Agriculture is a major contributor to the global economy,accounting for approximately 70%of the freshwater use,which cause significant stress on aquifers in intensively irrigated regions.This stress often leads to the...Agriculture is a major contributor to the global economy,accounting for approximately 70%of the freshwater use,which cause significant stress on aquifers in intensively irrigated regions.This stress often leads to the decline in both the quantity and quality of groundwater resources.This study is focused on an intensively irrigated region of Northern India to investigate the sources and mechanism of groundwater recharge using a novel integrated approach combining isotope hydrology,Artificial Neural Network(ANN),and hydrogeochemical models.The study identifies several key sources of groundwater recharge,including natural precipitation,river infiltration,Irrigation Return Flow(IRF),and recharge from canals.Some groundwater samples exhibit mixing from various sources.Groundwater recharge from IRF is found to be isotopically enriched due to evaporation and characterized by high Cl−.Stable isotope modeling of evaporative enrichment in irrigated water helped to differentiate the IRF during various cultivation periods(Kharif and Rabi)and deduce the climatic conditions prevailed during the time of recharge.The model quantified that 29%of the irrigated water is lost due to evaporation during the Kharif period and 20%during the Rabi period,reflecting the seasonal variations in IRF contribution to the groundwater.The ANN model,trained with isotope hydrogeochemical data,effectively captures the complex interrelationships between various recharge sources,providing a robust framework for understanding the groundwater dynamics in the study area.A conceptual model was developed to visualize the spatial and temporal distribution of recharge sources,highlighting how seasonal irrigation practices influence the groundwater.The integration of isotope hydrology with ANN methodologies proved to be effective in elucidating the multiple sources and processes of groundwater recharge,offering insights into the sustainability of aquifer systems in intensively irrigated regions.These findings are critical for developing data-driven groundwater management strategies that can adapt to future challenges,including climate change,shifting land use patterns,and evolving agricultural demands.The results have significant implications for policymakers and water resource managers seeking to ensure sustainable groundwater use in water-scarce regions.展开更多
The 2018 Winter Olympic and Paralympic Games will be held in Pyeongchang, Korea, during February and March. We examined the near surface winds and wind gusts along the sloping surface at two outdoor venues in Pyeongch...The 2018 Winter Olympic and Paralympic Games will be held in Pyeongchang, Korea, during February and March. We examined the near surface winds and wind gusts along the sloping surface at two outdoor venues in Pyeongchang during February and March using surface wind data. The outdoor venues are located in a complex, mountainous terrain, and hence the near-surface winds form intricate patterns due to the interplay between large-scale and locally forced winds. During February and March, the dominant wind at the ridge level is westerly; however, a significant wind direction change is ob- served along the sloping surface at the venues. The winds on the sloping surface are also influenced by thermal forcing, showing increased upslope flow during daytime. When neutral air flows over the hill, the windward and leeward flows show a significantly different behavior. A higher correlation of the wind speed between upper- and lower-level stations is shown in the windward region compared with the leeward region. The strong synoptic wind, small width of the ridge, and steep leeward ridge slope angle provide favorable conditions for flow separation at the leeward toot of the ridge. The gust factor increases with decreasing surface elevation and is larger during daytime than nighttime. A significantly large gust factor is also observed in the leeward region.展开更多
We developed a system for the regeneration of Lombardy poplar (Populus nigra L. var. italica) shoots from internodal stem explants. Using this system, shoots regenerated from 87% of the stem explants placed on Murashi...We developed a system for the regeneration of Lombardy poplar (Populus nigra L. var. italica) shoots from internodal stem explants. Using this system, shoots regenerated from 87% of the stem explants placed on Murashige and Skoog (MS) medium supplemented with 0.1 mg/L indole-3-acetic acid and 0.5 mg/L benzylaminopurine without undergoing callus formation. About 80% of the in vitro regenerated shoots developed roots on MS medium supplemented with 0.5 mg/L indole-3-butyric acid and 0.02 mg/L 1-naphthylacetic acid. Well-rooted seven-to eight-week-old regenerated plants could be transferred to soil for further growth and the survival rate of such plants after three weeks was 88%. The protocol presented here is simple and economical because it does not rely on pre-incubation in callus induction medium or repeated subculture in shoot induction medium containing trans-zeatin, an expensive substance. The in vitro regeneration system presented here could be used for evaluation of radiation sensitivity for Lombardy poplar tissues.展开更多
