This study investigated the effect of pressure,pre-charge time,punch velocity and oxygen content on the mechanical properties of X42 pipeline steel in gaseous hydrogen environment by using small punch test.When expose...This study investigated the effect of pressure,pre-charge time,punch velocity and oxygen content on the mechanical properties of X42 pipeline steel in gaseous hydrogen environment by using small punch test.When exposed to nitrogen,the fracture mode of X42 pipeline steel undergoes ductile fracture,but in the presence of hydrogen,it shifts to brittle fracture.Moreover,an increase in hydrogen pressure or a decrease in punch velocity is found to enhance the hydrogen embrittlement susceptibility of X42 pipeline steel,as evidenced by the decrease of maximal load,displacement at failure onset and small punch energy.But the effect of pre-charge time on the hydrogen embrittlement susceptibility of X42 pipeline steel is not very obvious.Meanwhile,the presence of oxygen has been found to effectively inhibit hydrogen embrittlement.As the oxygen content in hydrogen increases,the hydrogen embrittlement susceptibility of X42 pipeline steel decreases.展开更多
Mercury ions(Hg^(2+))and bacteria are widely spread in water pollution and pose a great threat to human health and the environment.Herein,a multifunctional COF Dmta Tph with significant Hg^(2+)adsorption capability an...Mercury ions(Hg^(2+))and bacteria are widely spread in water pollution and pose a great threat to human health and the environment.Herein,a multifunctional COF Dmta Tph with significant Hg^(2+)adsorption capability and continuous sunlight-driven sterilization property is designed and synthesized by introducing thioether and photosensitive porphyrin in a single molecule.The obtained COF displays a high Hg^(2+)adsorption capacity of 657.9 mg/g at 298 K and a superior antibacterial effect toward Escherichia coli and Staphylococcus aureus under sunlight irradiation.Mechanistic studies reveal that the strong coordination between S species and Hg^(2+)is the main driving force for high Hg^(2+)adsorption capability.The sterilization mechanism clarifies that the inactivation of bacteria is caused by1O_(2)produced from Dmta Tph with the assistance of light irradiation.Noteworthy,when Dmta Tph is applied in the treatment of wastewater,it displays high Hg^(2+)removal efficiency and remarkable antibacterial effect under complex conditions.This study has demonstrated a promising strategy for designing multifunctional COF-based materials,offering great potential in tackling the problem of heavy metal ions and bacteria pollution in water.展开更多
Background:The study aimed to investigate the protective effect and mechanism of total flavonoids of Scutellaria baicalensis(TFSB)on acute myocardial ischemia(AMI)rats by using functional metabonomics.Methods:Rats wer...Background:The study aimed to investigate the protective effect and mechanism of total flavonoids of Scutellaria baicalensis(TFSB)on acute myocardial ischemia(AMI)rats by using functional metabonomics.Methods:Rats were divided into the Control,Model,AMI positive control(Propranolol hydrochloride,30 mg/kg),low dose TFSB(50 mg/kg),and high dose TFSB(100 mg/kg)groups.Rats received the corresponding treatment by intragastric administration once daily for 10 consecutive days.Electrocardiogram,myocardial enzyme,triphenyltetrazolium chloride staining,hematoxylin-eosin,and enzyme-linked immunosorbent assay were performed to evaluate the protective effect of TFSB on AMI rats.Then,the UHPLC-Q-Orbitrap MS method based on serum metabolomics was utilised to search for metabolic biomarkers and metabolic pathways.Subsequently,Western blot and RT-PCR techniques were employed to identify the respective genes and proteins.Results:Pharmacodynamics revealed that TFSB could ameliorate AMI in rats.The results of the metabolomics analysis indicated that the alterations in metabolic profile observed in rats with AMI were partially improved by treatment with TFSB.Moreover,the mRNA expression levels of 5-lipoxygenase(5-LOX)and 15-lipoxygenase(15-LOX)and the protein expression levels of 5-LOX,15-LOX,interleukin-1β(IL-1β),and NF-κB p65 were reduced following treatment with TFSB.Conclusion:The potential treatment of TFSB in AMI may be ascribed to its ability to regulate arachidonic acid metabolism.展开更多
Mixed polyanion phosphate Na_(4)Fe_(3)(PO_(4))_(2)P_(2)O_(7)(NFPP)is regarded as the most promising cathode material for sodium-ion batteries(SIBs),due to its high structural stability and low-cost environmental frien...Mixed polyanion phosphate Na_(4)Fe_(3)(PO_(4))_(2)P_(2)O_(7)(NFPP)is regarded as the most promising cathode material for sodium-ion batteries(SIBs),due to its high structural stability and low-cost environmental friendliness.However,its intrinsic low conductivity and sluggish Na^(+)diffusion restricted the fast-charge and low-temperature sodium storage.Herein,an NFPP composite encapsulated by in-situ pyrolytic carbon and coupled with expanded graphite(NFPP@C/EG)was constructed via a sol-gel method followed by a ballmill procedure.Due to the dual-carbon modified strategy,this NFPP@C/EG only enhanced the electronic conductivity,but also endowed more channels for Na^(+)diffusion.As cathode for SIBs,the optimized NFPP(M-NFPP@C/EG)delivers excellent rate capability(capacity of~80.5 mAh/g at 50 C)and outstanding cycling stability(11000 cycles at 50 C with capacity retention of 89.85%).Additionally,cyclic voltammetry(CV)confirmed that its sodium storage behavior is pseudocapacitance-controlled,with in-situ electrochemical impedance spectroscopy(EIS)further elucidating improvements in electrode reaction kinetics.At lower temperatures(0℃),M-NFPP@C/EG demonstrated exceptional cycling performance(8800 cycles at 10 C with capacity retention of 95.81%).Moreover,pouch cells also exhibited excellent stability.This research demonstrates the feasibility of a dual carbon modification strategy in enhancing NFPP and proposes a low-cost,high-rate,and ultra-stable cathode material for SIBs.展开更多
Organophosphorus pesticides(OPPs)in foods pose a serious threat to human health,motivating the development of novel analytical methods for their rapid detection and quantification.A magnetic covalent organic framework...Organophosphorus pesticides(OPPs)in foods pose a serious threat to human health,motivating the development of novel analytical methods for their rapid detection and quantification.A magnetic covalent organic framework(M-COF)adsorbent for the magnetic solid-phase extraction(MSPE)of OPPs from foods was reported.M-COF was synthesized by the Schiff base condensation reaction of 1,3,5-tris(4-aminophenyl)benzene and 4,4-biphenyldicarboxaldehyde on the surface of amino-functionalized magnetic nanoparticles.Density functional theory(DFT)calculations showed that adsorption of OPPs onto the surface of M-COF involved hydrophobic effects,van der Waals interactions,π-πinteractions,halogen-N bonding,and hydrogen bonding.Combined with gas chromatography-mass spectrometry(GC-MS)technology,the MSPE method features low limits of detection for OPPs(0.002-0.015μg/L),good reproducibility(1.45%-6.14%),wide linear detection range(0.01-1μg/L,R≥0.9935),and satisfactory recoveries(87.3%-110.4%).The method was successfully applied for the trace analysis of OPPs in spiked fruit juices.展开更多
