Six new lanthanide complexes:[Ln(3,4-DEOBA)3(4,4'-DM-2,2'-bipy)]2·2C_(2)H_(5)OH,[Ln=Dy(1),Eu(2),Tb(3),Sm(4),Ho(5),Gd(6);3,4-DEOBA-=3,4-diethoxybenzoate,4,4'-DM-2,2'-bipy=4,4'-dimethyl-2,2'...Six new lanthanide complexes:[Ln(3,4-DEOBA)3(4,4'-DM-2,2'-bipy)]2·2C_(2)H_(5)OH,[Ln=Dy(1),Eu(2),Tb(3),Sm(4),Ho(5),Gd(6);3,4-DEOBA-=3,4-diethoxybenzoate,4,4'-DM-2,2'-bipy=4,4'-dimethyl-2,2'-bipyridine]were successfully synthesized by the volatilization of the solution at room temperature.The crystal structures of six complexes were determined by single-crystal X-ray diffraction technology.The results showed that the complexes all have a binuclear structure,and the structures contain free ethanol molecules.Moreover,the coordination number of the central metal of each structural unit is eight.Adjacent structural units interact with each other through hydrogen bonds and further expand to form 1D chain-like and 2D planar structures.After conducting a systematic study on the luminescence properties of complexes 1-4,their emission and excitation spectra were obtained.Experimental results indicated that the fluorescence lifetimes of complexes 2 and 3 were 0.807 and 0.845 ms,respectively.The emission spectral data of complexes 1-4 were imported into the CIE chromaticity coordinate system,and their corre sponding luminescent regions cover the yellow light,red light,green light,and orange-red light bands,respectively.Within the temperature range of 299.15-1300 K,the thermal decomposition processes of the six complexes were comprehensively analyzed by using TG-DSC/FTIR/MS technology.The hypothesis of the gradual loss of ligand groups during the decomposition process was verified by detecting the escaped gas,3D infrared spectroscopy,and ion fragment information detected by mass spectrometry.The specific decomposition path is as follows:firstly,free ethanol molecules and neutral ligands are removed,and finally,acidic ligands are released;the final product is the corresponding metal oxide.CCDC:2430420,1;2430422,2;2430419,3;2430424,4;2430421,5;2430423,6.展开更多
Background China is seeing a growing demand for rehabilitation treatments for post-stroke upper limb spastic paresis(PSSP-UL).Although acupuncture is known to be effective for PSSP-UL,there is room to enhance its effi...Background China is seeing a growing demand for rehabilitation treatments for post-stroke upper limb spastic paresis(PSSP-UL).Although acupuncture is known to be effective for PSSP-UL,there is room to enhance its efficacy.Objective This study explored a semi-personalized acupuncture approach for PSSP-UL that used three-dimensional kinematic analysis(3DKA)results to select additional acupoints,and investigated the feasibility,efficacy and safety of this approach.Design,setting,participants and interventions This single-blind,single-center,randomized,controlled trial involved 74 participants who experienced a first-ever ischemic or hemorrhagic stroke with spastic upper limb paresis.The participants were then randomly assigned to the intervention group or the control group in a 1:1 ratio.Both groups received conventional treatments and acupuncture treatment 5 days a week for 4 weeks.The main acupoints in both groups were the same,while participants in the intervention group received additional acupoints selected on the basis of 3DKA results.Follow-up assessments were conducted for 8 weeks after the treatment.Main outcome measures The primary outcome was the Fugl-Meyer Assessment for Upper Extremity(FMA-UE)response rate(≥6-point change)at week 4.Secondary outcomes included changes in motor function(FMA-UE),Brunnstrom recovery stage(BRS),manual muscle test(MMT),spasticity(Modified Ashworth Scale,MAS),and activities of daily life(Modified Barthel Index,MBI)at week 4 and week 12.Results Sixty-four participants completed the trial and underwent analyses.Compared with control group,the intervention group exhibited a significantly higher FMA-UE response rate at week 4(χ^(2)=5.479,P=0.019)and greater improvements in FMA-UE at both week 4 and week 12(both P<0.001).The intervention group also showed bigger improvements from baseline in the MMT grades for shoulder adduction and elbow flexion at weeks 4 and 12 as well as thumb adduction at week 4(P=0.007,P=0.049,P=0.019,P=0.008,P=0.029,respectively).The intervention group showed a better change in the MBI at both week 4 and week 12(P=0.004 and P=0.010,respectively).Although the intervention group had a higher BRS for the hand at week 12(P=0.041),no intergroup differences were observed at week 4(all P>0.05).The two groups showed no differences in MAS grades as well as in BRS for the arm at weeks 4 and 12(all P>0.05).Conclusion Semi-personalized acupuncture prescription based on 3DKA results significantly improved motor function,muscle strength,and activities of daily living in patients with PSSP-UL.展开更多
The impact of different global and local variables in urban development processes requires a systematic study to fully comprehend the underlying complexities in them.The interplay between such variables is crucial for...The impact of different global and local variables in urban development processes requires a systematic study to fully comprehend the underlying complexities in them.The interplay between such variables is crucial for modelling urban growth to closely reflects reality.Despite extensive research,ambiguity remains about how variations in these input variables influence urban densification.In this study,we conduct a global sensitivity analysis(SA)using a multinomial logistic regression(MNL)model to assess the model’s explanatory and predictive power.We examine the influence of global variables,including spatial resolution,neighborhood size,and density classes,under different input combinations at a provincial scale to understand their impact on densification.Additionally,we perform a stepwise regression to identify the significant explanatory variables that are important for understanding densification in the Brussels Metropolitan Area(BMA).Our results indicate that a finer spatial resolution of 50 m and 100 m,smaller neighborhood size of 5×5 and 3×3,and specific density classes—namely 3(non-built-up,low and high built-up)and 4(non-built-up,low,medium and high built-up)—optimally explain and predict urban densification.In line with the same,the stepwise regression reveals that models with a coarser resolution of 300 m lack significant variables,reflecting a lower explanatory power for densification.This approach aids in identifying optimal and significant global variables with higher explanatory power for understanding and predicting urban densification.Furthermore,these findings are reproducible in a global urban context,offering valuable insights for planners,modelers and geographers in managing future urban growth and minimizing modelling.展开更多
To address the challenges associated with multi-sided shells in traditional isogeometric analysis(IGA),this paper introduces a novel isogeometric shell method for trimmed CAD geometries based on toric surfaces and Rei...To address the challenges associated with multi-sided shells in traditional isogeometric analysis(IGA),this paper introduces a novel isogeometric shell method for trimmed CAD geometries based on toric surfaces and Reissner–Mindlin shell theory.By utilizing toric surface patches,both trimmed and untrimmed elements of the CAD surfaces are represented through a unified geometric framework,ensuring continuity and an accurate geometric description.Toric-Bernstein basis functions are employed to accurately interpolate the geometry and displacement of the trimmed shell.For singularities and corner points on the toric surface,the normal vector is defined as the unit directional vector from the center of curvature to the corresponding control point.Several numerical examples of polygonal shells are presented to evaluate the effectiveness and robustness of the proposed method.This approach significantly simplifies the treatment of trimmed shell IGA and provides a promising solution for simulating complex shell structures with intricate boundaries.展开更多
