heat flux anomalies at a lead time of 25 days,the model can accurately forecast the strong MHW event that occurred in the South China Sea in May–October 2020.However,the forecasting results were less than optimal for the strong MHW event that occurred along the Australian west coast in January–April 2011.Although the model accurately forecasts its occurrence,the forecast of its intensity is poor.Additionally,when the lead time exceeds 10 days,forecasts of the relevant physical processes of this MHW event are also inaccurate.
基金supported by Gansu Cuihua Technology Co.,Ltd.(H2020292)Science and Technology Planning of Baiyin City,Fundamental Research Funds for the Central Universities (buctrc202208)+2 种基金Engineering Research Center of Non-metallic Minerals of Zhejiang Province and the Beijing Engineering Center for Hierarchical Catalysts. Central Government Guiding Funds for Local Science and Technology Development (2022ZY015)Nanjiang Technology Project(2023AB028)Open Laboratory of State Key Laboratory of Organic and Inorganic Composites (oic-202301006)。
文摘Coupling adsorption and in-situ Fenton-like oxidation process was developed for Methylene blue(MB) using refined iron-containing lowgrade attapulgite(ATP) clay, and the removal mechanism was investigated. The MB was initially adsorbed on the porous ATPs, and then the enriched MB was removed by the H2O2-assisted Fenton-like oxidation with the iron-containing ATP catalyst. Under optimal conditions, the ATP powder exhibits the maximum removal efficiency of 100% with negligible iron leaching(1.5 mg L^(-1)) and no sludge formation. Furthermore,polysulfone/ATP(PSF/ATP) pellets were fabricated through a water-induced phase separation process to construct a fixed-bed reactor(FBR) for continuous contaminant removal. For the first cycle, the maximum adsorption capacity was 15.5 L with an outlet MB concentration of1.973 mg L-1(< 2 mg L^(-1), GB4287-2012) using the PSF/ATP pellets containing 50.0 g of ATP powders, and the maximum Fenton-like oxidation capacity was 35.5 L with the outlet concentration of 0.831 mg L^(-1). After five cycles, the total treated volume of the MB solution was ca. 255 L, and the efficiency remained above 99%. After 10 h of continuous treatment towards practical resin industrial wastewater, the chemical oxygen demand(COD) removal efficiency was still measured at 83.05%, costing 0.398 $ m^(-3). These results demonstrate the practical applicability of iron-containing low-grade ATP clay for textile water treatment.
基金financially supported by the National Natural Science Foundation of China[grant number 42088101]。
文摘EC-Earth3P-HR reproduces well the observed Boreal Summer Intraseasonal Oscillation(BSISO)and its impacts on tropical cyclone genesis(TCG)in the western North Pacific(WNP).Hence,the historical simulation(1950-1979)and future projection under the SSP5-8.5 scenario(2020-2049)in EC-Earth3P-HR are adopted to explore possible changes in the BSISO’s modification of WNP TCG under global warming to enhance the understanding of TC activities in the WNP.Results show that the BSISO circulation in the WNP shifts northeastward under global warming.This leads to enhanced convection in a northwest-southeast-oriented band crossing the WNP.Along the band,the BSISO-related TCG anomalies are enhanced.Analyses of genesis potential index show that changes in the BSISO-related mid-tropospheric relative humidity play the dominant role in modifying the BSISO’s impacts on WNP TCG under global warming.The enhanced BSISO convection in the band moistens the middle troposphere,which helps reduce the entrainment of generally dry mid-tropospheric air in the updrafts and the modification of the boundary layer by the downdraft of generally dry mid-tropospheric air,leading to enhanced TCG.
基金National Natural Science Foundation of China(42375014,42088101,42030605)Joint Research Project for Meteorological Capacity Improvement(24NLTSZ010)Young Elite Scientists Sponsorship Program by BAST(BYESS2023205)。
文摘In recent years,torrential rain events caused by extratropical cyclones(ETCs)during the boreal midsummer(July-August)in Central and Eastern China have shown an increasing trend.For instence,in August 2024,two ETCs brought large-scale heavy rainfall to North China,with daily precipitation exceeding 100 mm.Using reanalysis datasets and gridded precipitation data,the ETCs that affected Central and Eastern China during the boreal midsummer from 1981 to 2020 were objectively identified and tracked.ETCs causing precipitation were classified based on maximum daily precipitation,resulting in datasets for ETCs with torrential rain(daily precipitation exceeding 100 mm,referred to as ETC_R100)and heavy rain(daily precipitation exceeding 25 mm,referred to as ETC_R25).Comparative analysis can help highlight the characteristics of ETC_R100.This study compares the spatial distribution,movement paths,weather impacts,large-scale atmospheric circulation,and environmental conditions of these two types of precipitation-related ETCs.The following findings emerged:(1)ETC_R100 is driven by the combined forcing of upper-level troughs and warm-moist airflows at lower levels,exhibiting stronger thermal forcing than ETC_R25.(2)The moisture source for ETC_R100 are the Bay of Bengal and the Northwest Pacific,with moisture transported via the South China Sea.Compared to ETCs with nonextreme rainfall,ETC_R100 is characterized by greater atmospheric instability and better moisture conditions,resulting in higher precipitation intensity.(3)Regardless of the precipitation level,ETCs affected different regions but contributed significantly to precipitation in northern China,accounting for approximately 50%of the total precipitation.The results indicate that ETC_R100 differs significantly from ETCs with varying levels of precipitation in terms of statistical characteristics,weather impact,environmental conditions,and cyclogenesis conditions.