Hard carbon derived from bamboo for the anode material of sodium-ion batteries has a three-dimensional(3D) open framework structure and has naturally incorporated K-ions into its carbon structure,increasing the dinter...Hard carbon derived from bamboo for the anode material of sodium-ion batteries has a three-dimensional(3D) open framework structure and has naturally incorporated K-ions into its carbon structure,increasing the dinterlayer spacing of hard carbon materials for facilitating Na^(+) transport.In this work,bamboo-derived hard carbon was prepared via two carbonization temperatures at 700and 1000 ℃ for an hour and employed as an anode for sodium-ion batteries(SIB).X-ray diffraction(XRD) and Fourier transform(FT)-Raman spectroscopic results indicated the disordered structure with d-spacing(d_(002)) around0.36-0.37 nm,which is a benefit for sodium ion insertion/desertion.Herein,the composition between carbon-nanotube(CNT) and bamboo-derived hard carbon(BB) was synthesized by a ball mill with various contents of CNT(1 wt%,5 wt% and 10 wt%).At the optimal CNT content of 5 wt%,the sample exhibited excellent performance and outstanding stability.As the anode,the half-cell SIB using BB(700)w@5%CNT(with a carbonization temperature of700 ℃ and CNT loading of 5 wt%) delivered a high initial specific capacity of 268.9 mAh·g^(-1) at 0.1C and capacity retention of 78.6% after 500 cycles at 1.0C.The full cell SIB fabrication BB(700)w@5%CNT in combination with Na_(3)V_(2)(PO4)_(3) as the cathode demonstrated a high specific capacity of 127.6 mAh·g^(-1) at 0.2C with its capacitive retention remaining of 78% at 1.0C after 1000 cycles.The attained storage performance indicates that hard carbonCNT composite anode material enhanced the conductive path of electron transport and provided long-term cycling stability.The good electrochemical performance as well as the low cost and environment-friendliness of the bambooderived hard carbon proves its suitability for future sodium-ion batteries.展开更多
Interactions of fire cycle and plant species' reproductive characteristics could determine vegetation distribution pattern of a landscape. In Canada's boreal region, fire cycles before the Little Ice Age (c. 1850s...Interactions of fire cycle and plant species' reproductive characteristics could determine vegetation distribution pattern of a landscape. In Canada's boreal region, fire cycles before the Little Ice Age (c. 1850s) ranged from 30-130 years and 25-234 years afterwards until the settlement period (c. 1930s) when longer fire cycles occurred in response to climatic change and human interference. Analysis indicated that fire cycles were correlated with growing season (April-October) temperature and precipitation departure from the 1961-1990 normal, varying by regions. Assuming that wildfires will respond to future warming similar to the manner during the past century, an assessment using climatic change scenarios CGCMI, CGCM2 and HadCM2 indicates fire cycles would divert to a range of 80-140 years in the west taiga shield, more than 700 years for the east boreal shield and east taiga shield, and 300-400 years for the boreal plains in 2050.展开更多
Trace metal concentrations were investigated in a recent sediment core collected from the Rehri Creek area of the Karachi coast, Sindh - Pakistan. The core was sliced horizontally at 2.5-cm intervals to determine grai...Trace metal concentrations were investigated in a recent sediment core collected from the Rehri Creek area of the Karachi coast, Sindh - Pakistan. The core was sliced horizontally at 2.5-cm intervals to determine grain size, sediment composition, pH, organic matter, and acid-leachable trace metals: cadmium, chromium, copper, lead, and zinc. The trace metals were analyzed by ICP. To separate anthropogenic from geogenic input, several approaches were made, including comparison with sediment quality guidelines--ecotoxicological sense of heavy metal contamination and classification by quantitative indexes. Grain-size analysis and sediment composition of core sample show a sandy nature with neutral pH. Elemental sequence (ES) of the trace metals is in the order of Zn (19.2-109.56 ppm) 〉 Si (66.46-101.71 ppm) 〉 Ba (12.05-26.86 ppm) 〉 As (8.18-17.36 ppm) 〉 Ni (4.2- 14.69 ppm) 〉 Cr (3.02-9.62 ppm) 〉 Pb (2.79-6.83 ppm) 〉 Cu (2.2-5.29 ppm) 〉 Co (0.9-2.05 ppm). Thus it is likely that the area may face a serious threat of metal pollution with the present deposition rates unless stringent pollution control norms are adopted. The Sediment Geo-accumulation Index shows that there is no Cr, Cu, Ni, Pb, Zn, or Fe pollution; however, the former index and the Pollution Load Index indicate arsenic pollution in the sediments.展开更多
Continental Flood Basalts(CFB)occupy one fourth of the world’s land area.Hence,it is important to discern the hydrological processes in this complex hydrogeological setup for the sustainable water resources developme...Continental Flood Basalts(CFB)occupy one fourth of the world’s land area.Hence,it is important to discern the hydrological processes in this complex hydrogeological setup for the sustainable water resources development.A model assisted isotope,geochemical,geospatial and geophysical study was conducted to understand the monsoonal characteristics,recharge processes,renewability and geochemical evolution in one of the largest continental flood basalt provinces of India.HYSPLIT modelling and stable isotopes were used to assess the monsoonal characteristics.Rayleigh distillation model were used to understand the climatic conditions at the time of groundwater recharge.Lumped parameter models(LPM)were employed to quantify the mean transit time(MTT)of groundwater.Statistical and geochemical models were adopted to understand the geochemical evolution along the groundwater flow path.A geophysical model was used to understand the geometry of the aquifer.The back trajectory analysis confirms the isotopic finding that precipitation in this region is caused by orographic uplifting of air masses originating from the Arabian Sea.Stable isotopic data of groundwater showed its meteoric origin and two recharge processes were discerned;(i)quick and direct recharge by precipitation through fractured and weathered basalt,(ii)low infiltration through the clayey black cotton soil and subjected to evaporation prior to the recharge.Tritium data showed that the groundwater is a renewable source and have shorter transit times(from present day to<30 years).The hydrogeochemical study indicated multiple sources/processes such as:the minerals dissolution,silicate weathering,ion exchange,anthropogenic influences etc.control the chemistry of the groundwater.Based on the geo-electrical resistivity survey,the potential zones(weathered and fractured)were delineated for the groundwater development.Thus,the study highlights the usefulness of model assisted isotopic hydrogeochemical techniques for understanding the recharge and geochemical processes in a basaltic aquifer system.展开更多
