In recent years,machine learning(ML)techniques have been shown to be effective in accelerating the development process of optoelectronic devices.However,as"black box"models,they have limited theoretical inte...In recent years,machine learning(ML)techniques have been shown to be effective in accelerating the development process of optoelectronic devices.However,as"black box"models,they have limited theoretical interpretability.In this work,we leverage symbolic regression(SR)technique for discovering the explicit symbolic relationship between the structure of the optoelectronic Fabry-Perot(FP)laser and its optical field distribution,which greatly improves model transparency compared to ML.We demonstrated that the expressions explored through SR exhibit lower errors on the test set compared to ML models,which suggests that the expressions have better fitting and generalization capabilities.展开更多
How to represent a human face pattern?While it is presented in a continuous way in human visual system,computers often store and process it in a discrete manner with 2D arrays of pixels.The authors attempt to learn a ...How to represent a human face pattern?While it is presented in a continuous way in human visual system,computers often store and process it in a discrete manner with 2D arrays of pixels.The authors attempt to learn a continuous surface representation for face image with explicit function.First,an explicit model(EmFace)for human face representation is pro-posed in the form of a finite sum of mathematical terms,where each term is an analytic function element.Further,to estimate the unknown parameters of EmFace,a novel neural network,EmNet,is designed with an encoder-decoder structure and trained from massive face images,where the encoder is defined by a deep convolutional neural network and the decoder is an explicit mathematical expression of EmFace.The authors demonstrate that our EmFace represents face image more accurate than the comparison method,with an average mean square error of 0.000888,0.000936,0.000953 on LFW,IARPA Janus Benchmark-B,and IJB-C datasets.Visualisation results show that,EmFace has a higher representation performance on faces with various expressions,postures,and other factors.Furthermore,EmFace achieves reasonable performance on several face image processing tasks,including face image restoration,denoising,and transformation.展开更多
基金supported by the National Natural Science Foundation of China(No.92370117)the CAS Project for Young Scientists in Basic Research(No.YSBR-090)。
文摘In recent years,machine learning(ML)techniques have been shown to be effective in accelerating the development process of optoelectronic devices.However,as"black box"models,they have limited theoretical interpretability.In this work,we leverage symbolic regression(SR)technique for discovering the explicit symbolic relationship between the structure of the optoelectronic Fabry-Perot(FP)laser and its optical field distribution,which greatly improves model transparency compared to ML.We demonstrated that the expressions explored through SR exhibit lower errors on the test set compared to ML models,which suggests that the expressions have better fitting and generalization capabilities.
基金National Natural Science Foundation of China,Grant/Award Number:92370117。
文摘How to represent a human face pattern?While it is presented in a continuous way in human visual system,computers often store and process it in a discrete manner with 2D arrays of pixels.The authors attempt to learn a continuous surface representation for face image with explicit function.First,an explicit model(EmFace)for human face representation is pro-posed in the form of a finite sum of mathematical terms,where each term is an analytic function element.Further,to estimate the unknown parameters of EmFace,a novel neural network,EmNet,is designed with an encoder-decoder structure and trained from massive face images,where the encoder is defined by a deep convolutional neural network and the decoder is an explicit mathematical expression of EmFace.The authors demonstrate that our EmFace represents face image more accurate than the comparison method,with an average mean square error of 0.000888,0.000936,0.000953 on LFW,IARPA Janus Benchmark-B,and IJB-C datasets.Visualisation results show that,EmFace has a higher representation performance on faces with various expressions,postures,and other factors.Furthermore,EmFace achieves reasonable performance on several face image processing tasks,including face image restoration,denoising,and transformation.