Arsenic (As) is a pervasive and ubiquitous environmental toxin that has created catastrophic human health problems world-wide. Chlamydomonas reinhardtii is a unicellular green alga, which exists ubiquitously in fres...Arsenic (As) is a pervasive and ubiquitous environmental toxin that has created catastrophic human health problems world-wide. Chlamydomonas reinhardtii is a unicellular green alga, which exists ubiquitously in freshwater aquatic systems. Arsenic metabolism processes of this alga through arsenate reduction and sequent store and efflux were investigated. When supplied with 10 μmol/L arsenate, arsenic speciation analysis showed that arsenite concentration increased from 5.7 to 15.7 mg/kg dry weight during a 7-day period, accounting for 18%–24% of the total As in alga. When treated with different levels of arsenate (10, 20, 30, 40, 50 μmol/L) for 7 days, the arsenite concentration increased with increasing external arsenate concentrations, the proportion of arsenite was up to 23%–28% of the total As in alga. In efflux experiments, both arsenate and arsenite could be found in the efflux solutions. Additionally, the efflux of arsenate was more than that of arsenite. Furthermore, two arsenate reductase genes of C. reinhardtii (CrACR2s) were cloned and expressed in Escherichia coli strain WC3110 (?arsC) for the first time. The abilities of both CrACR2s genes to complement the arsenate- sensitive strain were examined. CrACR2.1 restored arsenate resistance at 0.8 mmol/L. However, CrACR2.2 showed much less ability to complement. The gene products were demonstrated to reduce arsenate to arsenite in vivo. In agreement with the complementation results, CrACR2.1 showed higher reduction ability than CrACR2.2, when treated with 0.4 mmol/L arsenate for 16 hr incubation.展开更多
Salvia miltiorrhiza Bge(SMB)has long been used in traditional Chinese medicine to treat cardiovascular and cerebrovascular diseases.Growing clinical usage has led to a huge demand for artificial planting of SMB.Thus,c...Salvia miltiorrhiza Bge(SMB)has long been used in traditional Chinese medicine to treat cardiovascular and cerebrovascular diseases.Growing clinical usage has led to a huge demand for artificial planting of SMB.Thus,continuous cropping of SMB is an important challenge that needs to be addressed.Continuous cropping can alter the metabolic profile of plants,resulting in poor growth and low yield.In this study,we tried to image the spatial location and variation of endogenous metabolites in continuously cropped SMB using matrix-assisted laser desorption/ionization mass spectrometry imaging(MALDIMSI).Spatially resolved expressions of tanshinones,salvianolic acids,polyamines,phenolic acids,amino acids,and oligosaccharides in normal and continuously cropped SMB roots were compared.The expressions of dihydrotanshinone Ⅰ,tanshinone Ⅱ A,dehydromiltirone,miltirone,dehydrotanshinone ⅡA,spermine,salvianolic acid B/E,tetrasaccharide,and pentasaccharide in continuously cropped SMB roots were much lower than those in normal roots.There was little difference in the expressions of caffeic acid and salvianolic acid A in normal and continuously cropped SMB roots.Ferulic acid was more widely distributed in xylem of normal SMB but strongly expressed in xylem,phloem,and cambium of continuously cropped SMB.The spatially resolved metabolite information enhances our understanding of the metabolic signature of continuously cropped SMB and also provides insights into the metabolic effects of continuous cropping in other plants.展开更多
Oil and gas pipelines are of great importance in China,and pipeline security problems pose a serious threat to society and the environment.Pipeline safety has therefore become an integral part of the entire national e...Oil and gas pipelines are of great importance in China,and pipeline security problems pose a serious threat to society and the environment.Pipeline safety has therefore become an integral part of the entire national economy.Landslides are the most harmful type of pipeline accident,and have directed increasing public attention to safety issues.Although some useful results have been obtained in the investigation and prevention of pipeline-landslide hazards,there remains a need for effective monitoring and early warning methods,especially when the complexity of pipeline-landslides is considered.Because oil and gas pipeline-landslides typically occur in the superficial soil layers,monitoring instruments must be easy to install and must cause minimal disturbance to the surrounding soil and pipeline.To address the particular characteristics of pipelinelandslides,we developed a multi-parameter integrated monitoring system called disaster reduction stick equipment.In this paper,we detail this monitoring and early warning system for pipeline-landslide hazards based on an on-site monitoring network and early warning algorithms.The functionality of our system was verified by its successful application to the Chongqing Loujiazhuang pipeline-landslide in China.The results presented here provide guidelines for the monitoring,early warning,and prevention of pipeline geological hazards.展开更多
The pollution of antibiotics commonly existed throughout the entire aquaculture process,but the residues of antibiotics at different aquaculture stages have rarely been studied.This study investigated the occurrence,d...The pollution of antibiotics commonly existed throughout the entire aquaculture process,but the residues of antibiotics at different aquaculture stages have rarely been studied.This study investigated the occurrence,distribution and risk assessment of antibiotics at different aquaculture stages (the non-aquaculture stage,the early aquaculture stage,the middle aquaculture stage,and the late aquaculture stage) in two typical marine aquaculture areas(Mahegang River and Dingzi Bay) surrounding the Yellow Sea.Fluoroquinolones and tetracyclines were commonly used antibiotics in the aquaculture of these areas with high detection frequencies (17%to 83%).Compared among four aquaculture stages,the highest concentration of antibiotics (9032.08 ng/L) in aquaculture ponds was detected at the late aquaculture stage.And the antibiotic pollution level of natural water was directly related to the aquaculture stages.Similarly,at the aquaculture stages,the detection frequency of antibiotics in sediments was higher than that at the non-aquaculture stage.Based on the correlation analysis,the concentration of main antibiotics in water showed a positive correlation with total nitrogen (p<0.05) and chlorophyll a (p<0.01),while it showed a negative correlation with salinity (p<0.01) in coastal water of the Dingzi Bay.According to the risk assessment,with the development of aquaculture stages,the selection pressure of fluoroquinolones and tetracyclines on resistant bacteria had increased.And the ecological risks caused by sulfonamides and tetracyclines to aquatic organisms had also increased markedly.Overall,this study may provide a reference for formulating regulatory policies regarding antibiotic use at different aquaculture stages.展开更多