In this study,cloud base height(CBH) and cloud top height(CTH) observed by the Ka-band(33.44 GHz) cloud radar at the Boseong National Center for Intensive Observation of Severe Weather during fall 2013(Septembe...In this study,cloud base height(CBH) and cloud top height(CTH) observed by the Ka-band(33.44 GHz) cloud radar at the Boseong National Center for Intensive Observation of Severe Weather during fall 2013(September-November) were verified and corrected.For comparative verification,CBH and CTH were obtained using a ceilometer(CL51) and the Communication,Ocean and Meteorological Satellite(COMS).During rainfall,the CBH and CTH observed by the cloud radar were lower than observed by the ceilometer and COMS because of signal attenuation due to raindrops,and this difference increased with rainfall intensity.During dry periods,however,the CBH and CTH observed by the cloud radar,ceilometer,and COMS were similar.Thin and low-density clouds were observed more effectively by the cloud radar compared with the ceilometer and COMS.In cases of rainfall or missing cloud radar data,the ceilometer and COMS data were proven effective in correcting or compensating the cloud radar data.These corrected cloud data were used to classify cloud types,which revealed that low clouds occurred most frequently.展开更多
The development of new wave energy converters has shed light on a number of unanswered questions in fluid mechanics, but has also identified a number of new issues of importance for their future deployment. The main c...The development of new wave energy converters has shed light on a number of unanswered questions in fluid mechanics, but has also identified a number of new issues of importance for their future deployment. The main concerns relevant to the practical use of wave energy converters are sustainability, survivability, and maintainability. Of course,it is also necessary to maximize the capture per unit area of the structure as well as to minimize the cost. In this review, we consider some of the questions related to the topics of sustainability, survivability, and maintenance access, with respect to sea conditions, for generic wave energy converters with an emphasis on the oscillating wave surge converter. New analytical models that have been developed are a topic of particular discussion. It is also shown how existing numerical models have been pushed to their limits to provide answers to open questions relating to the operation and characteristics of wave energy converters.展开更多
Estimation of fire cycle has been conducted by using the negative exponential function as an approximation of time-since-fire distribution of a landscape assumed to be homogeneous with respect to fire spread processes...Estimation of fire cycle has been conducted by using the negative exponential function as an approximation of time-since-fire distribution of a landscape assumed to be homogeneous with respect to fire spread processes. The authors imposed predefined fire cycles on a virtual landscape of 100 cell×100 cell, and obtained a mosaic composing of patches with different stand ages (i.e. time since fire). Graphical and statistical methods (Van Wagner 1978; Reed et al. 1998) were employed to derive fire cycle from the virtual landscape. By comparing the predefined and the derived fire cycles, the two methods and tested the effects of sample size and hazard of burning (i.e., stand's susceptibility to fire in relation to its stand age) were evaluated on fire cycle deviation. The simulation results indicated a minimum sample size of l0 times of the annual burnt area would be required for.partitioning time-since-fire distribution into homogeneous epochs indicating temporal change in fire cycle. Statistically, there was significant difference among the imposed and the derived fire cycle, regardless of sample sizes with or without consideration of hazard of burning. Both methods underestimated the more recent fire cycle without significant difference between them. The results imply that deviation of fire cycle based on time-since-fire distribution warrants cautious interpretation, especially when a landscape is spatially partitioned into small units and temporal changes in fire cycle are involved.展开更多
On August31st of2018,the E-commerce Law of the People’s Republic of China was approved by voting at the5th meeting of the13th standing committee of the National People’s Congress and is to take effect on January1st ...On August31st of2018,the E-commerce Law of the People’s Republic of China was approved by voting at the5th meeting of the13th standing committee of the National People’s Congress and is to take effect on January1st of2019.The new E-commerce Law mentions“intellectual property”12times,stresses protection of intellectual property ine-commerce,defines rights and obligations of the e-commerce platform operators and merchants at the platform,and strengthens protection of e-commerce consumers.展开更多
The seismic reflection method is one of the most important methods in geophysical exploration.There are three stages in a seismic exploration survey:acquisition,processing,and interpretation.This paper focuses on a pr...The seismic reflection method is one of the most important methods in geophysical exploration.There are three stages in a seismic exploration survey:acquisition,processing,and interpretation.This paper focuses on a pre-processing tool,the Non-Local Means(NLM)filter algorithm,which is a powerful technique that can significantly suppress noise in seismic data.However,the domain of the NLM algorithm is the whole dataset and 3D seismic data being very large,often exceeding one terabyte(TB),it is impossible to store all the data in Random Access Memory(RAM).Furthermore,the NLM filter would require a considerably long runtime.These factors make a straightforward implementation of the NLM algorithm on real geophysical exploration data infeasible.This paper redesigned and implemented the NLM filter algorithm to fit the challenges of seismic exploration.The optimized implementation of the NLM filter is capable of processing production-size seismic data on modern clusters and is 87 times faster than the straightforward implementation of NLM.展开更多
