Photodynamic therapy(PDT)is an emerging minimally invasive therapeutic modality that relies on the activation of a photosensitizing agent by light of a specific wavelength in the presence of molecular oxygen,leading t...Photodynamic therapy(PDT)is an emerging minimally invasive therapeutic modality that relies on the activation of a photosensitizing agent by light of a specific wavelength in the presence of molecular oxygen,leading to the generation of reactive oxygen species(ROS).This mechanism facilitates selective cytotoxic effects within pathological tissues and has demonstrated therapeutic potential across diverse disease contexts.However,the broader clinical applications remain limited by photosensitizer selectivity,shallow light penetration,and the risk of off-target cytotoxicity.Recent advancements in PDT have focused on the development of next-generation photosensitizers,the integration of nanotechnology for enhanced delivery and targeting,and the strategic combination of PDT with complementary therapeutic approaches.Experimental animal models play a crucial role in validating the efficacy and safety of PDT,optimizing its therapeutic parameters,and determining its mechanisms of action.This review provides a comprehensive overview of PDT applications in various disease models,including oncological,infectious,and nonconventional indications.Special emphasis is placed on the importance of large animal models in PDT research,such as rabbits,pigs,dogs,and non-human primates,which provide experimental platforms that more closely resemble human physiological and pathological states.The use of these models for understanding the mechanisms of PDT,optimizing therapeutic regimens,and evaluating clinical outcomes is also discussed.This review aims to inform future directions in PDT research and emphasizes the importance of selecting appropriate preclinical animal models to facilitate successful clinical translation.展开更多
Abstinence from prolonged psychostimulant use prompts stimulant withdrawal syndrome.Molecular adaptations within the dorsal striatum have been considered the main hallmark of stimulant abstinence. Here we explored str...Abstinence from prolonged psychostimulant use prompts stimulant withdrawal syndrome.Molecular adaptations within the dorsal striatum have been considered the main hallmark of stimulant abstinence. Here we explored striatal miRNA-target interaction and its impact on circulating miRNA marker as well as behavioral dysfunctions in methamphetamine(MA) abstinence. We conducted miRNA sequencing and profiling in the nonhuman primate model of MA abstinence, followed by miRNA qPCR,LC-MS/MS proteomics, immunoassays, and behavior tests in mice. In nonhuman primates, MA abstinence triggered a lasting upregulation of miR-137 in the dorsal striatum but a simultaneous downregulation of circulating miR-137. In mice, aberrant increase in striatal miR-137-dependent inhibition of SYNCRIP essentially mediated the MA abstinence-induced reduction of circulating miR-137. Pathway modeling through experimental deduction illustrated that the MA abstinence-mediated downregulation of circulating miR-137 was caused by reduction of SYNCRIP-dependent miRNA sorting into the exosomes in the dorsal striatum. Furthermore, diminished SYNCRIP in the dorsal striatum was necessary for MA abstinence-induced behavioral bias towards egocentric spatial learning. Taken together, our data revealed circulating miR-137 as a potential blood-based marker that could reflect MA abstinence-dependent changes in striatal miR-137/SYNCRIP axis, and striatal SYNCRIP as a potential therapeutic target for striatum-associated cognitive dysfunction by MA withdrawal syndrome.展开更多
基金supported by the China Postdoctoral Science Foundation(2024M751098,2024M761134)Jilin Province Development and Reform Commission Program(ZKJCFGW2023015)+1 种基金Wenzhou Science&Technology Bureau Basic Public Welfare Research Program(Y20240006)Jilin University Young Teachers and Students Cross-disciplinary Training Project(2023-JCXK-08)。
文摘Photodynamic therapy(PDT)is an emerging minimally invasive therapeutic modality that relies on the activation of a photosensitizing agent by light of a specific wavelength in the presence of molecular oxygen,leading to the generation of reactive oxygen species(ROS).This mechanism facilitates selective cytotoxic effects within pathological tissues and has demonstrated therapeutic potential across diverse disease contexts.However,the broader clinical applications remain limited by photosensitizer selectivity,shallow light penetration,and the risk of off-target cytotoxicity.Recent advancements in PDT have focused on the development of next-generation photosensitizers,the integration of nanotechnology for enhanced delivery and targeting,and the strategic combination of PDT with complementary therapeutic approaches.Experimental animal models play a crucial role in validating the efficacy and safety of PDT,optimizing its therapeutic parameters,and determining its mechanisms of action.This review provides a comprehensive overview of PDT applications in various disease models,including oncological,infectious,and nonconventional indications.Special emphasis is placed on the importance of large animal models in PDT research,such as rabbits,pigs,dogs,and non-human primates,which provide experimental platforms that more closely resemble human physiological and pathological states.The use of these models for understanding the mechanisms of PDT,optimizing therapeutic regimens,and evaluating clinical outcomes is also discussed.This review aims to inform future directions in PDT research and emphasizes the importance of selecting appropriate preclinical animal models to facilitate successful clinical translation.
基金funded by Korea Institute of Science and Technology Intramural Funding (2E26640,2E30952Republic of Korea)+7 种基金National Research Council of Science & Technology (NST) grant by Korean government (MSIP) (CRC-15-04-KISTRepublic of Korea)Center for Women In Science,Engineering,and Technology (WISET) grant by Korean government (WISET2020-525Republic of Korea)National Research Foundation of Korea (2017R1A2B2003993,2020R1A2C2004610Republic of Korea)UST Young Scientist Research Program through Korea University of Science and Technology (UST) (2017YS03Republic of Korea)。
文摘Abstinence from prolonged psychostimulant use prompts stimulant withdrawal syndrome.Molecular adaptations within the dorsal striatum have been considered the main hallmark of stimulant abstinence. Here we explored striatal miRNA-target interaction and its impact on circulating miRNA marker as well as behavioral dysfunctions in methamphetamine(MA) abstinence. We conducted miRNA sequencing and profiling in the nonhuman primate model of MA abstinence, followed by miRNA qPCR,LC-MS/MS proteomics, immunoassays, and behavior tests in mice. In nonhuman primates, MA abstinence triggered a lasting upregulation of miR-137 in the dorsal striatum but a simultaneous downregulation of circulating miR-137. In mice, aberrant increase in striatal miR-137-dependent inhibition of SYNCRIP essentially mediated the MA abstinence-induced reduction of circulating miR-137. Pathway modeling through experimental deduction illustrated that the MA abstinence-mediated downregulation of circulating miR-137 was caused by reduction of SYNCRIP-dependent miRNA sorting into the exosomes in the dorsal striatum. Furthermore, diminished SYNCRIP in the dorsal striatum was necessary for MA abstinence-induced behavioral bias towards egocentric spatial learning. Taken together, our data revealed circulating miR-137 as a potential blood-based marker that could reflect MA abstinence-dependent changes in striatal miR-137/SYNCRIP axis, and striatal SYNCRIP as a potential therapeutic target for striatum-associated cognitive dysfunction by MA withdrawal syndrome.