Covalent organic nanospheres(CONs)were explored as a fiber coating for solid-phase microextraction of genotoxic impurities(GTIs)from active ingredients(AIs).CONs were synthesized by an easy solutionphase procedure at...Covalent organic nanospheres(CONs)were explored as a fiber coating for solid-phase microextraction of genotoxic impurities(GTIs)from active ingredients(AIs).CONs were synthesized by an easy solutionphase procedure at 25℃.The obtained nanospheres exhibited a high specific surface area,good thermostability,high acid and alkali resistance,and favorable crystallinity and porosity.Two types of GTIs,alkyl halides(1-iodooctane,1-chlorobenzene,1-bromododecane,1,2-dichlorobenzene,1-bromooctane,1-chlorohexane,and 1,8-dibromooctane)and sulfonate esters(methyl p-toluenesulfonate and ethyl ptoluenesulfonate),were chosen as target molecules for assessing the performance of the coating.The prepared coating achieved high enhancement factors(5097-9799)for the selected GTIs.The strong affinity between CONs and GTIs was tentatively attributed to π-π and hydrophobicity interactions,large surface area of the CONs,and size-matching of the materials.Combined with gas chromatography-mass spectrometry(GC-MS),the established analytical method detected the GTIs in capecitabine and imatinib mesylate samples over a wide linear range(0.2-200 ng/g)with a low detection limit(0.04-2.0 ng/g),satisfactory recovery(80.03%-109.5%),and high repeatability(6.20%-14.8%)and reproducibility(6.20%-14.1%).Therefore,the CON-coated fibers are promising alternatives for the sensitive detection of GTIs in AI samples.展开更多
A series of hexagonal ZnIn2S4 samples with different morphologies have been successfully prepared via a facile solvothermal approach using different alcohol solvents with the optimum synthesis time and temperature. X-...A series of hexagonal ZnIn2S4 samples with different morphologies have been successfully prepared via a facile solvothermal approach using different alcohol solvents with the optimum synthesis time and temperature. X-ray diffraction, field emission scanning electron microscopy, UV-vis diffuse reflection spectroscopy and photoelectrochemical measurements are employed to determine the properties of the samples. It is found that the solvent has a significant influence on the morphology, optical properties and electronic nature of the samples. The photocatalytic activities of the samples have been evaluated by selective oxidation of benzyl alcohol to benzaldehyde to benzaldehyde and the degradation of methyl orange(MO) under visible light irradiation. The results reveal that the photocatalytic activities of ZnIn2S4 are closely related to the reaction solvent. The ethanol-mediated ZnIn2S4 exhibits the best photocatalytic performance toward selective oxidation of benzyl alcohol to benzaldehyde and the degradation of dye MO compared to the samples prepared in other solvents, which can be attributed to the integrative effect of the enhanced light absorption intensity and the prolonged lifetime of photogenerated carriers. In addition, a possible mechanism is proposed and discussed. It is expected that our current research could promote further interest on the synthesizing efficient ternary chalcogenides semiconducting materials for environment remediation and organic transformation.展开更多
The oxidative properties and characterization of CuO, CeO 2 and CuO/CeO 2 cata lysts were examined by means of a CO micro-reactor GC system, TPR, XPS and X-r ay diffraction Rietveld methods. The results show that ei...The oxidative properties and characterization of CuO, CeO 2 and CuO/CeO 2 cata lysts were examined by means of a CO micro-reactor GC system, TPR, XPS and X-r ay diffraction Rietveld methods. The results show that either CuO or CeO 2 ac tivity is quite low for CO oxidation. However, when CuO and CeO 2 are mixed, the oxidative activity of the catalyst increases significantly, probably owing to the valency status of copper species (Cu 2+ and Cu+) on the CeO 2 surfa ce, the dispersion and reducibility. XPS surface analysis shows that CuO loading is very important in forming of either Cu 2+ or Cu+. Rietveld analysis s hows that some CuO, which has smaller ion radius than Ce 4+, enters the Ce O 2 lattice after CuO and CeO 2 are mixed. When the CuO loading reaches 5.0%, the size of CuO crystals is a minimum (6.1 nm) and the micro-strain value i s a maximum (2.86×10 -3), resulting in high surface energy and the best ac tivity for CO oxidation.展开更多
Sparfloxacin can be oxidized by nitrous acid, then react with hydroiodic acid to form a fluorescent derivative. Based on this, a reversed-phase high performance liquid chromatographic pre-column derivatization new met...Sparfloxacin can be oxidized by nitrous acid, then react with hydroiodic acid to form a fluorescent derivative. Based on this, a reversed-phase high performance liquid chromatographic pre-column derivatization new method is described for the determination of sparfloxacin in human urine. The linear range is 0.05 mg/L to 4.0 mg/L, the recoveries are 91.5%similar to 95.7% and the RSD is 1.2%similar to4.2%. The results showed that this method is suitable for the determination of sparfloxacin in human urine.展开更多
Billets of Mg-9Al-3Zn-1Mn-6Ca-2Nd alloy were produced by spray-deposition(the Osprey process).Effect of rolling deformation(T = 350?C, ε = 5%, 10%, and 15%, respectively) on microstructure and texture evolution ...Billets of Mg-9Al-3Zn-1Mn-6Ca-2Nd alloy were produced by spray-deposition(the Osprey process).Effect of rolling deformation(T = 350?C, ε = 5%, 10%, and 15%, respectively) on microstructure and texture evolution of the Mg-9Al-3Zn-1Mn-6Ca-2Nd alloy was investigated by scanning electron microscopy(SEM), transmission electron microscopy(TEM) and X-ray diffraction(XRD). Results show that at pass reduction of ε = 5%, 10% and 15% at 350?C respectively, Mg-Nd-Zn typed 24R-LPSO structure was formed in(Ca, Nd)Al2phase(C15 Laves phase). With the increase in pass reduction(i.e. 5%, 10% and 15%), the texture pole density level of basal texture(0002) changed little and pyramidal texture(10 1ˉ3) were increased.In contrast, those of prismatic texture {101ˉ0} 〈11 2ˉ0〉 were increased initially and followed by a reduction, indicating texture randomization in the grain-refined Mg alloy. The combined contribution of LPSO phase and C15 phase was key to randomize the texture of the grain-refined Mg alloy. It was noted that the microcosmic plastic deformation of LPSO phase and nanometer-sized dispersed C15 phase impeded dislocation movement, led to dislocation tangles, and facilitated recrystallization.展开更多
Pristine alpine regions are ideal regions for investigating the long-range atmospheric transport and cold trapping effects of short chain chlorinated paraffins(SCCPs).The concentrations and alpine condensation of SCCP...Pristine alpine regions are ideal regions for investigating the long-range atmospheric transport and cold trapping effects of short chain chlorinated paraffins(SCCPs).The concentrations and alpine condensation of SCCPs were investigated in lichen samples collected from the southeastern Tibetan Plateau.The concentrations of SCCPs ranged from 3098 to 6999 ng/g lipid weight(lw)and appeared to have an increasing trend with altitude.For congeners,C10 dominated among all the congener groups.The different environmental behavior for different congener groups was closely related to their octanol-air partition coefficient(Koa).C10 congeners showed an increasing trend with altitude,whereas C13 congeners were negatively correlated with altitude.Volumetric bioconcentration factors(BCF)of SCCPs reached 8.71 in lichens,which were higher than other semivolatile organic compounds(SVOCs)such as organochlorine pesticides(OCPs),polybrominated diphenyl ethers(PBDEs),polychlorinated biphenyls(PCBs),and hexabromocyclododecane(HBCD).These results suggested that SCCPs were prone to accumulate in the lichen from the air and provided evidence for the role of lichens as a suitable atmospheric indicator in the Tibetan Plateau.展开更多