High performance liquid chromatography coupled with tandem mass spectrometry was developed and validated as a method for the analysis of fluorinated histone deacetylase inhibitors (F-HDACi), and then employed to study...High performance liquid chromatography coupled with tandem mass spectrometry was developed and validated as a method for the analysis of fluorinated histone deacetylase inhibitors (F-HDACi), and then employed to study their metabolism in biosystems. Four HDACi analogs labeled with the positron emission nuclide 18F constitute a group of potential positron emission tomography imaging agents, which were developed by the Institute of Nuclear Energy Research (INER) and coded as INER-1577 #1, #2, #3, and #4 during animal studies for the diagnosis of dementia. The performance of the method was found to be suitable for the determination of analog #3, and it was employed to determine the structures and fragmentation mechanisms of all four analogs and to study the biotransformations of analogs #3 and #4. The results indicated that the method used for the determination of analog #3 was suitable for determining the abundance of the analogs in chemical and biochemical tests with high precision, accuracy, reproducibility, and recovery. Weaknesses in the chemical bonding of the analogs were found to involve the fluoro, dimethylamino, and benzamide groups in a fragmentation mechanism deduced via tandem mass spectrometry. The metabolites of analogs #3 and #4 in rat liver microsomes and rat plasma were also identified to clarify their characteristic behaviors in biosystems. The major product of analogs #3 in liver microsomes was produced by hydroxylation of the benzylic carbon atom, but in rat plasma the metabolites of analog #3 were produced by hydrolysis of the benzamide group to give a diaminobiphenyl compound with the simultaneous replacement of a fluorine atom by a hydroxyl group. The metabolites of analog #4 in liver microsomes were produced by hydroxylation of the benzylic carbon atom and hydrolysis of the benzamide bond. The results of the studies characterized the chemical and biochemical behaviors of the series F-HADCi analogs.展开更多
Instrumental neutron activation analysis (INAA) has turned out to be particularly useful in the analysis of suspended particles. This work describes the INAA characterization of air particulate matter collected in R...Instrumental neutron activation analysis (INAA) has turned out to be particularly useful in the analysis of suspended particles. This work describes the INAA characterization of air particulate matter collected in Rasht city, Iran. The particulate matter was collected in two sampling sites for elemental analysis in the period of winter-summer 2009. Samples have been transferred to the environmental laboratory of radiation applications research school. Neutron exposures were performed in Tehran Research Reactor, and measurements were carried out using HPGe detectors coupled to gamma ray spectrometer. In these filter samples, the elements, AI, As, Ba, Br, Ca, CI, Co, Cr, Cu, Fe, Hg, K, La, Mg, Mn, Na, Sb, Sc, Ti, V and Zn were determined using different irradiation and counting protocols. Results show that mean concentration of most air-pollutants in Rasht are lower than those measured in other cities in Iran (Tehran, Shiraz, Isfahan). Collected data were also compared with reported results for other cities in the world.展开更多
The rare earth elements (REE) include the group of 15 lanthanides, scandium and yttrium and have diverse applications in technological and nuclear areas. The existence of REE in massive solid mining wastes generated i...The rare earth elements (REE) include the group of 15 lanthanides, scandium and yttrium and have diverse applications in technological and nuclear areas. The existence of REE in massive solid mining wastes generated in leaching processes of copper minerals in the Atacama region of Chile generates the possibility of creating added value to the treatment of this type of waste and supporting the development of a circular economy, generating a useful by-product in different industries. In order to know the behavior of these elements present in the solid carrier waste, a leaching process was carried out by using two agents separately, corresponding to hydrochloric and nitric acid. The technical feasibility to recover REE from carrier tail was demonstrated, the best leaching agent for these elements being a hydrochloric solution, obtaining a maximum recovery efficiency of 64.5%, for an acid concentration: 3M, temperature: 40<span style="white-space:nowrap;">°</span>C and (liquid/solid) ratio: 4. Lanthanum and cerium present the best individual recoveries compared to the other REE, with a maximum efficiency for a hydrochloric solution of 75.7% and 70.0%, respectively. The interaction of operational parameters that most influence the REE recovery corresponds to the temperature and the (liquid/solid) ratio. After 4 hours of leaching, REE recovery efficiencies remain practically constant. Acid consumptions correspond to 11 (kg HCl/ton mining tail) and 29 (kg HNO<sub>3</sub>/ton mining tail). The highest amount recovery ratios of these elements correspond to 0.355 and 0.224 (kg REE/ton mining tail), for hydrochloric and nitric solutions, respectively. These results influence the types of reagents and parameters to be studied in the following stages of the global process.展开更多
In traditional networks,enabling new network functions often needs to add new proprietary middleboxes.However,finding the space and power to accommodate these middleboxes is becoming increasingly difficult,along with ...In traditional networks,enabling new network functions often needs to add new proprietary middleboxes.However,finding the space and power to accommodate these middleboxes is becoming increasingly difficult,along with the increasing costs of energy and capital in-vestment.Due to the heterogeneous nature of hardware middleboxes,they suffer from long development and up-grading cycles and are hard to scale at peak load.展开更多