基金Supported by Modern Agricultural Industry Technology System Innovation Team Construction in Hebei Province(HBCT2023130404).
文摘With brick-wall solar greenhouses in Changli area as the research object,using temperature dynamic monitoring and statistical methods,the greenhouse structure suitable for promoting early cultivation of local peach trees was selected by studying the temperature data of the solar greenhouses during the winter solstice,and a prediction model for daily average temperature was constructed.The results showed that greenhouse Ⅰ had reasonable structural parameters and good daylight during the day.However,due to the low wall thickness and poor insulation material,the minimum temperature was significantly lower than other greenhouses.The thermal insulation performance of greenhouse Ⅱ and Ⅲ was better than that of greenhouse Ⅰ,but the depth-span ratio and the front roof lighting angle were smaller.During the winter solstice,the average temperature of the three greenhouses was between 10 and 15℃,which was suitable for early cultivation of peach trees.The prediction model of daily average temperature was obtained:Daily average temperature=1.02+0.69×Daily average temperature of the previous day+0.02×Maximum temperature of the previous day-0.01×Minimum temperature of the previous day.To sum up,the structural parameters of brick-wall solar greenhouses suitable for early cultivation of peach trees in Changli area were as follows:span 6.5-8.5 m,depth-span ratio 0.47,front roof lighting angle 30°and wall thickness greater than 55 cm.
基金supported by the National Key R&D Program of China(2022YFC3500405,2019YFC1712105)The National Science Foundation of China(82374075)+1 种基金The National Comprehensive Traditional Chinese Medicine Reform Demonstration Zone Science and Technology Collaborative Development Project(GZY-KJS-SD-2024-046)Taishan Scholar Youth Project of Shandong Province(tsqn202306188).
文摘Objective:Arrhythmia-induced cardiomyopathy(AIC)is a reversible dilated cardiomyopathy induced by rapid or irregular heartbeat.Acupuncture has a long history of use in the treatment of cardiac diseases,and Xinshu(BL15)is a key acupoint.However,the underlying mechanism of acupuncture at BL15 in the treatment of AIC has not yet been elucidated.Methods:AIC was induced in adult male Sprague-Dawley(SD)rats by continuous administration of acetylcholine(ACh)-CaCl2 and treatment with electroacupuncture(EA)at bilateral BL15.Echocardiography was used to evaluate cardiac function;the rotarod test for motor coordination and performance;hematoxylin and eosin(HE)staining for the morphology of ventricles;electrocardiogram for susceptibility,inducibility,and duration of atrial fibrillation(AF);and electrical and optical mapping in isolated rat hearts maintained by the Langendorff perfusion system for electrical conduction and intracellular handling,respectively.Reverse transcription quantitative polymerase chain reaction(RT-qPCR)and Western blotting were used to determine the levels of cardiac conduction and intracellular calcium-handling proteins in the ventricle.Results:The results showed that EA improved the ejection factor and morphological indices on echocardiography,restored motor coordination and performance,and alleviated ventricular dilation and AF onset.EA alleviates atrial conduction disorders,shortens APD80,and decreases calcium handling in rats with AIC.Cx43 was downregulated and CaMKII was upregulated,and both effects were reversed by EA treatment.Conclusion:Our study provides a novel AIC model with abnormal electrical propagation and calcium handling that can be protected by EA at BL15.This potential mechanism may be associated with the modulation of Cx43 and CaMKII expression.
基金jointly supported by the NSFC project (42088101, 41975048, 42361144843, 42175069)。
文摘This paper evaluates a representation of winter stratospheric circulation in the Antarctic that is based on CRA-40, a 40-year global reanalysis dataset released by the China Meteorological Administration, and compares it with representations based on two other state-of-the-art reanalysis datasets: the fifth-generation atmospheric reanalysis provided by the European Centre for Medium-Range Weather Forecasts(ERA-5) and the Modern-Era Retrospective analysis for Research and Applications, version 2(MERRA-2). In terms of climatology, we find that CRA-40 portrays a stronger and colder polar vortex in the middle and lower stratosphere than ERA-5, but a weaker and warmer one than MERRA-2. However, disagreement among the three reanalyses is confined mainly to the period before1999, and is largely reduced after that time. On the interannual timescale, portrayals of the intensity and area of the 10-hPa polar vortex are quite consistent among the three reanalyses, with correlation coefficients greater than 0.9 between each pair of reanalyses. In addition, the central dates of most sudden stratospheric deceleration(SSD) events at 10 hPa in the three reanalyses differ by less than one day, indicating that CRA-40 is also highly consistent with the other two reanalysis datasets regarding daily evolution. Our analyses suggest that CRA-40 performs comparably to ERA-5 and MERRA-2 in characterizing winter circulation in the Antarctic middle and lower stratosphere.