Eclipta prostrata L.has been used in traditional medicine and known for its liver-protective properties for centuries.Wedelolactone(WEL)and demethylwedelolactone(DWEL)are the major coumarins found in E.prostrata L.How...Eclipta prostrata L.has been used in traditional medicine and known for its liver-protective properties for centuries.Wedelolactone(WEL)and demethylwedelolactone(DWEL)are the major coumarins found in E.prostrata L.However,the comprehensive characterization of these two compounds on non-alcoholic fatty liver disease(NAFLD)still remains to be explored.Utilizing a well-established zebrafish model of thioacetamide(TAA)-induced liver injury,the present study sought to investigate the impacts and mechanisms of WEL and DWEL on NAFLD through integrative spatial metabolomics with liver-specific transcriptomics analysis.Our results showed that WEL and DWEL significantly improved liver function and reduced the accumulation of fat in the liver.The biodistributions and metabolism of these two compounds in whole-body zebrafish were successfully mapped,and the discriminatory endogenous metabolites reversely regulated by WEL and DWEL treatments were also characterized.Based on spatial metabolomics and transcriptomics,we identified that steroid biosynthesis and fatty acid metabolism are mainly involved in the hepatoprotective effects of WEL instead of DWEL.Our study unveils the distinct mechanism of WEL and DWEL in ameliorating NAFLD,and presents a“multi-omics”platform of spatial metabolomics and liver-specific transcriptomics to develop highly effective compounds for further improved therapy.展开更多
Syzygium myrsinifolium(Hance)Merr.et Perry is a unique plant resource on Hainan Island,and there are few reports on its chemical constituents.In the present study,we identified the major chemical constituents in the l...Syzygium myrsinifolium(Hance)Merr.et Perry is a unique plant resource on Hainan Island,and there are few reports on its chemical constituents.In the present study,we identified the major chemical constituents in the leaves of Syzygium myrsinifolium(Hance)Merr.et Perry using ultra-high performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry(UPLC-Q-TOF-MS/MS).The chemical constituents in Syzygium myrsinifolium(Hance)Merr.et Perry were identified rapidly based on the accurate relative molecular mass and combined with literature data and reference substances.A total of 20 compounds,including organic acids,phenolic acids,and flavonoids,were identified.Among these 20 compounds,four organic acids,eight phenolic acids,seven flavonoids,and one coumarin were reported from the leaves of Syzygium myrsinifolium(Hance)Merr.et Perry for the first time.The established method was rapid and accurate,and some chemical constituents in the leaves of Syzygium myrsinifolium(Hance)Merr.et Perry have been identified.This research provided an experimental reference for the study of the constituents and utilization of Syzygium myrsinifolium(Hance)Merr.et Perry.展开更多
Recently,traditional Chinese medicine-based treatment has succeeded in fighting coronavirus disease 2019(COVID-19),and Rhizoma polygonati(Huangjing)has been one of the recommended components.Its processed products pla...Recently,traditional Chinese medicine-based treatment has succeeded in fighting coronavirus disease 2019(COVID-19),and Rhizoma polygonati(Huangjing)has been one of the recommended components.Its processed products play antidiabetic,antiviral,antitumor,antioxidation,antifatigue,antiaging,and immune enhancement roles.The climate in Mount Tai is mild,and the dense forest is suitable for the growth of Rhizome polygonati,which has gradually evolved into a unique specie.Considering the important medicinal value and pleasant taste of Mount Tai-Rhizoma polygonati,various healthy and functional food products,controlled by quality markers with anti-COVID-19 potential,as well as emergency foods can be developed.The study aimed to review current evidence on the nutritional value of Rhizoma polygonati from Mount Tai and its usefulness as a traditional Chinese medicine,source of herbzyme,and potential remediating agent for COVID-19 and food shortage.Most recent findings regarding herbal nanomedicine have revealed that nanoscale chemical compounds are potentially efficient in drug delivery or nanozyme catalysis upon bioprocessing.Nanoflower structure is found in processed Rhizoma polygonati by self-assembly and has wide application in enzymatic events,particularly nanoscale herbzyme.The novel findings regarding Mount Tai-Rhizoma polygonati could enhance its novel applications in chronic and hidden hunger,clinical nanomedicine,and as an anti-COVID-19 agent.展开更多
[Objectives] To develop a method for separation and purification of acetophenones from Cynanchum bengei Decne root bark by combination of silica gel and high-speed counter-current chromatography( HSCCC). [Methods]The ...[Objectives] To develop a method for separation and purification of acetophenones from Cynanchum bengei Decne root bark by combination of silica gel and high-speed counter-current chromatography( HSCCC). [Methods]The crude extract of Cynanchum bengei Decne root bark was separated by silica gel column chromatography,and parts A and B containing acetophenones were obtained. Then,parts A and B were separated by HSCCC with a two-phase solvent system composed of petroleum ether-ethyl acetate-methanol-water( 4∶ 6∶ 4. 5∶ 5. 5 and4∶ 6 ∶ 3 ∶ 7, V/V), respectively. [Results] From 260 mg of part A, four compounds with p-dihydroxybenzene 3. 9 mg(Ⅰ),4-hydroxyacetophenone 17. 1 mg( Ⅱ),2,5-di-hydroxyacetophenone 13. 3 mg(Ⅲ) and 2,4-dihydroxyaceto-phenone 21. 0 mg(Ⅳ) were obtained. And from 300 mg of part B,136 mg of Radix Cynanchi Bungei benzophenone(Ⅴ) was obtained. The purity of compounds determined by HPLC was 97. 0%,96. 6%,99. 2%,99. 7%,99. 5%,respectively. [Conclusions] The established method is simple and efficient. It can be used for separation of acetophenones from Cynanchum bengei Decne root bark and has better practical value,which could provide a reference basis for development and utilization of Cynanchum bengei Decne root bark.展开更多
A one-pot sequential reaction for efficient synthesis of pyrrolo[2,1-a]isoquinoline and pyrrolo[1,2-a]quinoline derivatives has been developed.The reaction included firstly the Cu-catalyzed three-component reaction of...A one-pot sequential reaction for efficient synthesis of pyrrolo[2,1-a]isoquinoline and pyrrolo[1,2-a]quinoline derivatives has been developed.The reaction included firstly the Cu-catalyzed three-component reaction of isoquinoline(quinoline),acetylenedicarboxylate and alkynylbenzene and then Cs 2 CO 3-promoted intramolecular cyclization reaction of initially formed 1-alkenyl-2-alkynyl-1,2-dihydroisoquinoline(1,2-dihydroquinoline).展开更多
基金supported by the National Key R&D Program of China(2021YFB4001601)the Youth Innovation Promotion Association CAS(2022187).
文摘This study investigated the effect of pressure,pre-charge time,punch velocity and oxygen content on the mechanical properties of X42 pipeline steel in gaseous hydrogen environment by using small punch test.When exposed to nitrogen,the fracture mode of X42 pipeline steel undergoes ductile fracture,but in the presence of hydrogen,it shifts to brittle fracture.Moreover,an increase in hydrogen pressure or a decrease in punch velocity is found to enhance the hydrogen embrittlement susceptibility of X42 pipeline steel,as evidenced by the decrease of maximal load,displacement at failure onset and small punch energy.But the effect of pre-charge time on the hydrogen embrittlement susceptibility of X42 pipeline steel is not very obvious.Meanwhile,the presence of oxygen has been found to effectively inhibit hydrogen embrittlement.As the oxygen content in hydrogen increases,the hydrogen embrittlement susceptibility of X42 pipeline steel decreases.