Alkaline soil is characterized by high soluble salt content,elevated pH levels,and ionic imbalance,all of which collectively intensify the harmful effects of alkaline stress on plants.To gain molecular insights into a...Alkaline soil is characterized by high soluble salt content,elevated pH levels,and ionic imbalance,all of which collectively intensify the harmful effects of alkaline stress on plants.To gain molecular insights into alkaline tolerance(AT),we evaluated 13 AT-related traits in 508 diverse rice accessions from the 3K Rice Germplasm Project at the seedling stage.A total of 2929764,2059114,and 1365868 single nucleotide polymorphisms were used to identify alkaline-tolerance QTLs via genome-wide association studies(GWAS)in the entire population as well as in the xian and geng subpopulations,respectively.Candidate genes and their superior haplotypes were further identified through gene-based association,haplotype analysis,and gene function annotation.In total,99 QTLs were identified for AT by GWAS,and three genes(LOC_Os03g49050 for qSSD3.1,LOC_Os05g48760 for qSKC5,and LOC_Os12g01922 for qSNC12)were selected as the most promising candidate genes.Furthermore,we successfully mined superior alleles of key candidate genes from natural variants associated with AT-related traits.This study identified crucial candidate genes and their favorable alleles for AT traits,laying a foundation for further gene cloning and the development of AT rice varieties via marker-assisted selection.展开更多
Honeycomb structures of shape memory alloy(SMA)have become one of the most promising materials for flexible skins of morphing aircraft due to their excellent mechanical properties.However,due to the nonlinear material...Honeycomb structures of shape memory alloy(SMA)have become one of the most promising materials for flexible skins of morphing aircraft due to their excellent mechanical properties.However,due to the nonlinear material and geometric large deformation,the SMA honeycomb exhibits significant and complex nonlinearity in the skin and there is a lack of relevant previous research.In this paper,the nonlinear properties of the SMA honeycomb structure with arbitrary geometry are investigated for the first time for large deformation flexible skin applications by theoretical and experimental analysis.Firstly,a novel theoretical model of SMA honeycomb structure considering both material and geometric nonlinearity is proposed,and the corresponding calculation method of nonlinear governing equations is given based upon the shooting method and Runge–Kutta method.Then,the tensile behaviors of four kinds of SMA honeycomb structures,i.e.,U-type,V-type,cosine-type,and trapezoid-type,are analyzed and predicted by the proposed theoretical model and compared with the finite element analysis(FEA)results.Moreover,the tensile experiments were carried out by stretching U-type and V-type honeycomb structures to a global strain of 60%and 40%,respectively,to perform large deformation analysis and verify the theoretical model.Finally,experimental verification and finite element validation show that the curves of the theoretical model results,experimental results,and simulation results are in good agreement,illustrating the generalizability and accuracy of the proposed theoretical model.The theoretical model and experimental investigations in this paper are considered to provide an effective foundation for analyzing and predicting the mechanical behavior of SMA honeycomb flexible skins with large extensional deformations.展开更多
The growing global burden of metabolic dysfunction-associated steatohepatitis(MASH)demands a deeper understanding of its underlying mechanisms and risk factors.Recent studies,such as the large population-based case-co...The growing global burden of metabolic dysfunction-associated steatohepatitis(MASH)demands a deeper understanding of its underlying mechanisms and risk factors.Recent studies,such as the large population-based case-control analysis by Abdel-Razeq et al,suggest a significant association between Helicobacter pylori(H.pylori)infection and an increased risk of developing MASH.This study provides compelling data supporting this association,even after adjusting for confounders such as obesity,diabetes,and hyperlipidemia.However,the complexity of this relationship remains unresolved,requiring further investigation into the biological,genetic,and environmental pathways that connect these two conditions.This article critically reviews the study’s findings and identifies its limitations,offering innovative research directions for the future.Key areas of focus include integrating genomic and microbiome analyses,exploring the impact of H.pylori eradication on MASH progression,studying molecular mechanisms at the intersection of infection and liver disease,and developing personalized therapeutic strategies.展开更多
This paper presents a novel element differential method for modeling cracks in piezoelectric materials,aiming to simulate fracture behaviors and predict the fracture parameter known as the J-integral accurately.The me...This paper presents a novel element differential method for modeling cracks in piezoelectric materials,aiming to simulate fracture behaviors and predict the fracture parameter known as the J-integral accurately.The method leverages an efficient collocation technique to satisfy traction and electric charge equilibrium on the crack surface,aligning internal nodes with piezoelectric governing equations without needing integration or variational principles.It combines the strengths of the strong form collocation and finite element methods.The J-integral is derived analytically using the equivalent domain integral method,employing Green's formula and Gauss's divergence theorem to transform line integrals into area integrals for solving two-dimensional piezoelectric material problems.The accuracy of the method is validated through comparison with three typical examples,and it offers fracture prevention strategies for engineering piezoelectric structures under different electrical loading patterns.展开更多
Background:The study aimed to investigate the protective effect and mechanism of total flavonoids of Scutellaria baicalensis(TFSB)on acute myocardial ischemia(AMI)rats by using functional metabonomics.Methods:Rats wer...Background:The study aimed to investigate the protective effect and mechanism of total flavonoids of Scutellaria baicalensis(TFSB)on acute myocardial ischemia(AMI)rats by using functional metabonomics.Methods:Rats were divided into the Control,Model,AMI positive control(Propranolol hydrochloride,30 mg/kg),low dose TFSB(50 mg/kg),and high dose TFSB(100 mg/kg)groups.Rats received the corresponding treatment by intragastric administration once daily for 10 consecutive days.Electrocardiogram,myocardial enzyme,triphenyltetrazolium chloride staining,hematoxylin-eosin,and enzyme-linked immunosorbent assay were performed to evaluate the protective effect of TFSB on AMI rats.Then,the UHPLC-Q-Orbitrap MS method based on serum metabolomics was utilised to search for metabolic biomarkers and metabolic pathways.Subsequently,Western blot and RT-PCR techniques were employed to identify the respective genes and proteins.Results:Pharmacodynamics revealed that TFSB could ameliorate AMI in rats.The results of the metabolomics analysis indicated that the alterations in metabolic profile observed in rats with AMI were partially improved by treatment with TFSB.Moreover,the mRNA expression levels of 5-lipoxygenase(5-LOX)and 15-lipoxygenase(15-LOX)and the protein expression levels of 5-LOX,15-LOX,interleukin-1β(IL-1β),and NF-κB p65 were reduced following treatment with TFSB.Conclusion:The potential treatment of TFSB in AMI may be ascribed to its ability to regulate arachidonic acid metabolism.展开更多