The potential of the high resolution nuclear track detector (NTD) CR-39 is examined carefully for the measurement of relativistic nuclear projectile fragmentation cross sections and studies of related processes using ...The potential of the high resolution nuclear track detector (NTD) CR-39 is examined carefully for the measurement of relativistic nuclear projectile fragmentation cross sections and studies of related processes using the experience of many years of such measurements. The charge resolution and the charge resolving power of CR-39 detectors for the measurements of 158 A GeV 207Pb projectiles and their fragments are presented. Exposures of target-detector stacks, the chemical etching procedure and the nuclear track measurements are described in detail discussing precautions and possible errors. The procedures discussed are also valid for other NTDs. A comparison with electronic active detectors is also made considering important detection and measurement aspects. An experimental design proposing the co-use of NTDs with in-use active detectors is described.展开更多
基金This study was conducted as a part of the IAEA Co-ordinated Research Project(CRP)“Isotope techniques for the evaluation of water sources in irrigation systems(F-33025)”。
文摘Agriculture is a major contributor to the global economy,accounting for approximately 70%of the freshwater use,which cause significant stress on aquifers in intensively irrigated regions.This stress often leads to the decline in both the quantity and quality of groundwater resources.This study is focused on an intensively irrigated region of Northern India to investigate the sources and mechanism of groundwater recharge using a novel integrated approach combining isotope hydrology,Artificial Neural Network(ANN),and hydrogeochemical models.The study identifies several key sources of groundwater recharge,including natural precipitation,river infiltration,Irrigation Return Flow(IRF),and recharge from canals.Some groundwater samples exhibit mixing from various sources.Groundwater recharge from IRF is found to be isotopically enriched due to evaporation and characterized by high Cl−.Stable isotope modeling of evaporative enrichment in irrigated water helped to differentiate the IRF during various cultivation periods(Kharif and Rabi)and deduce the climatic conditions prevailed during the time of recharge.The model quantified that 29%of the irrigated water is lost due to evaporation during the Kharif period and 20%during the Rabi period,reflecting the seasonal variations in IRF contribution to the groundwater.The ANN model,trained with isotope hydrogeochemical data,effectively captures the complex interrelationships between various recharge sources,providing a robust framework for understanding the groundwater dynamics in the study area.A conceptual model was developed to visualize the spatial and temporal distribution of recharge sources,highlighting how seasonal irrigation practices influence the groundwater.The integration of isotope hydrology with ANN methodologies proved to be effective in elucidating the multiple sources and processes of groundwater recharge,offering insights into the sustainability of aquifer systems in intensively irrigated regions.These findings are critical for developing data-driven groundwater management strategies that can adapt to future challenges,including climate change,shifting land use patterns,and evolving agricultural demands.The results have significant implications for policymakers and water resource managers seeking to ensure sustainable groundwater use in water-scarce regions.
基金supported by Research and Development for KMA Weather, Climate, and Earth System Services (Grant No. NIMS-2016-3100)
文摘The 2018 Winter Olympic and Paralympic Games will be held in Pyeongchang, Korea, during February and March. We examined the near surface winds and wind gusts along the sloping surface at two outdoor venues in Pyeongchang during February and March using surface wind data. The outdoor venues are located in a complex, mountainous terrain, and hence the near-surface winds form intricate patterns due to the interplay between large-scale and locally forced winds. During February and March, the dominant wind at the ridge level is westerly; however, a significant wind direction change is ob- served along the sloping surface at the venues. The winds on the sloping surface are also influenced by thermal forcing, showing increased upslope flow during daytime. When neutral air flows over the hill, the windward and leeward flows show a significantly different behavior. A higher correlation of the wind speed between upper- and lower-level stations is shown in the windward region compared with the leeward region. The strong synoptic wind, small width of the ridge, and steep leeward ridge slope angle provide favorable conditions for flow separation at the leeward toot of the ridge. The gust factor increases with decreasing surface elevation and is larger during daytime than nighttime. A significantly large gust factor is also observed in the leeward region.
文摘We developed a system for the regeneration of Lombardy poplar (Populus nigra L. var. italica) shoots from internodal stem explants. Using this system, shoots regenerated from 87% of the stem explants placed on Murashige and Skoog (MS) medium supplemented with 0.1 mg/L indole-3-acetic acid and 0.5 mg/L benzylaminopurine without undergoing callus formation. About 80% of the in vitro regenerated shoots developed roots on MS medium supplemented with 0.5 mg/L indole-3-butyric acid and 0.02 mg/L 1-naphthylacetic acid. Well-rooted seven-to eight-week-old regenerated plants could be transferred to soil for further growth and the survival rate of such plants after three weeks was 88%. The protocol presented here is simple and economical because it does not rely on pre-incubation in callus induction medium or repeated subculture in shoot induction medium containing trans-zeatin, an expensive substance. The in vitro regeneration system presented here could be used for evaluation of radiation sensitivity for Lombardy poplar tissues.