基金financially supported by the National Natural Science Foundation of China(Nos.22106078,62105175)High-end Foreign Experts Recruitment Plan(No.G2023024007L)+1 种基金Shandong Provincial Natural Science Foundation(Nos.ZR2022YQ12,ZR2021QB031,ZR2021QF058)the Science,Education,and Industry Integration Pilot Project for Talent Research at Qilu University of Technology(Shandong Academy of Sciences)(No.2024RCKY028)。
文摘Mercury ions(Hg^(2+))and bacteria are widely spread in water pollution and pose a great threat to human health and the environment.Herein,a multifunctional COF Dmta Tph with significant Hg^(2+)adsorption capability and continuous sunlight-driven sterilization property is designed and synthesized by introducing thioether and photosensitive porphyrin in a single molecule.The obtained COF displays a high Hg^(2+)adsorption capacity of 657.9 mg/g at 298 K and a superior antibacterial effect toward Escherichia coli and Staphylococcus aureus under sunlight irradiation.Mechanistic studies reveal that the strong coordination between S species and Hg^(2+)is the main driving force for high Hg^(2+)adsorption capability.The sterilization mechanism clarifies that the inactivation of bacteria is caused by1O_(2)produced from Dmta Tph with the assistance of light irradiation.Noteworthy,when Dmta Tph is applied in the treatment of wastewater,it displays high Hg^(2+)removal efficiency and remarkable antibacterial effect under complex conditions.This study has demonstrated a promising strategy for designing multifunctional COF-based materials,offering great potential in tackling the problem of heavy metal ions and bacteria pollution in water.
基金sponsored by Shandong Provincial Key Research and Development Program(Major Technological Innovation Project)([2021]CXGC010508)Guizhou Province Youth Science and Technology Talent Plan(YQK[2023]038)+1 种基金Science and Technology Department of Zunyi City of Guizhou province of China([2020]7)Key project at central government level:the ability establishment of sustainable use for valuable Chinese medicine resources(2060302).
文摘Background:The study aimed to investigate the protective effect and mechanism of total flavonoids of Scutellaria baicalensis(TFSB)on acute myocardial ischemia(AMI)rats by using functional metabonomics.Methods:Rats were divided into the Control,Model,AMI positive control(Propranolol hydrochloride,30 mg/kg),low dose TFSB(50 mg/kg),and high dose TFSB(100 mg/kg)groups.Rats received the corresponding treatment by intragastric administration once daily for 10 consecutive days.Electrocardiogram,myocardial enzyme,triphenyltetrazolium chloride staining,hematoxylin-eosin,and enzyme-linked immunosorbent assay were performed to evaluate the protective effect of TFSB on AMI rats.Then,the UHPLC-Q-Orbitrap MS method based on serum metabolomics was utilised to search for metabolic biomarkers and metabolic pathways.Subsequently,Western blot and RT-PCR techniques were employed to identify the respective genes and proteins.Results:Pharmacodynamics revealed that TFSB could ameliorate AMI in rats.The results of the metabolomics analysis indicated that the alterations in metabolic profile observed in rats with AMI were partially improved by treatment with TFSB.Moreover,the mRNA expression levels of 5-lipoxygenase(5-LOX)and 15-lipoxygenase(15-LOX)and the protein expression levels of 5-LOX,15-LOX,interleukin-1β(IL-1β),and NF-κB p65 were reduced following treatment with TFSB.Conclusion:The potential treatment of TFSB in AMI may be ascribed to its ability to regulate arachidonic acid metabolism.
基金supported by the National Key Research and Development Program of China(No.2022YFB2502000)the National Natural Science Foundation of China(Nos.U21A20332,51771076,U21A200970,52301266)the Science and Technology Planning Project of Guangzhou(No.2024A04J3332)。
文摘Mixed polyanion phosphate Na_(4)Fe_(3)(PO_(4))_(2)P_(2)O_(7)(NFPP)is regarded as the most promising cathode material for sodium-ion batteries(SIBs),due to its high structural stability and low-cost environmental friendliness.However,its intrinsic low conductivity and sluggish Na^(+)diffusion restricted the fast-charge and low-temperature sodium storage.Herein,an NFPP composite encapsulated by in-situ pyrolytic carbon and coupled with expanded graphite(NFPP@C/EG)was constructed via a sol-gel method followed by a ballmill procedure.Due to the dual-carbon modified strategy,this NFPP@C/EG only enhanced the electronic conductivity,but also endowed more channels for Na^(+)diffusion.As cathode for SIBs,the optimized NFPP(M-NFPP@C/EG)delivers excellent rate capability(capacity of~80.5 mAh/g at 50 C)and outstanding cycling stability(11000 cycles at 50 C with capacity retention of 89.85%).Additionally,cyclic voltammetry(CV)confirmed that its sodium storage behavior is pseudocapacitance-controlled,with in-situ electrochemical impedance spectroscopy(EIS)further elucidating improvements in electrode reaction kinetics.At lower temperatures(0℃),M-NFPP@C/EG demonstrated exceptional cycling performance(8800 cycles at 10 C with capacity retention of 95.81%).Moreover,pouch cells also exhibited excellent stability.This research demonstrates the feasibility of a dual carbon modification strategy in enhancing NFPP and proposes a low-cost,high-rate,and ultra-stable cathode material for SIBs.
基金supported by Key Research and Development Project of Shandong Province(2021ZDSYS12)National Natural Science Foundation of China(22076086,21777089)+3 种基金Taishan Scholar Program of Shandong Province(ts20190948)Shandong Province Science and Technology Small and Medium Enterprises Innovation Ability Enhancement Project(2023TSGC0689,2023TSGC0055)Natural Science Foundation of Shandong Province(ZR2021MB086,ZR2023QB035)Jinan City University and Institute Innovation Team Project(2021GXRC061,20228045,202333027)。
文摘Organophosphorus pesticides(OPPs)in foods pose a serious threat to human health,motivating the development of novel analytical methods for their rapid detection and quantification.A magnetic covalent organic framework(M-COF)adsorbent for the magnetic solid-phase extraction(MSPE)of OPPs from foods was reported.M-COF was synthesized by the Schiff base condensation reaction of 1,3,5-tris(4-aminophenyl)benzene and 4,4-biphenyldicarboxaldehyde on the surface of amino-functionalized magnetic nanoparticles.Density functional theory(DFT)calculations showed that adsorption of OPPs onto the surface of M-COF involved hydrophobic effects,van der Waals interactions,π-πinteractions,halogen-N bonding,and hydrogen bonding.Combined with gas chromatography-mass spectrometry(GC-MS)technology,the MSPE method features low limits of detection for OPPs(0.002-0.015μg/L),good reproducibility(1.45%-6.14%),wide linear detection range(0.01-1μg/L,R≥0.9935),and satisfactory recoveries(87.3%-110.4%).The method was successfully applied for the trace analysis of OPPs in spiked fruit juices.