The Heihe River drainage basin is one of the endangered ecological regions of China. The shortage of water resources is the bottleneck, which constrains the sustainable development of the region. Many scholars in Chin...The Heihe River drainage basin is one of the endangered ecological regions of China. The shortage of water resources is the bottleneck, which constrains the sustainable development of the region. Many scholars in China have done researches concerning this problem. Based on previous researches, this paper analyzed characteristics, tendencies, and causes of annual runoff variations in the Yingluo Gorge (1944-2005) and the Zhengyi Gorge (1954-2005), which are the boundaries of the upper reaches, the middle reaches, and the lower reaches of the Heihe River drainage basin, by wavelet analysis, wavelet neural network model, and GIS spatial analysis. The results show that: (1) annual runoff variations of the Yingluo Gorge have principal periods of 7 years and 25 years, and its increasing rate is 1.04 m^3/s.10y; (2) annual runoff variations of the Zhengyi Gorge have principal periods of 6 years and 27 years, and its decreasing rate is 2.25 m^3/s.10y; (3) prediction results show that: during 2006-2015, annual runoff variations of the Yingluo and Zhengyi gorges have ascending tendencies, and the increasing rates are respectively 2.04 m^3/s.10y and 1.61 m^3/s.10y; (4) the increase of annual runoff in the Yingluo Gorge has causal relationship with increased temperature and precipitation in the upper reaches, and the decrease of annual runoff in the Zhengyi Gorge in the past decades was mainly caused by the increased human consumption of water resources in the middle researches. The study results will provide scientific basis for making rational use and allocation schemes of water resources in the Heihe River drainage basin.展开更多
The nonuniform microstructure of magnesium alloy rolled sheets tends to influence their plastic deformation capacity.This study employed multi-pass restricted rolling to successfully prepare AZ31 magnesium alloy rolle...The nonuniform microstructure of magnesium alloy rolled sheets tends to influence their plastic deformation capacity.This study employed multi-pass restricted rolling to successfully prepare AZ31 magnesium alloy rolled sheets with a uniform microstructure,enhancing their mechanical properties.Quasi-in-situ tensile EBSD was used to investigate the effect of microstructure uniformity on the plastic deformation and fracture behavior of magnesium alloy.The results demonstrate that the nonuniformity of the magnesium alloy microstructure intensifies the strain asynchrony between adjacent grains,leading to relative misalignment and crack formation.Fine grains cannot coordinate the strain within their adjacent coarse grains,resulting in ledge formation at their common grain boundaries.Moreover,low-angle grain boundaries(LAGB)influence fracture behavior,rendering fine grains penetrated by LAGB more susceptible to becoming strain concentration areas that promote intergranular fracture and even transgranular fracture.展开更多
Urbanization in small-and medium-sized cities has often been overlooked in urban studies.Research on urbanization has predominantly focused on large metropolitan cities;however,urbanization in small-and medium-sized c...Urbanization in small-and medium-sized cities has often been overlooked in urban studies.Research on urbanization has predominantly focused on large metropolitan cities;however,urbanization in small-and medium-sized cities also contributes to the acceleration of urban sprawl.Urban growth boundary(UGB)is an ecological approach designed to limit urban development.This study aimedto analyze environmental protection priority zonesby combining ecological quality and sensitivity indices to identify the areas suitable for UGB implementation.Tegal City and its surrounding areas(including Tegal and Brebes regencies)of Indonesia were selected as the study area.The ecological quality index was calculated using the normalized difference vegetation index,humidity index,land surface temperature,and normalized difference bare soil index.These indices were subsequently subjected to principal component analysis(PCA)to extract orthogonal factors,which were summed to derive the final index value.In parallel,we mapped and evaluated ecological sensitivity based on spatial planning policies and regulations.The results revealed that ecological quality in Tegal and Brebes regencies was predominantly categorized as good and very good ecological quality,whereas TegalCity exhibited moderate and poor ecological quality.Additionally,over 45.00%of the area in Tegal and Brebes regencies demonstrated very high ecological sensitivity.Consequently,more than 50.00%of the area in Tegal and Brebes regencies,along with 27.00%of Tegal City,were classified as ecological constraint zone,making them potential regionsfor UGB development.The UGB is expected to curtail urban expansion,promote compact city planning,and preserve ecosystem services to achieve urban sustainability.This study implies that planningsmall-and medium-sized cities is important to prevent urban sprawl and maintain environmental health.Designing UGB to limit urban expansion should be enhanced by better knowledge about its ecological functions in supporting urban sustainability.展开更多
RNA modifications play vital regulatory roles in biological systems.Dysregulated RNA modifications themselves or their regulators are associated with various diseases,including cancers and immune related diseases.Howe...RNA modifications play vital regulatory roles in biological systems.Dysregulated RNA modifications themselves or their regulators are associated with various diseases,including cancers and immune related diseases.However,to the best of our knowledge,RNA modifications in peripheral white blood cells(immune cells)have not been systematically investigated before.Here we utilized hydrophilic interaction liquid chromatography-tandem mass spectrometry(HILIC-MS/MS)for the quantification of 19 chemical modifications in total RNA and 17 chemical modifications in small RNA in peripheral white blood cells from breast cancer patients and healthy controls.We found out 13 RNA modifications were up-regulated in total RNA samples of breast cancer patients.For small RNA samples,only N6-methyladenosine(m^(6)A)was down-regulated in breast cancer patients(P<0.0001).Receiver operating characteristic(ROC)curves analysis showed that N4-acetylcytidine(ac^(4)C)in total RNA had an area under curve(AUC)value of 0.833,and m^(6)A in small RNA had an AUC value of 0.994.Our results further illustrated that RNA modifications may play vital roles in immune cell biology of breast cancer,and may act as novel biomarkers for the diagnosis of breast cancer.展开更多