基金facilitated by Hideki Nakajima as the beamline manager of the Synchrotron Light Research Institute in Thailandreceived partial funding support from the NSRF via the Program Management Unit for the Human Resources & Institutional Development, Research, and Innovation (PMU-B)in the Industrial Postdoctoral Research Fellowship Program to support Thailand Strategic Industry (No.B01F640054) that was carried out as a part of the requirement for the Postdoctoral Fellowship Program of Dr. Sukanya Pothaya in NSTDA, Thailand。
文摘Hard carbon derived from bamboo for the anode material of sodium-ion batteries has a three-dimensional(3D) open framework structure and has naturally incorporated K-ions into its carbon structure,increasing the dinterlayer spacing of hard carbon materials for facilitating Na^(+) transport.In this work,bamboo-derived hard carbon was prepared via two carbonization temperatures at 700and 1000 ℃ for an hour and employed as an anode for sodium-ion batteries(SIB).X-ray diffraction(XRD) and Fourier transform(FT)-Raman spectroscopic results indicated the disordered structure with d-spacing(d_(002)) around0.36-0.37 nm,which is a benefit for sodium ion insertion/desertion.Herein,the composition between carbon-nanotube(CNT) and bamboo-derived hard carbon(BB) was synthesized by a ball mill with various contents of CNT(1 wt%,5 wt% and 10 wt%).At the optimal CNT content of 5 wt%,the sample exhibited excellent performance and outstanding stability.As the anode,the half-cell SIB using BB(700)w@5%CNT(with a carbonization temperature of700 ℃ and CNT loading of 5 wt%) delivered a high initial specific capacity of 268.9 mAh·g^(-1) at 0.1C and capacity retention of 78.6% after 500 cycles at 1.0C.The full cell SIB fabrication BB(700)w@5%CNT in combination with Na_(3)V_(2)(PO4)_(3) as the cathode demonstrated a high specific capacity of 127.6 mAh·g^(-1) at 0.2C with its capacitive retention remaining of 78% at 1.0C after 1000 cycles.The attained storage performance indicates that hard carbonCNT composite anode material enhanced the conductive path of electron transport and provided long-term cycling stability.The good electrochemical performance as well as the low cost and environment-friendliness of the bambooderived hard carbon proves its suitability for future sodium-ion batteries.
基金The research was financially supported by the Pro-gram for Energy Research and Develop (PERD) of Canada"The Hundred-Talent Project" of the Chinese Academy of Sciences(0108140).
文摘Interactions of fire cycle and plant species' reproductive characteristics could determine vegetation distribution pattern of a landscape. In Canada's boreal region, fire cycles before the Little Ice Age (c. 1850s) ranged from 30-130 years and 25-234 years afterwards until the settlement period (c. 1930s) when longer fire cycles occurred in response to climatic change and human interference. Analysis indicated that fire cycles were correlated with growing season (April-October) temperature and precipitation departure from the 1961-1990 normal, varying by regions. Assuming that wildfires will respond to future warming similar to the manner during the past century, an assessment using climatic change scenarios CGCMI, CGCM2 and HadCM2 indicates fire cycles would divert to a range of 80-140 years in the west taiga shield, more than 700 years for the east boreal shield and east taiga shield, and 300-400 years for the boreal plains in 2050.
基金supported by International Atomic Energy Agency through its Projects Pak-13930 and RAS 7/016
文摘Trace metal concentrations were investigated in a recent sediment core collected from the Rehri Creek area of the Karachi coast, Sindh - Pakistan. The core was sliced horizontally at 2.5-cm intervals to determine grain size, sediment composition, pH, organic matter, and acid-leachable trace metals: cadmium, chromium, copper, lead, and zinc. The trace metals were analyzed by ICP. To separate anthropogenic from geogenic input, several approaches were made, including comparison with sediment quality guidelines--ecotoxicological sense of heavy metal contamination and classification by quantitative indexes. Grain-size analysis and sediment composition of core sample show a sandy nature with neutral pH. Elemental sequence (ES) of the trace metals is in the order of Zn (19.2-109.56 ppm) 〉 Si (66.46-101.71 ppm) 〉 Ba (12.05-26.86 ppm) 〉 As (8.18-17.36 ppm) 〉 Ni (4.2- 14.69 ppm) 〉 Cr (3.02-9.62 ppm) 〉 Pb (2.79-6.83 ppm) 〉 Cu (2.2-5.29 ppm) 〉 Co (0.9-2.05 ppm). Thus it is likely that the area may face a serious threat of metal pollution with the present deposition rates unless stringent pollution control norms are adopted. The Sediment Geo-accumulation Index shows that there is no Cr, Cu, Ni, Pb, Zn, or Fe pollution; however, the former index and the Pollution Load Index indicate arsenic pollution in the sediments.
文摘Continental Flood Basalts(CFB)occupy one fourth of the world’s land area.Hence,it is important to discern the hydrological processes in this complex hydrogeological setup for the sustainable water resources development.A model assisted isotope,geochemical,geospatial and geophysical study was conducted to understand the monsoonal characteristics,recharge processes,renewability and geochemical evolution in one of the largest continental flood basalt provinces of India.HYSPLIT modelling and stable isotopes were used to assess the monsoonal characteristics.Rayleigh distillation model were used to understand the climatic conditions at the time of groundwater recharge.Lumped parameter models(LPM)were employed to quantify the mean transit time(MTT)of groundwater.Statistical and geochemical models were adopted to understand the geochemical evolution along the groundwater flow path.A geophysical model was used to understand the geometry of the aquifer.The back trajectory analysis confirms the isotopic finding that precipitation in this region is caused by orographic uplifting of air masses originating from the Arabian Sea.Stable isotopic data of groundwater showed its meteoric origin and two recharge processes were discerned;(i)quick and direct recharge by precipitation through fractured and weathered basalt,(ii)low infiltration through the clayey black cotton soil and subjected to evaporation prior to the recharge.Tritium data showed that the groundwater is a renewable source and have shorter transit times(from present day to<30 years).The hydrogeochemical study indicated multiple sources/processes such as:the minerals dissolution,silicate weathering,ion exchange,anthropogenic influences etc.control the chemistry of the groundwater.Based on the geo-electrical resistivity survey,the potential zones(weathered and fractured)were delineated for the groundwater development.Thus,the study highlights the usefulness of model assisted isotopic hydrogeochemical techniques for understanding the recharge and geochemical processes in a basaltic aquifer system.