基金supported by the National Natural Sci- ence Foundation of China (No. 40973058, 21077100)the Doctor Foundation of Shandong Province (No. BS2009HZ024)
文摘Arsenic (As) is a pervasive and ubiquitous environmental toxin that has created catastrophic human health problems world-wide. Chlamydomonas reinhardtii is a unicellular green alga, which exists ubiquitously in freshwater aquatic systems. Arsenic metabolism processes of this alga through arsenate reduction and sequent store and efflux were investigated. When supplied with 10 μmol/L arsenate, arsenic speciation analysis showed that arsenite concentration increased from 5.7 to 15.7 mg/kg dry weight during a 7-day period, accounting for 18%–24% of the total As in alga. When treated with different levels of arsenate (10, 20, 30, 40, 50 μmol/L) for 7 days, the arsenite concentration increased with increasing external arsenate concentrations, the proportion of arsenite was up to 23%–28% of the total As in alga. In efflux experiments, both arsenate and arsenite could be found in the efflux solutions. Additionally, the efflux of arsenate was more than that of arsenite. Furthermore, two arsenate reductase genes of C. reinhardtii (CrACR2s) were cloned and expressed in Escherichia coli strain WC3110 (?arsC) for the first time. The abilities of both CrACR2s genes to complement the arsenate- sensitive strain were examined. CrACR2.1 restored arsenate resistance at 0.8 mmol/L. However, CrACR2.2 showed much less ability to complement. The gene products were demonstrated to reduce arsenate to arsenite in vivo. In agreement with the complementation results, CrACR2.1 showed higher reduction ability than CrACR2.2, when treated with 0.4 mmol/L arsenate for 16 hr incubation.
基金supported by the Taishan Scholars Program of Shandong Province(Grant No.:tsqn202103096 for C.Sun and Grant No.:ts201511068 for L.Guo)the National Natural Science Foundation of China(Grant No.:82003886)the National Key R&D Program of China(Grant Nos.:2017YFC1700703 and 2017YFC-1702701).
文摘Salvia miltiorrhiza Bge(SMB)has long been used in traditional Chinese medicine to treat cardiovascular and cerebrovascular diseases.Growing clinical usage has led to a huge demand for artificial planting of SMB.Thus,continuous cropping of SMB is an important challenge that needs to be addressed.Continuous cropping can alter the metabolic profile of plants,resulting in poor growth and low yield.In this study,we tried to image the spatial location and variation of endogenous metabolites in continuously cropped SMB using matrix-assisted laser desorption/ionization mass spectrometry imaging(MALDIMSI).Spatially resolved expressions of tanshinones,salvianolic acids,polyamines,phenolic acids,amino acids,and oligosaccharides in normal and continuously cropped SMB roots were compared.The expressions of dihydrotanshinone Ⅰ,tanshinone Ⅱ A,dehydromiltirone,miltirone,dehydrotanshinone ⅡA,spermine,salvianolic acid B/E,tetrasaccharide,and pentasaccharide in continuously cropped SMB roots were much lower than those in normal roots.There was little difference in the expressions of caffeic acid and salvianolic acid A in normal and continuously cropped SMB roots.Ferulic acid was more widely distributed in xylem of normal SMB but strongly expressed in xylem,phloem,and cambium of continuously cropped SMB.The spatially resolved metabolite information enhances our understanding of the metabolic signature of continuously cropped SMB and also provides insights into the metabolic effects of continuous cropping in other plants.
基金financially supported by National Key R&D Program of China (No. 2018YFC1505201)National Natural Science Foundation of China (No. 41901008)+2 种基金Open Fund Project of Key Laboratory of Mountain Hazards and Surface Processes of the Chinese Academy of Sciencesthe Fundamental Research Funds for the Central Universities (Grant NO. 2682018CX05)financially supported by China Scholarship Council
文摘Oil and gas pipelines are of great importance in China,and pipeline security problems pose a serious threat to society and the environment.Pipeline safety has therefore become an integral part of the entire national economy.Landslides are the most harmful type of pipeline accident,and have directed increasing public attention to safety issues.Although some useful results have been obtained in the investigation and prevention of pipeline-landslide hazards,there remains a need for effective monitoring and early warning methods,especially when the complexity of pipeline-landslides is considered.Because oil and gas pipeline-landslides typically occur in the superficial soil layers,monitoring instruments must be easy to install and must cause minimal disturbance to the surrounding soil and pipeline.To address the particular characteristics of pipelinelandslides,we developed a multi-parameter integrated monitoring system called disaster reduction stick equipment.In this paper,we detail this monitoring and early warning system for pipeline-landslide hazards based on an on-site monitoring network and early warning algorithms.The functionality of our system was verified by its successful application to the Chongqing Loujiazhuang pipeline-landslide in China.The results presented here provide guidelines for the monitoring,early warning,and prevention of pipeline geological hazards.
基金supported by the National Natural Science Foundation of China (Nos.51709157 and U20A20146)the Youth Interdisciplinary Science and Innovative Research Groups of Shandong University (No.2020QNQT014)。
文摘The pollution of antibiotics commonly existed throughout the entire aquaculture process,but the residues of antibiotics at different aquaculture stages have rarely been studied.This study investigated the occurrence,distribution and risk assessment of antibiotics at different aquaculture stages (the non-aquaculture stage,the early aquaculture stage,the middle aquaculture stage,and the late aquaculture stage) in two typical marine aquaculture areas(Mahegang River and Dingzi Bay) surrounding the Yellow Sea.Fluoroquinolones and tetracyclines were commonly used antibiotics in the aquaculture of these areas with high detection frequencies (17%to 83%).Compared among four aquaculture stages,the highest concentration of antibiotics (9032.08 ng/L) in aquaculture ponds was detected at the late aquaculture stage.And the antibiotic pollution level of natural water was directly related to the aquaculture stages.Similarly,at the aquaculture stages,the detection frequency of antibiotics in sediments was higher than that at the non-aquaculture stage.Based on the correlation analysis,the concentration of main antibiotics in water showed a positive correlation with total nitrogen (p<0.05) and chlorophyll a (p<0.01),while it showed a negative correlation with salinity (p<0.01) in coastal water of the Dingzi Bay.According to the risk assessment,with the development of aquaculture stages,the selection pressure of fluoroquinolones and tetracyclines on resistant bacteria had increased.And the ecological risks caused by sulfonamides and tetracyclines to aquatic organisms had also increased markedly.Overall,this study may provide a reference for formulating regulatory policies regarding antibiotic use at different aquaculture stages.
基金supported by the Key Research and Development Program of Shandong Province(Grant No.:2019GSF111001)the National Natural Science Foundation of China(Grant No.:21906096)+2 种基金the Youth Science Funds of the Shandong Academy of Sciences(Grant No.:2019QN009)the Youth Ph.D.Cooperation Funds of Qilu University of Technology(Shandong Academy of Sciences,Grant No.:2018BSHZ0029)the Program for Taishan Scholars of Shandong Province(Grant No.:tsqn202103099).