Angelica L.has attracted global interest for its traditional medicinal uses and commercial values.However,few studies have focused on the metabolomic differences among the Angelica species.In this study,widely targete...Angelica L.has attracted global interest for its traditional medicinal uses and commercial values.However,few studies have focused on the metabolomic differences among the Angelica species.In this study,widely targeted metabolomics based on gas chromatography-tandem mass spectrometry was employed to analyze the metabolomes of four Angelica species(Angelicasinensis(Oliv.)Diels(A.sinensis),Angelica biserrata(R.H.Shan &Yuan)C.Q.Yuan & R.H.Shan(A.biserrata),Angelica dahurica(Hoffm.)Benth.& Hook.f.ex Franch.& Sav.(A.dahurica)and Angelica keiskei Koidz.(A.keiskei)).A total of 698 volatile metabolites were identified and classified into fifteen different categories.The metabo-lomic analysis indicated that 7-hydroxycoumarin and Z-ligustilide accumulated at significantly higher levels in A.sinensis,whereas bornyl acetate showed the opposite pattern.Furthermore,a high correspondence between the dendrogram of metabolite contents and phylogenetic positions of the four species.This study provides a comprehensive biochemical map for the exploitation,application and development of the Angelica species as medicinal plants or health-related dietary supplements.展开更多
Objective To evaluate the in vitro anti-diabetic effects of Bryonia dioica roots extracts,in-cluding water-acetone extracts and their ethyl acetate and butanol fractions,and chloroform-methanol extracts.Methods The to...Objective To evaluate the in vitro anti-diabetic effects of Bryonia dioica roots extracts,in-cluding water-acetone extracts and their ethyl acetate and butanol fractions,and chloroform-methanol extracts.Methods The total phenolic,flavonoid,flavonol,and saponin contents in the Bryonia dioica root extracts(chloroform-methanol extracts,water-acetone extracts and their ethyl acetate and butanol fractions)were determined using colorimetric methods with Folin-Ciocalteu,aluminum trichloride,and vanillin reagents,respectively.The in vitro anti-diabetic activity was evaluated by measuring the half-maximal inhibitory concentration(IC_(50))values of these root extracts againstα-amylase andα-glucosidase activities,evaluating their effects onα-amy-lase kinetics,quantifying the inhibition of bovine serum albumin(BSA)glycation using fluo-rometry to assess advanced glycation end products(AGE)production,and determining glu-cose uptake by isolated rat hemidiaphragm.Additionally,molecular docking analysis was conducted to investigate the binding affinity and interaction types between Bryonia dioica lig-ands(cucurbitacin B,bryogénin,vitexin,and isovitexin)and target enzymes,and a phyto-chemical-targets interaction network was constructed.Results Forα-amylase inhibition,ethyl acetate fraction demonstrated the most potent activi-ty(IC_(50)=145.95μg/mL),followed by chloroform-methanol extract(IC_(50)=300.86μg/mL).Water-acetone root extracts and their ethyl acetate and butanol fractions inhibited theα-glucosidase activity with IC50 values ranging from 562.88 to 583.90μg/mL.Both ethyl acetate and butanol fractions strongly inhibited non-enzymatic BSA glycation(IC_(50)=318.26 and 323.12μg/mL,respectively).The incubation of isolated rat hemidiaphragms with the ethyl acetate fraction(5 mg/mL)significantly increased glucose uptake(35.16%;P<0.0001),exceeding the effects of insulin(29.27%),chloroform-methanol extract(24.07%),and catechin(15.27%).Molecular docking revealed that cucurbitacin B exhibited the strongest docking scores againstα-amylase(-16.4 kcal/mol),andα-glucosidase(-14.2 kcal/mol).Compared with other ligands,isovitexin formed the maximum number of hydrogen bonds with theα-amylase active site residues(Asp300,Asp197,and Glu233),α-glucosidase residues(Ser13,Arg44,Met86,Gly10,Asp39,and Tyr131)and other residues(Arg195,Trp59,His299,and Tyr62).Network analysis identified 36 overlapping targets between Bryonia dioica phyto-chemicals and type 2 diabetes mellitus-associated genes,with cucurbitacins and polyphenols interacting withα-amylase,α-glucosidase,and Glut4 translocation pathway targets.Conclusion Bryonia dioica root extracts demonstrated promising in vitro anti-diabetic activi-ty through multiple mechanisms,including the inhibitory effect on digestive enzymes,pro-tein antiglycation potential,and enhancement of glucose uptake,suggesting their potential as a source for anti-diabetic drugs development.展开更多
Geometric fitting based on discrete points to establish curve structures is an important problem in numerical modeling.The purpose of this paper is to investigate the geometric fitting method for curved beam structure...Geometric fitting based on discrete points to establish curve structures is an important problem in numerical modeling.The purpose of this paper is to investigate the geometric fitting method for curved beam structure from points,and to get high-quality parametric model for isogeometric analysis.ATimoshenko beam element is established for an initially curved spacial beam with arbitrary curvature.The approximation and interpolation methods to get parametric models of curves from given points are examined,and three strategies of parameterization,meaning the equally spaced method,the chord length method and the centripetal method are considered.The influences of the different geometric approximation algorithms on the precision of isogeometric analysis are examined.The static analysis and the modal analysis with the established parametric models are carried out.Three examples with different complexities,the quarter arc curved beam,the Tschirnhausen beam and the Archimedes spiral beam are examined.The results show that for the geometric approximation the interpolation method performs good and maintains high precision.The fitting algorithms are able to provide parametric models for isogeometric analysis of spacial beam with Timoshenko model.The equally spaced method and centripetal method perform better than the chord length method for the algorithm to carry out the parameterization for the sampling points.展开更多
The author studies the effect of uncertain conductivity on the electroencephalography (EEG) forward problem. A three-layer spherical head model with different and random layer conductivities is considered. Polynomia...The author studies the effect of uncertain conductivity on the electroencephalography (EEG) forward problem. A three-layer spherical head model with different and random layer conductivities is considered. Polynomial Chaos (PC) is used to model the randomness. The author performs a sensitivity and correlation analysis of EEG sensors influenced by uncertain conductivity. The author addressed the sensitivity analysis at three stages: dipole location and moment averaged out, only the dipole moment averaged out, and both fixed. On average, the author observes the least influenced electrodes along the great longitudinal fissure. Also, sensors located closer to a dipole source, are of greater influence to a change in conductivity. The highly influenced sensors were on average located temporal. This was also the case in the correlation analysis. Sensors in the temporal parts of the brain are highly correlated. Whereas the sensors in the occipital and lower frontal region, though they are close together, are not so highly correlated as in the temporal regions. This study clearly shows that intrinsic sensor correlation exists, and therefore cannot be discarded, especially in the inverse problem. In the latter it makes it possible not to specify the conductivities. It also offers an easy but rigorous modeling of the stochastic propagation of uncertain conductivity to sensorial potentials (e.g., making it suited for research on optimal placing of these sensors).展开更多