基金supported by the principal project, “Development and application of technology for weather forecasting (NIMR-2012-B-1)” of the National Institute of Meteorological Sciences of the Korea Meteorological Administration
文摘In this study,cloud base height(CBH) and cloud top height(CTH) observed by the Ka-band(33.44 GHz) cloud radar at the Boseong National Center for Intensive Observation of Severe Weather during fall 2013(September-November) were verified and corrected.For comparative verification,CBH and CTH were obtained using a ceilometer(CL51) and the Communication,Ocean and Meteorological Satellite(COMS).During rainfall,the CBH and CTH observed by the cloud radar were lower than observed by the ceilometer and COMS because of signal attenuation due to raindrops,and this difference increased with rainfall intensity.During dry periods,however,the CBH and CTH observed by the cloud radar,ceilometer,and COMS were similar.Thin and low-density clouds were observed more effectively by the cloud radar compared with the ceilometer and COMS.In cases of rainfall or missing cloud radar data,the ceilometer and COMS data were proven effective in correcting or compensating the cloud radar data.These corrected cloud data were used to classify cloud types,which revealed that low clouds occurred most frequently.
基金funded by the Science Foundation Ireland (SFI) under the research project “High-end Computational Modelling for Wave Energy Systems” (Grant SFI/10/IN.1/12996) in collaboration with Marine Renewable Energy Ireland (Ma REI)the SFI Centre for Marine Renewable Energy Research (SFI/12/RC/2302)+4 种基金support from EPSRC through Project Grant EP/M021394/1the Sustainable Energy Authority of Ireland (SEAI) through the Renewable Energy Research Development & Demonstration Programme (Grant RE/OE/13/20132074)the European Space Agency (ESA)the numerical simulations were performed on the Stokes and Fionn clusters at the Irish Centre for High-end Computing (ICHEC)the Swiss National Computing Centre under the PRACE-2IP project (Grant FP7 RI-283493)
文摘The development of new wave energy converters has shed light on a number of unanswered questions in fluid mechanics, but has also identified a number of new issues of importance for their future deployment. The main concerns relevant to the practical use of wave energy converters are sustainability, survivability, and maintainability. Of course,it is also necessary to maximize the capture per unit area of the structure as well as to minimize the cost. In this review, we consider some of the questions related to the topics of sustainability, survivability, and maintenance access, with respect to sea conditions, for generic wave energy converters with an emphasis on the oscillating wave surge converter. New analytical models that have been developed are a topic of particular discussion. It is also shown how existing numerical models have been pushed to their limits to provide answers to open questions relating to the operation and characteristics of wave energy converters.
文摘Estimation of fire cycle has been conducted by using the negative exponential function as an approximation of time-since-fire distribution of a landscape assumed to be homogeneous with respect to fire spread processes. The authors imposed predefined fire cycles on a virtual landscape of 100 cell×100 cell, and obtained a mosaic composing of patches with different stand ages (i.e. time since fire). Graphical and statistical methods (Van Wagner 1978; Reed et al. 1998) were employed to derive fire cycle from the virtual landscape. By comparing the predefined and the derived fire cycles, the two methods and tested the effects of sample size and hazard of burning (i.e., stand's susceptibility to fire in relation to its stand age) were evaluated on fire cycle deviation. The simulation results indicated a minimum sample size of l0 times of the annual burnt area would be required for.partitioning time-since-fire distribution into homogeneous epochs indicating temporal change in fire cycle. Statistically, there was significant difference among the imposed and the derived fire cycle, regardless of sample sizes with or without consideration of hazard of burning. Both methods underestimated the more recent fire cycle without significant difference between them. The results imply that deviation of fire cycle based on time-since-fire distribution warrants cautious interpretation, especially when a landscape is spatially partitioned into small units and temporal changes in fire cycle are involved.
文摘On August31st of2018,the E-commerce Law of the People’s Republic of China was approved by voting at the5th meeting of the13th standing committee of the National People’s Congress and is to take effect on January1st of2019.The new E-commerce Law mentions“intellectual property”12times,stresses protection of intellectual property ine-commerce,defines rights and obligations of the e-commerce platform operators and merchants at the platform,and strengthens protection of e-commerce consumers.
文摘The seismic reflection method is one of the most important methods in geophysical exploration.There are three stages in a seismic exploration survey:acquisition,processing,and interpretation.This paper focuses on a pre-processing tool,the Non-Local Means(NLM)filter algorithm,which is a powerful technique that can significantly suppress noise in seismic data.However,the domain of the NLM algorithm is the whole dataset and 3D seismic data being very large,often exceeding one terabyte(TB),it is impossible to store all the data in Random Access Memory(RAM).Furthermore,the NLM filter would require a considerably long runtime.These factors make a straightforward implementation of the NLM algorithm on real geophysical exploration data infeasible.This paper redesigned and implemented the NLM filter algorithm to fit the challenges of seismic exploration.The optimized implementation of the NLM filter is capable of processing production-size seismic data on modern clusters and is 87 times faster than the straightforward implementation of NLM.