文摘Covalent organic nanospheres(CONs)were explored as a fiber coating for solid-phase microextraction of genotoxic impurities(GTIs)from active ingredients(AIs).CONs were synthesized by an easy solutionphase procedure at 25℃.The obtained nanospheres exhibited a high specific surface area,good thermostability,high acid and alkali resistance,and favorable crystallinity and porosity.Two types of GTIs,alkyl halides(1-iodooctane,1-chlorobenzene,1-bromododecane,1,2-dichlorobenzene,1-bromooctane,1-chlorohexane,and 1,8-dibromooctane)and sulfonate esters(methyl p-toluenesulfonate and ethyl ptoluenesulfonate),were chosen as target molecules for assessing the performance of the coating.The prepared coating achieved high enhancement factors(5097-9799)for the selected GTIs.The strong affinity between CONs and GTIs was tentatively attributed to π-π and hydrophobicity interactions,large surface area of the CONs,and size-matching of the materials.Combined with gas chromatography-mass spectrometry(GC-MS),the established analytical method detected the GTIs in capecitabine and imatinib mesylate samples over a wide linear range(0.2-200 ng/g)with a low detection limit(0.04-2.0 ng/g),satisfactory recovery(80.03%-109.5%),and high repeatability(6.20%-14.8%)and reproducibility(6.20%-14.1%).Therefore,the CON-coated fibers are promising alternatives for the sensitive detection of GTIs in AI samples.
基金financially supported by the Key Projects of Youth Natural Fund in Fujian Universities,China(JZ160414)
文摘A series of hexagonal ZnIn2S4 samples with different morphologies have been successfully prepared via a facile solvothermal approach using different alcohol solvents with the optimum synthesis time and temperature. X-ray diffraction, field emission scanning electron microscopy, UV-vis diffuse reflection spectroscopy and photoelectrochemical measurements are employed to determine the properties of the samples. It is found that the solvent has a significant influence on the morphology, optical properties and electronic nature of the samples. The photocatalytic activities of the samples have been evaluated by selective oxidation of benzyl alcohol to benzaldehyde to benzaldehyde and the degradation of methyl orange(MO) under visible light irradiation. The results reveal that the photocatalytic activities of ZnIn2S4 are closely related to the reaction solvent. The ethanol-mediated ZnIn2S4 exhibits the best photocatalytic performance toward selective oxidation of benzyl alcohol to benzaldehyde and the degradation of dye MO compared to the samples prepared in other solvents, which can be attributed to the integrative effect of the enhanced light absorption intensity and the prolonged lifetime of photogenerated carriers. In addition, a possible mechanism is proposed and discussed. It is expected that our current research could promote further interest on the synthesizing efficient ternary chalcogenides semiconducting materials for environment remediation and organic transformation.
文摘The oxidative properties and characterization of CuO, CeO 2 and CuO/CeO 2 cata lysts were examined by means of a CO micro-reactor GC system, TPR, XPS and X-r ay diffraction Rietveld methods. The results show that either CuO or CeO 2 ac tivity is quite low for CO oxidation. However, when CuO and CeO 2 are mixed, the oxidative activity of the catalyst increases significantly, probably owing to the valency status of copper species (Cu 2+ and Cu+) on the CeO 2 surfa ce, the dispersion and reducibility. XPS surface analysis shows that CuO loading is very important in forming of either Cu 2+ or Cu+. Rietveld analysis s hows that some CuO, which has smaller ion radius than Ce 4+, enters the Ce O 2 lattice after CuO and CeO 2 are mixed. When the CuO loading reaches 5.0%, the size of CuO crystals is a minimum (6.1 nm) and the micro-strain value i s a maximum (2.86×10 -3), resulting in high surface energy and the best ac tivity for CO oxidation.
文摘Sparfloxacin can be oxidized by nitrous acid, then react with hydroiodic acid to form a fluorescent derivative. Based on this, a reversed-phase high performance liquid chromatographic pre-column derivatization new method is described for the determination of sparfloxacin in human urine. The linear range is 0.05 mg/L to 4.0 mg/L, the recoveries are 91.5%similar to 95.7% and the RSD is 1.2%similar to4.2%. The results showed that this method is suitable for the determination of sparfloxacin in human urine.
基金financial support by the National Natural Science Foundation of China (No. 51364032)
文摘Billets of Mg-9Al-3Zn-1Mn-6Ca-2Nd alloy were produced by spray-deposition(the Osprey process).Effect of rolling deformation(T = 350?C, ε = 5%, 10%, and 15%, respectively) on microstructure and texture evolution of the Mg-9Al-3Zn-1Mn-6Ca-2Nd alloy was investigated by scanning electron microscopy(SEM), transmission electron microscopy(TEM) and X-ray diffraction(XRD). Results show that at pass reduction of ε = 5%, 10% and 15% at 350?C respectively, Mg-Nd-Zn typed 24R-LPSO structure was formed in(Ca, Nd)Al2phase(C15 Laves phase). With the increase in pass reduction(i.e. 5%, 10% and 15%), the texture pole density level of basal texture(0002) changed little and pyramidal texture(10 1ˉ3) were increased.In contrast, those of prismatic texture {101ˉ0} 〈11 2ˉ0〉 were increased initially and followed by a reduction, indicating texture randomization in the grain-refined Mg alloy. The combined contribution of LPSO phase and C15 phase was key to randomize the texture of the grain-refined Mg alloy. It was noted that the microcosmic plastic deformation of LPSO phase and nanometer-sized dispersed C15 phase impeded dislocation movement, led to dislocation tangles, and facilitated recrystallization.
基金the Strategic Priority Research Program of the Chinese Academy of Sciencesthe Pan-Third Pole Environment Study for a Green Silk Road(Pan-TPE)(No.XDA2004050203)+3 种基金the Second Tibetan Plateau Scientific Expedition and Research Program(No.2019QZKK0605)the National Natural Science Foundation of China(No.21906096)the Youth Science Funds of Shandong Academy of Sciences(No.2019QN008)the Youth Innovation Promotion Association of CAS(No.2018052)。
文摘Pristine alpine regions are ideal regions for investigating the long-range atmospheric transport and cold trapping effects of short chain chlorinated paraffins(SCCPs).The concentrations and alpine condensation of SCCPs were investigated in lichen samples collected from the southeastern Tibetan Plateau.The concentrations of SCCPs ranged from 3098 to 6999 ng/g lipid weight(lw)and appeared to have an increasing trend with altitude.For congeners,C10 dominated among all the congener groups.The different environmental behavior for different congener groups was closely related to their octanol-air partition coefficient(Koa).C10 congeners showed an increasing trend with altitude,whereas C13 congeners were negatively correlated with altitude.Volumetric bioconcentration factors(BCF)of SCCPs reached 8.71 in lichens,which were higher than other semivolatile organic compounds(SVOCs)such as organochlorine pesticides(OCPs),polybrominated diphenyl ethers(PBDEs),polychlorinated biphenyls(PCBs),and hexabromocyclododecane(HBCD).These results suggested that SCCPs were prone to accumulate in the lichen from the air and provided evidence for the role of lichens as a suitable atmospheric indicator in the Tibetan Plateau.