The dominant element in ballet is the search for flawless performance. The specific training required from early years may cause some changes compared to the normal human anatomy and physiology. The aim of this study ...The dominant element in ballet is the search for flawless performance. The specific training required from early years may cause some changes compared to the normal human anatomy and physiology. The aim of this study was to investigate the potential of motion analysis technologies for the evaluation of frequent changes in biomechanics of posture and dance. This paper presents an overview of the literature on the main postural compensation employed by the dancer; more specifically on the training effect of the fundamental basic techniques in ballet. It then focuses on the characteristics and potential of motion analysis technologies for the biomechanical evaluation of the dancer. The technologies investigated in this study are the optoelectronic system of gait analysis, which is one of the most advanced technologies for multifactorial motion analysis, integrated with the use of the force platform and the electromyography. These technologies enable a quantitative three-dimensional integrated multifactorial motion analysis in relation to kinematics and dynamics. Through specific systems of motion analysis, the instrumental analysis can describe objectively and with reasonable accuracy the biomechanics, the postural compensation, and the gait of the dancer.展开更多
Background: Weibo is a Twitter-like micro-blog platform in China where people post their real-life events as well as express their feelings in short texts. Since the outbreak of the Covid-19 pandemic, thousands of peo...Background: Weibo is a Twitter-like micro-blog platform in China where people post their real-life events as well as express their feelings in short texts. Since the outbreak of the Covid-19 pandemic, thousands of people have expressed their concerns and worries about the outbreak via Weibo, showing the existence of public panic. Methods: This paper comes up with a sentiment analysis approach to discover public panic. First, we used Octoparse to obtain Weibo posts about the hot topic Covid-19 Pandemic. Second, we break down those sentences into independent words and clean the data by removing stop words. Then, we use the sentiment score function that deals with negative words, adverbs, and sentiment words to get the sentiment score of each Weibo post. Results: We observe the distribution of sentiment scores and get the benchmark to evaluate public panic. Also, we apply the same process to test the mass sentiment under other topics to test the efficiency of the sentiment function, which shows that our function works well.展开更多
The development of pharmaceutical analytical methods represents one of the most significant aspects of drug development. Recent advances in microfabrication and microfluidics could provide new approaches for drug anal...The development of pharmaceutical analytical methods represents one of the most significant aspects of drug development. Recent advances in microfabrication and microfluidics could provide new approaches for drug analysis, including drug screening, active testing and the study of metabolism. Microfluidic chip technologies, such as lab-on-a-chip technology, three-dimensional (3D) cell culture, organs-on-chip and droplet techniques, have all been developed rapidly. Microfluidic chips coupled with various kinds of detection techniques are suitable for the high-throughput screening, detection and mechanistic study of drugs. This review highlights the latest (2010–2018) microfluidic technology for drug analysis and discusses the potential future development in this field.展开更多
文摘Six new lanthanide complexes:[Ln(3,4-DEOBA)3(4,4'-DM-2,2'-bipy)]2·2C_(2)H_(5)OH,[Ln=Dy(1),Eu(2),Tb(3),Sm(4),Ho(5),Gd(6);3,4-DEOBA-=3,4-diethoxybenzoate,4,4'-DM-2,2'-bipy=4,4'-dimethyl-2,2'-bipyridine]were successfully synthesized by the volatilization of the solution at room temperature.The crystal structures of six complexes were determined by single-crystal X-ray diffraction technology.The results showed that the complexes all have a binuclear structure,and the structures contain free ethanol molecules.Moreover,the coordination number of the central metal of each structural unit is eight.Adjacent structural units interact with each other through hydrogen bonds and further expand to form 1D chain-like and 2D planar structures.After conducting a systematic study on the luminescence properties of complexes 1-4,their emission and excitation spectra were obtained.Experimental results indicated that the fluorescence lifetimes of complexes 2 and 3 were 0.807 and 0.845 ms,respectively.The emission spectral data of complexes 1-4 were imported into the CIE chromaticity coordinate system,and their corre sponding luminescent regions cover the yellow light,red light,green light,and orange-red light bands,respectively.Within the temperature range of 299.15-1300 K,the thermal decomposition processes of the six complexes were comprehensively analyzed by using TG-DSC/FTIR/MS technology.The hypothesis of the gradual loss of ligand groups during the decomposition process was verified by detecting the escaped gas,3D infrared spectroscopy,and ion fragment information detected by mass spectrometry.The specific decomposition path is as follows:firstly,free ethanol molecules and neutral ligands are removed,and finally,acidic ligands are released;the final product is the corresponding metal oxide.CCDC:2430420,1;2430422,2;2430419,3;2430424,4;2430421,5;2430423,6.
基金funded by Science Foundation for Youth supported by Shanghai Municipal Health Commission(No.20204Y0313)Sailing Program with the support of Science and Technology Commission of Shanghai Municipality(No.21YF1443800).
文摘Background China is seeing a growing demand for rehabilitation treatments for post-stroke upper limb spastic paresis(PSSP-UL).Although acupuncture is known to be effective for PSSP-UL,there is room to enhance its efficacy.Objective This study explored a semi-personalized acupuncture approach for PSSP-UL that used three-dimensional kinematic analysis(3DKA)results to select additional acupoints,and investigated the feasibility,efficacy and safety of this approach.Design,setting,participants and interventions This single-blind,single-center,randomized,controlled trial involved 74 participants who experienced a first-ever ischemic or hemorrhagic stroke with spastic upper limb paresis.The participants were then randomly assigned to the intervention group or the control group in a 1:1 ratio.Both groups received conventional treatments and acupuncture treatment 5 days a week for 4 weeks.The main acupoints in both groups were the same,while participants in the intervention group received additional acupoints selected on the basis of 3DKA results.Follow-up assessments were conducted for 8 weeks after the treatment.Main outcome measures The primary outcome was the Fugl-Meyer Assessment for Upper Extremity(FMA-UE)response rate(≥6-point change)at week 4.Secondary outcomes included changes in motor function(FMA-UE),Brunnstrom recovery stage(BRS),manual muscle test(MMT),spasticity(Modified Ashworth Scale,MAS),and activities of daily life(Modified Barthel Index,MBI)at week 4 and week 12.Results Sixty-four participants completed the trial and underwent analyses.Compared with control group,the intervention group exhibited a significantly higher FMA-UE response rate at week 4(χ^(2)=5.479,P=0.019)and greater improvements in FMA-UE at both week 4 and week 12(both P<0.001).The intervention group also showed bigger improvements from baseline in the MMT grades for shoulder adduction and elbow flexion at weeks 4 and 12 as well as thumb adduction at week 4(P=0.007,P=0.049,P=0.019,P=0.008,P=0.029,respectively).The intervention group showed a better change in the MBI at both week 4 and week 12(P=0.004 and P=0.010,respectively).Although the intervention group had a higher BRS for the hand at week 12(P=0.041),no intergroup differences were observed at week 4(all P>0.05).The two groups showed no differences in MAS grades as well as in BRS for the arm at weeks 4 and 12(all P>0.05).Conclusion Semi-personalized acupuncture prescription based on 3DKA results significantly improved motor function,muscle strength,and activities of daily living in patients with PSSP-UL.