基金supported by the Anhui Provincial Department of Education University Research Project(2024AH051375)Research Project of Chizhou University(CZ2022ZRZ06)+1 种基金Anhui Province Natural Science Research Project of Colleges and Universities(2024AH051368)Excellent Scientific Research and Innovation Team of Anhui Colleges(2022AH010098).
文摘Feature selection methods rooted in rough sets confront two notable limitations:their high computa-tional complexity and sensitivity to noise,rendering them impractical for managing large-scale and noisy datasets.The primary issue stems from these methods’undue reliance on all samples.To overcome these challenges,we introduce the concept of cross-similarity grounded in a robust fuzzy relation and design a rapid and robust feature selection algorithm.Firstly,we construct a robust fuzzy relation by introducing a truncation parameter.Then,based on this fuzzy relation,we propose the concept of cross-similarity,which emphasizes the sample-to-sample similarity relations that uniquely determine feature importance,rather than considering all such relations equally.After studying the manifestations and properties of cross-similarity across different fuzzy granularities,we propose a forward greedy feature selection algorithm that leverages cross-similarity as the foundation for information measurement.This algorithm significantly reduces the time complexity from O(m2n2)to O(mn2).Experimental findings reveal that the average runtime of five state-of-the-art comparison algorithms is roughly 3.7 times longer than our algorithm,while our algorithm achieves an average accuracy that surpasses those of the five comparison algorithms by approximately 3.52%.This underscores the effectiveness of our approach.This paper paves the way for applying feature selection algorithms grounded in fuzzy rough sets to large-scale gene datasets.
基金financial support from the Scientific and Technological Research Council of Türkiye(223M182).
文摘Electrocatalytic water splitting(EWS)driven by renewable energy is vital for clean hydrogen(H2)production and reducing reliance on fossil fuels.While IrO_(2) and RuO_(2) are the leading electrocatalysts for the oxygen evolution reaction(OER)and Pt for the hydrogen evolution reaction(HER)in acidic environments,the need for efficient,stable,and affordable materials persists.Recently,transition-metal borides(TMBs),particularly metal diborides(MDbs),have gained attention due to their unique layered crystal structures with multicentered boron bonds,offering remarkable physicochemical properties.Their nearly 2D structures boost electrochemical performance by offering high conductivity and a large active surface area,making them well-suited for advanced energy storage and conversion technologies.This review provides a comprehensive overview of the critical factors for water splitting,the crystal and electronic structures of MDbs,and their synthetic strategies.Furthermore,it examines the relationship between catalytic performance and intermediate adsorption as elucidated by first-principle calculations.The review also highlights the latest experimental advancements in MDb-based electrocatalysts and addresses the current challenges and future directions for their development.
基金supported by Guangdong Province Rural Science and Technology Commissioner Project,Zen Tea Reliable Traceability and Intelligent Planting Key Technology Research and Development,Promotion and Application(KTP20210199)Special Project of Guangdong Provincial Education Department,Research on Abnormal Behavior Recognition Technology of Pregnant Sows Based onGraph Convolution(2021ZDZX1091)+2 种基金Guangdong Basic and Applied Basic Research Foundation under Grant 2023A1515110729Shenzhen Science and Technology Program under Grant 20231128093642002the Research Foundation of Shenzhen Polytechnic University under Grant 6023312007K.
文摘This paper introduces an advanced and efficient method for distributed drone-based fruit recognition and localization, tailored to satisfy the precision and security requirements of autonomous agricultural operations. Our method incorporates depth information to ensure precise localization and utilizes a streamlined detection network centered on the RepVGG module. This module replaces the traditional C2f module, enhancing detection performance while maintaining speed. To bolster the detection of small, distant fruits in complex settings, we integrate Selective Kernel Attention (SKAttention) and a specialized small-target detection layer. This adaptation allows the system to manage difficult conditions, such as variable lighting and obstructive foliage. To reinforce security, the tasks of recognition and localization are distributed among multiple drones, enhancing resilience against tampering and data manipulation. This distribution also optimizes resource allocation through collaborative processing. The model remains lightweight and is optimized for rapid and accurate detection, which is essential for real-time applications. Our proposed system, validated with a D435 depth camera, achieves a mean Average Precision (mAP) of 0.943 and a frame rate of 169 FPS, which represents a significant improvement over the baseline by 0.039 percentage points and 25 FPS, respectively. Additionally, the average localization error is reduced to 0.82 cm, highlighting the model’s high precision. These enhancements render our system highly effective for secure, autonomous fruit-picking operations, effectively addressing significant performance and cybersecurity challenges in agriculture. This approach establishes a foundation for reliable, efficient, and secure distributed fruit-picking applications, facilitating the advancement of autonomous systems in contemporary agricultural practices.