基金supported by the National Natural Science Foundation of China(Grant No.:82273888)Natural Science Foundation of Shandong Province(Grant Nos.ZR2022QH257,ZR2020YQ60)+2 种基金Shandong Major Technological Innovation Project(Project No.:2021CXGC010508)Taishan Scholars Program of Shandong Province(Program Nos.:tsqn202103096,tsqn202211204)Shandong Province Science and Technology Small and Medium Enterprises Innovation Ability Enhancement Project(Project No.:2022TSGC2210).
文摘Eclipta prostrata L.has been used in traditional medicine and known for its liver-protective properties for centuries.Wedelolactone(WEL)and demethylwedelolactone(DWEL)are the major coumarins found in E.prostrata L.However,the comprehensive characterization of these two compounds on non-alcoholic fatty liver disease(NAFLD)still remains to be explored.Utilizing a well-established zebrafish model of thioacetamide(TAA)-induced liver injury,the present study sought to investigate the impacts and mechanisms of WEL and DWEL on NAFLD through integrative spatial metabolomics with liver-specific transcriptomics analysis.Our results showed that WEL and DWEL significantly improved liver function and reduced the accumulation of fat in the liver.The biodistributions and metabolism of these two compounds in whole-body zebrafish were successfully mapped,and the discriminatory endogenous metabolites reversely regulated by WEL and DWEL treatments were also characterized.Based on spatial metabolomics and transcriptomics,we identified that steroid biosynthesis and fatty acid metabolism are mainly involved in the hepatoprotective effects of WEL instead of DWEL.Our study unveils the distinct mechanism of WEL and DWEL in ameliorating NAFLD,and presents a“multi-omics”platform of spatial metabolomics and liver-specific transcriptomics to develop highly effective compounds for further improved therapy.
基金Natural Science Foundation of Hainan Province(Grant No.320QN302)the Central Public-interest Scientific Institution Basal Research Fund for the Chinese Academy of Tropical Agricultural Sciences(Grant No.1251632022005)+1 种基金the Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation(Grant No.ZX-2022002)Open Fund of Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables(Grant No.KFKT2021002)。
文摘Syzygium myrsinifolium(Hance)Merr.et Perry is a unique plant resource on Hainan Island,and there are few reports on its chemical constituents.In the present study,we identified the major chemical constituents in the leaves of Syzygium myrsinifolium(Hance)Merr.et Perry using ultra-high performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry(UPLC-Q-TOF-MS/MS).The chemical constituents in Syzygium myrsinifolium(Hance)Merr.et Perry were identified rapidly based on the accurate relative molecular mass and combined with literature data and reference substances.A total of 20 compounds,including organic acids,phenolic acids,and flavonoids,were identified.Among these 20 compounds,four organic acids,eight phenolic acids,seven flavonoids,and one coumarin were reported from the leaves of Syzygium myrsinifolium(Hance)Merr.et Perry for the first time.The established method was rapid and accurate,and some chemical constituents in the leaves of Syzygium myrsinifolium(Hance)Merr.et Perry have been identified.This research provided an experimental reference for the study of the constituents and utilization of Syzygium myrsinifolium(Hance)Merr.et Perry.
基金financially supported by Shandong Taishanghuangjing Biotechnology Co.Ltd.received Faculty-Development Competitive Research Grants Program of Nazarbayev University(ID:16797152,ie,15798117(110119FD4531)to Yingqiu Xie,and ID:16796808,ie,15874919(110119FD4542)to Haiyan Fan and Yingqiu Xie)2019 Asian Universities Alliance(AUA)fellowship of United Arab Emirates University(UAEU)to Yingqiu Xie and Amr Amin.
文摘Recently,traditional Chinese medicine-based treatment has succeeded in fighting coronavirus disease 2019(COVID-19),and Rhizoma polygonati(Huangjing)has been one of the recommended components.Its processed products play antidiabetic,antiviral,antitumor,antioxidation,antifatigue,antiaging,and immune enhancement roles.The climate in Mount Tai is mild,and the dense forest is suitable for the growth of Rhizome polygonati,which has gradually evolved into a unique specie.Considering the important medicinal value and pleasant taste of Mount Tai-Rhizoma polygonati,various healthy and functional food products,controlled by quality markers with anti-COVID-19 potential,as well as emergency foods can be developed.The study aimed to review current evidence on the nutritional value of Rhizoma polygonati from Mount Tai and its usefulness as a traditional Chinese medicine,source of herbzyme,and potential remediating agent for COVID-19 and food shortage.Most recent findings regarding herbal nanomedicine have revealed that nanoscale chemical compounds are potentially efficient in drug delivery or nanozyme catalysis upon bioprocessing.Nanoflower structure is found in processed Rhizoma polygonati by self-assembly and has wide application in enzymatic events,particularly nanoscale herbzyme.The novel findings regarding Mount Tai-Rhizoma polygonati could enhance its novel applications in chronic and hidden hunger,clinical nanomedicine,and as an anti-COVID-19 agent.
基金Supported by National Natural Science Foundation Item of 2014(81373941)Shandong Natural Science Foundation Item of 2012(ZR2012HM047)+1 种基金Science and Technology Development Plan Item of Shandong(2014G2X219003)Major Project of the State Administration of Traditional Chinese Medicine(201407002)
文摘[Objectives] To develop a method for separation and purification of acetophenones from Cynanchum bengei Decne root bark by combination of silica gel and high-speed counter-current chromatography( HSCCC). [Methods]The crude extract of Cynanchum bengei Decne root bark was separated by silica gel column chromatography,and parts A and B containing acetophenones were obtained. Then,parts A and B were separated by HSCCC with a two-phase solvent system composed of petroleum ether-ethyl acetate-methanol-water( 4∶ 6∶ 4. 5∶ 5. 5 and4∶ 6 ∶ 3 ∶ 7, V/V), respectively. [Results] From 260 mg of part A, four compounds with p-dihydroxybenzene 3. 9 mg(Ⅰ),4-hydroxyacetophenone 17. 1 mg( Ⅱ),2,5-di-hydroxyacetophenone 13. 3 mg(Ⅲ) and 2,4-dihydroxyaceto-phenone 21. 0 mg(Ⅳ) were obtained. And from 300 mg of part B,136 mg of Radix Cynanchi Bungei benzophenone(Ⅴ) was obtained. The purity of compounds determined by HPLC was 97. 0%,96. 6%,99. 2%,99. 7%,99. 5%,respectively. [Conclusions] The established method is simple and efficient. It can be used for separation of acetophenones from Cynanchum bengei Decne root bark and has better practical value,which could provide a reference basis for development and utilization of Cynanchum bengei Decne root bark.
基金Supported by the National Natural Science Foundation of China(No.21172189)
文摘A one-pot sequential reaction for efficient synthesis of pyrrolo[2,1-a]isoquinoline and pyrrolo[1,2-a]quinoline derivatives has been developed.The reaction included firstly the Cu-catalyzed three-component reaction of isoquinoline(quinoline),acetylenedicarboxylate and alkynylbenzene and then Cs 2 CO 3-promoted intramolecular cyclization reaction of initially formed 1-alkenyl-2-alkynyl-1,2-dihydroisoquinoline(1,2-dihydroquinoline).