基金funded by the INTER program and cofunded by the Fond National de la Recherche,Luxembourg(FNR)and the Fund for Scientific Research-FNRS,Belgium(F.R.S-FNRS),T.0233.20-‘Sustainable Residential Densification’project(SusDens,2020–2024).
文摘The impact of different global and local variables in urban development processes requires a systematic study to fully comprehend the underlying complexities in them.The interplay between such variables is crucial for modelling urban growth to closely reflects reality.Despite extensive research,ambiguity remains about how variations in these input variables influence urban densification.In this study,we conduct a global sensitivity analysis(SA)using a multinomial logistic regression(MNL)model to assess the model’s explanatory and predictive power.We examine the influence of global variables,including spatial resolution,neighborhood size,and density classes,under different input combinations at a provincial scale to understand their impact on densification.Additionally,we perform a stepwise regression to identify the significant explanatory variables that are important for understanding densification in the Brussels Metropolitan Area(BMA).Our results indicate that a finer spatial resolution of 50 m and 100 m,smaller neighborhood size of 5×5 and 3×3,and specific density classes—namely 3(non-built-up,low and high built-up)and 4(non-built-up,low,medium and high built-up)—optimally explain and predict urban densification.In line with the same,the stepwise regression reveals that models with a coarser resolution of 300 m lack significant variables,reflecting a lower explanatory power for densification.This approach aids in identifying optimal and significant global variables with higher explanatory power for understanding and predicting urban densification.Furthermore,these findings are reproducible in a global urban context,offering valuable insights for planners,modelers and geographers in managing future urban growth and minimizing modelling.
基金the National Key Research and Development Projects(Grant Nos.2021YFB3300601,2021YFB3300603,2021YFB3300604)the Fundamental Research Funds for the Central Universities(No.DUT22QN241)is acknowledged.
文摘To address the challenges associated with multi-sided shells in traditional isogeometric analysis(IGA),this paper introduces a novel isogeometric shell method for trimmed CAD geometries based on toric surfaces and Reissner–Mindlin shell theory.By utilizing toric surface patches,both trimmed and untrimmed elements of the CAD surfaces are represented through a unified geometric framework,ensuring continuity and an accurate geometric description.Toric-Bernstein basis functions are employed to accurately interpolate the geometry and displacement of the trimmed shell.For singularities and corner points on the toric surface,the normal vector is defined as the unit directional vector from the center of curvature to the corresponding control point.Several numerical examples of polygonal shells are presented to evaluate the effectiveness and robustness of the proposed method.This approach significantly simplifies the treatment of trimmed shell IGA and provides a promising solution for simulating complex shell structures with intricate boundaries.
基金supported by the Shenzhen Science and Technology Program,China(Grant No.KCXFZ20211020163808012)the Nanfan Special Project,Chinese Academy of Agricultural Sciences,China(Grant No.YBXM2426).
文摘Alkaline soil is characterized by high soluble salt content,elevated pH levels,and ionic imbalance,all of which collectively intensify the harmful effects of alkaline stress on plants.To gain molecular insights into alkaline tolerance(AT),we evaluated 13 AT-related traits in 508 diverse rice accessions from the 3K Rice Germplasm Project at the seedling stage.A total of 2929764,2059114,and 1365868 single nucleotide polymorphisms were used to identify alkaline-tolerance QTLs via genome-wide association studies(GWAS)in the entire population as well as in the xian and geng subpopulations,respectively.Candidate genes and their superior haplotypes were further identified through gene-based association,haplotype analysis,and gene function annotation.In total,99 QTLs were identified for AT by GWAS,and three genes(LOC_Os03g49050 for qSSD3.1,LOC_Os05g48760 for qSKC5,and LOC_Os12g01922 for qSNC12)were selected as the most promising candidate genes.Furthermore,we successfully mined superior alleles of key candidate genes from natural variants associated with AT-related traits.This study identified crucial candidate genes and their favorable alleles for AT traits,laying a foundation for further gene cloning and the development of AT rice varieties via marker-assisted selection.
基金supported by the National Key Research and Development Program of China(No.2020YFB1708303)the National Natural Science Foundation of China(Nos.U1808215 and 12072058)the Fundamental Research Funds for the Central Universities of China(DUT20LK02).
文摘Honeycomb structures of shape memory alloy(SMA)have become one of the most promising materials for flexible skins of morphing aircraft due to their excellent mechanical properties.However,due to the nonlinear material and geometric large deformation,the SMA honeycomb exhibits significant and complex nonlinearity in the skin and there is a lack of relevant previous research.In this paper,the nonlinear properties of the SMA honeycomb structure with arbitrary geometry are investigated for the first time for large deformation flexible skin applications by theoretical and experimental analysis.Firstly,a novel theoretical model of SMA honeycomb structure considering both material and geometric nonlinearity is proposed,and the corresponding calculation method of nonlinear governing equations is given based upon the shooting method and Runge–Kutta method.Then,the tensile behaviors of four kinds of SMA honeycomb structures,i.e.,U-type,V-type,cosine-type,and trapezoid-type,are analyzed and predicted by the proposed theoretical model and compared with the finite element analysis(FEA)results.Moreover,the tensile experiments were carried out by stretching U-type and V-type honeycomb structures to a global strain of 60%and 40%,respectively,to perform large deformation analysis and verify the theoretical model.Finally,experimental verification and finite element validation show that the curves of the theoretical model results,experimental results,and simulation results are in good agreement,illustrating the generalizability and accuracy of the proposed theoretical model.The theoretical model and experimental investigations in this paper are considered to provide an effective foundation for analyzing and predicting the mechanical behavior of SMA honeycomb flexible skins with large extensional deformations.
基金Supported by Scientific Research Project of Putian University,No.2022059.
文摘The growing global burden of metabolic dysfunction-associated steatohepatitis(MASH)demands a deeper understanding of its underlying mechanisms and risk factors.Recent studies,such as the large population-based case-control analysis by Abdel-Razeq et al,suggest a significant association between Helicobacter pylori(H.pylori)infection and an increased risk of developing MASH.This study provides compelling data supporting this association,even after adjusting for confounders such as obesity,diabetes,and hyperlipidemia.However,the complexity of this relationship remains unresolved,requiring further investigation into the biological,genetic,and environmental pathways that connect these two conditions.This article critically reviews the study’s findings and identifies its limitations,offering innovative research directions for the future.Key areas of focus include integrating genomic and microbiome analyses,exploring the impact of H.pylori eradication on MASH progression,studying molecular mechanisms at the intersection of infection and liver disease,and developing personalized therapeutic strategies.