文摘High performance liquid chromatography coupled with tandem mass spectrometry was developed and validated as a method for the analysis of fluorinated histone deacetylase inhibitors (F-HDACi), and then employed to study their metabolism in biosystems. Four HDACi analogs labeled with the positron emission nuclide 18F constitute a group of potential positron emission tomography imaging agents, which were developed by the Institute of Nuclear Energy Research (INER) and coded as INER-1577 #1, #2, #3, and #4 during animal studies for the diagnosis of dementia. The performance of the method was found to be suitable for the determination of analog #3, and it was employed to determine the structures and fragmentation mechanisms of all four analogs and to study the biotransformations of analogs #3 and #4. The results indicated that the method used for the determination of analog #3 was suitable for determining the abundance of the analogs in chemical and biochemical tests with high precision, accuracy, reproducibility, and recovery. Weaknesses in the chemical bonding of the analogs were found to involve the fluoro, dimethylamino, and benzamide groups in a fragmentation mechanism deduced via tandem mass spectrometry. The metabolites of analogs #3 and #4 in rat liver microsomes and rat plasma were also identified to clarify their characteristic behaviors in biosystems. The major product of analogs #3 in liver microsomes was produced by hydroxylation of the benzylic carbon atom, but in rat plasma the metabolites of analog #3 were produced by hydrolysis of the benzamide group to give a diaminobiphenyl compound with the simultaneous replacement of a fluorine atom by a hydroxyl group. The metabolites of analog #4 in liver microsomes were produced by hydroxylation of the benzylic carbon atom and hydrolysis of the benzamide bond. The results of the studies characterized the chemical and biochemical behaviors of the series F-HADCi analogs.
文摘Instrumental neutron activation analysis (INAA) has turned out to be particularly useful in the analysis of suspended particles. This work describes the INAA characterization of air particulate matter collected in Rasht city, Iran. The particulate matter was collected in two sampling sites for elemental analysis in the period of winter-summer 2009. Samples have been transferred to the environmental laboratory of radiation applications research school. Neutron exposures were performed in Tehran Research Reactor, and measurements were carried out using HPGe detectors coupled to gamma ray spectrometer. In these filter samples, the elements, AI, As, Ba, Br, Ca, CI, Co, Cr, Cu, Fe, Hg, K, La, Mg, Mn, Na, Sb, Sc, Ti, V and Zn were determined using different irradiation and counting protocols. Results show that mean concentration of most air-pollutants in Rasht are lower than those measured in other cities in Iran (Tehran, Shiraz, Isfahan). Collected data were also compared with reported results for other cities in the world.
文摘The rare earth elements (REE) include the group of 15 lanthanides, scandium and yttrium and have diverse applications in technological and nuclear areas. The existence of REE in massive solid mining wastes generated in leaching processes of copper minerals in the Atacama region of Chile generates the possibility of creating added value to the treatment of this type of waste and supporting the development of a circular economy, generating a useful by-product in different industries. In order to know the behavior of these elements present in the solid carrier waste, a leaching process was carried out by using two agents separately, corresponding to hydrochloric and nitric acid. The technical feasibility to recover REE from carrier tail was demonstrated, the best leaching agent for these elements being a hydrochloric solution, obtaining a maximum recovery efficiency of 64.5%, for an acid concentration: 3M, temperature: 40<span style="white-space:nowrap;">°</span>C and (liquid/solid) ratio: 4. Lanthanum and cerium present the best individual recoveries compared to the other REE, with a maximum efficiency for a hydrochloric solution of 75.7% and 70.0%, respectively. The interaction of operational parameters that most influence the REE recovery corresponds to the temperature and the (liquid/solid) ratio. After 4 hours of leaching, REE recovery efficiencies remain practically constant. Acid consumptions correspond to 11 (kg HCl/ton mining tail) and 29 (kg HNO<sub>3</sub>/ton mining tail). The highest amount recovery ratios of these elements correspond to 0.355 and 0.224 (kg REE/ton mining tail), for hydrochloric and nitric solutions, respectively. These results influence the types of reagents and parameters to be studied in the following stages of the global process.
文摘In traditional networks,enabling new network functions often needs to add new proprietary middleboxes.However,finding the space and power to accommodate these middleboxes is becoming increasingly difficult,along with the increasing costs of energy and capital in-vestment.Due to the heterogeneous nature of hardware middleboxes,they suffer from long development and up-grading cycles and are hard to scale at peak load.
文摘The potential of the high resolution nuclear track detector (NTD) CR-39 is examined carefully for the measurement of relativistic nuclear projectile fragmentation cross sections and studies of related processes using the experience of many years of such measurements. The charge resolution and the charge resolving power of CR-39 detectors for the measurements of 158 A GeV 207Pb projectiles and their fragments are presented. Exposures of target-detector stacks, the chemical etching procedure and the nuclear track measurements are described in detail discussing precautions and possible errors. The procedures discussed are also valid for other NTDs. A comparison with electronic active detectors is also made considering important detection and measurement aspects. An experimental design proposing the co-use of NTDs with in-use active detectors is described.