基金Financial support of this work by the Technology Development program of China(Grant No.2022204B003)National Natural Science Foundation of China(12272083 and 12172078)the Fundamental Research Funds for the Central Universities(DUT24YJ136)is gratefully acknowledged.
文摘This paper presents a novel element differential method for modeling cracks in piezoelectric materials,aiming to simulate fracture behaviors and predict the fracture parameter known as the J-integral accurately.The method leverages an efficient collocation technique to satisfy traction and electric charge equilibrium on the crack surface,aligning internal nodes with piezoelectric governing equations without needing integration or variational principles.It combines the strengths of the strong form collocation and finite element methods.The J-integral is derived analytically using the equivalent domain integral method,employing Green's formula and Gauss's divergence theorem to transform line integrals into area integrals for solving two-dimensional piezoelectric material problems.The accuracy of the method is validated through comparison with three typical examples,and it offers fracture prevention strategies for engineering piezoelectric structures under different electrical loading patterns.
基金sponsored by Shandong Provincial Key Research and Development Program(Major Technological Innovation Project)([2021]CXGC010508)Guizhou Province Youth Science and Technology Talent Plan(YQK[2023]038)+1 种基金Science and Technology Department of Zunyi City of Guizhou province of China([2020]7)Key project at central government level:the ability establishment of sustainable use for valuable Chinese medicine resources(2060302).
文摘Background:The study aimed to investigate the protective effect and mechanism of total flavonoids of Scutellaria baicalensis(TFSB)on acute myocardial ischemia(AMI)rats by using functional metabonomics.Methods:Rats were divided into the Control,Model,AMI positive control(Propranolol hydrochloride,30 mg/kg),low dose TFSB(50 mg/kg),and high dose TFSB(100 mg/kg)groups.Rats received the corresponding treatment by intragastric administration once daily for 10 consecutive days.Electrocardiogram,myocardial enzyme,triphenyltetrazolium chloride staining,hematoxylin-eosin,and enzyme-linked immunosorbent assay were performed to evaluate the protective effect of TFSB on AMI rats.Then,the UHPLC-Q-Orbitrap MS method based on serum metabolomics was utilised to search for metabolic biomarkers and metabolic pathways.Subsequently,Western blot and RT-PCR techniques were employed to identify the respective genes and proteins.Results:Pharmacodynamics revealed that TFSB could ameliorate AMI in rats.The results of the metabolomics analysis indicated that the alterations in metabolic profile observed in rats with AMI were partially improved by treatment with TFSB.Moreover,the mRNA expression levels of 5-lipoxygenase(5-LOX)and 15-lipoxygenase(15-LOX)and the protein expression levels of 5-LOX,15-LOX,interleukin-1β(IL-1β),and NF-κB p65 were reduced following treatment with TFSB.Conclusion:The potential treatment of TFSB in AMI may be ascribed to its ability to regulate arachidonic acid metabolism.
基金National Natural Science Foundation of China, No.40335046
文摘The Heihe River drainage basin is one of the endangered ecological regions of China. The shortage of water resources is the bottleneck, which constrains the sustainable development of the region. Many scholars in China have done researches concerning this problem. Based on previous researches, this paper analyzed characteristics, tendencies, and causes of annual runoff variations in the Yingluo Gorge (1944-2005) and the Zhengyi Gorge (1954-2005), which are the boundaries of the upper reaches, the middle reaches, and the lower reaches of the Heihe River drainage basin, by wavelet analysis, wavelet neural network model, and GIS spatial analysis. The results show that: (1) annual runoff variations of the Yingluo Gorge have principal periods of 7 years and 25 years, and its increasing rate is 1.04 m^3/s.10y; (2) annual runoff variations of the Zhengyi Gorge have principal periods of 6 years and 27 years, and its decreasing rate is 2.25 m^3/s.10y; (3) prediction results show that: during 2006-2015, annual runoff variations of the Yingluo and Zhengyi gorges have ascending tendencies, and the increasing rates are respectively 2.04 m^3/s.10y and 1.61 m^3/s.10y; (4) the increase of annual runoff in the Yingluo Gorge has causal relationship with increased temperature and precipitation in the upper reaches, and the decrease of annual runoff in the Zhengyi Gorge in the past decades was mainly caused by the increased human consumption of water resources in the middle researches. The study results will provide scientific basis for making rational use and allocation schemes of water resources in the Heihe River drainage basin.
基金supported by the National Natural Science Foundation of China(No.U1810208)Shanxi Province Science and Technology Major Projects,China(No.2018110100)。
文摘The nonuniform microstructure of magnesium alloy rolled sheets tends to influence their plastic deformation capacity.This study employed multi-pass restricted rolling to successfully prepare AZ31 magnesium alloy rolled sheets with a uniform microstructure,enhancing their mechanical properties.Quasi-in-situ tensile EBSD was used to investigate the effect of microstructure uniformity on the plastic deformation and fracture behavior of magnesium alloy.The results demonstrate that the nonuniformity of the magnesium alloy microstructure intensifies the strain asynchrony between adjacent grains,leading to relative misalignment and crack formation.Fine grains cannot coordinate the strain within their adjacent coarse grains,resulting in ledge formation at their common grain boundaries.Moreover,low-angle grain boundaries(LAGB)influence fracture behavior,rendering fine grains penetrated by LAGB more susceptible to becoming strain concentration areas that promote intergranular fracture and even transgranular fracture.
基金funded by the Directorate of Research and Community Service, Ministry of Education, Culture, Research, and Technology, Indonesia (027/E5/PG.02.00.PL/2024)Bogor Agricultural University for their invaluable support and resources that made this research possibleDirectorate of Research and Community Service, Ministry of Education, Culture, Research, and Technology, Indonesia, for their financial and administrative support
文摘Urbanization in small-and medium-sized cities has often been overlooked in urban studies.Research on urbanization has predominantly focused on large metropolitan cities;however,urbanization in small-and medium-sized cities also contributes to the acceleration of urban sprawl.Urban growth boundary(UGB)is an ecological approach designed to limit urban development.This study aimedto analyze environmental protection priority zonesby combining ecological quality and sensitivity indices to identify the areas suitable for UGB implementation.Tegal City and its surrounding areas(including Tegal and Brebes regencies)of Indonesia were selected as the study area.The ecological quality index was calculated using the normalized difference vegetation index,humidity index,land surface temperature,and normalized difference bare soil index.These indices were subsequently subjected to principal component analysis(PCA)to extract orthogonal factors,which were summed to derive the final index value.In parallel,we mapped and evaluated ecological sensitivity based on spatial planning policies and regulations.The results revealed that ecological quality in Tegal and Brebes regencies was predominantly categorized as good and very good ecological quality,whereas TegalCity exhibited moderate and poor ecological quality.Additionally,over 45.00%of the area in Tegal and Brebes regencies demonstrated very high ecological sensitivity.Consequently,more than 50.00%of the area in Tegal and Brebes regencies,along with 27.00%of Tegal City,were classified as ecological constraint zone,making them potential regionsfor UGB development.The UGB is expected to curtail urban expansion,promote compact city planning,and preserve ecosystem services to achieve urban sustainability.This study implies that planningsmall-and medium-sized cities is important to prevent urban sprawl and maintain environmental health.Designing UGB to limit urban expansion should be enhanced by better knowledge about its ecological functions in supporting urban sustainability.
基金supported by National Natural Science Foundation of China(Nos.21927810,22336004 and 22176167).
文摘RNA modifications play vital regulatory roles in biological systems.Dysregulated RNA modifications themselves or their regulators are associated with various diseases,including cancers and immune related diseases.However,to the best of our knowledge,RNA modifications in peripheral white blood cells(immune cells)have not been systematically investigated before.Here we utilized hydrophilic interaction liquid chromatography-tandem mass spectrometry(HILIC-MS/MS)for the quantification of 19 chemical modifications in total RNA and 17 chemical modifications in small RNA in peripheral white blood cells from breast cancer patients and healthy controls.We found out 13 RNA modifications were up-regulated in total RNA samples of breast cancer patients.For small RNA samples,only N6-methyladenosine(m^(6)A)was down-regulated in breast cancer patients(P<0.0001).Receiver operating characteristic(ROC)curves analysis showed that N4-acetylcytidine(ac^(4)C)in total RNA had an area under curve(AUC)value of 0.833,and m^(6)A in small RNA had an AUC value of 0.994.Our results further illustrated that RNA modifications may play vital roles in immune cell biology of breast cancer,and may act as novel biomarkers for the diagnosis of breast cancer.
基金supported by the National Science Foundation of China,Grant 32470245.
文摘Angelica L.has attracted global interest for its traditional medicinal uses and commercial values.However,few studies have focused on the metabolomic differences among the Angelica species.In this study,widely targeted metabolomics based on gas chromatography-tandem mass spectrometry was employed to analyze the metabolomes of four Angelica species(Angelicasinensis(Oliv.)Diels(A.sinensis),Angelica biserrata(R.H.Shan &Yuan)C.Q.Yuan & R.H.Shan(A.biserrata),Angelica dahurica(Hoffm.)Benth.& Hook.f.ex Franch.& Sav.(A.dahurica)and Angelica keiskei Koidz.(A.keiskei)).A total of 698 volatile metabolites were identified and classified into fifteen different categories.The metabo-lomic analysis indicated that 7-hydroxycoumarin and Z-ligustilide accumulated at significantly higher levels in A.sinensis,whereas bornyl acetate showed the opposite pattern.Furthermore,a high correspondence between the dendrogram of metabolite contents and phylogenetic positions of the four species.This study provides a comprehensive biochemical map for the exploitation,application and development of the Angelica species as medicinal plants or health-related dietary supplements.
文摘Objective To evaluate the in vitro anti-diabetic effects of Bryonia dioica roots extracts,in-cluding water-acetone extracts and their ethyl acetate and butanol fractions,and chloroform-methanol extracts.Methods The total phenolic,flavonoid,flavonol,and saponin contents in the Bryonia dioica root extracts(chloroform-methanol extracts,water-acetone extracts and their ethyl acetate and butanol fractions)were determined using colorimetric methods with Folin-Ciocalteu,aluminum trichloride,and vanillin reagents,respectively.The in vitro anti-diabetic activity was evaluated by measuring the half-maximal inhibitory concentration(IC_(50))values of these root extracts againstα-amylase andα-glucosidase activities,evaluating their effects onα-amy-lase kinetics,quantifying the inhibition of bovine serum albumin(BSA)glycation using fluo-rometry to assess advanced glycation end products(AGE)production,and determining glu-cose uptake by isolated rat hemidiaphragm.Additionally,molecular docking analysis was conducted to investigate the binding affinity and interaction types between Bryonia dioica lig-ands(cucurbitacin B,bryogénin,vitexin,and isovitexin)and target enzymes,and a phyto-chemical-targets interaction network was constructed.Results Forα-amylase inhibition,ethyl acetate fraction demonstrated the most potent activi-ty(IC_(50)=145.95μg/mL),followed by chloroform-methanol extract(IC_(50)=300.86μg/mL).Water-acetone root extracts and their ethyl acetate and butanol fractions inhibited theα-glucosidase activity with IC50 values ranging from 562.88 to 583.90μg/mL.Both ethyl acetate and butanol fractions strongly inhibited non-enzymatic BSA glycation(IC_(50)=318.26 and 323.12μg/mL,respectively).The incubation of isolated rat hemidiaphragms with the ethyl acetate fraction(5 mg/mL)significantly increased glucose uptake(35.16%;P<0.0001),exceeding the effects of insulin(29.27%),chloroform-methanol extract(24.07%),and catechin(15.27%).Molecular docking revealed that cucurbitacin B exhibited the strongest docking scores againstα-amylase(-16.4 kcal/mol),andα-glucosidase(-14.2 kcal/mol).Compared with other ligands,isovitexin formed the maximum number of hydrogen bonds with theα-amylase active site residues(Asp300,Asp197,and Glu233),α-glucosidase residues(Ser13,Arg44,Met86,Gly10,Asp39,and Tyr131)and other residues(Arg195,Trp59,His299,and Tyr62).Network analysis identified 36 overlapping targets between Bryonia dioica phyto-chemicals and type 2 diabetes mellitus-associated genes,with cucurbitacins and polyphenols interacting withα-amylase,α-glucosidase,and Glut4 translocation pathway targets.Conclusion Bryonia dioica root extracts demonstrated promising in vitro anti-diabetic activi-ty through multiple mechanisms,including the inhibitory effect on digestive enzymes,pro-tein antiglycation potential,and enhancement of glucose uptake,suggesting their potential as a source for anti-diabetic drugs development.
基金This work is funded by the National Key R&D Program of China(Grant No.2018YFA0703200)Project of the National Natural Science Foundation of China(Grant No.11702056)the Fundamental Research Funds for the Central Universities(Grant No.DUT20JC34).
文摘Geometric fitting based on discrete points to establish curve structures is an important problem in numerical modeling.The purpose of this paper is to investigate the geometric fitting method for curved beam structure from points,and to get high-quality parametric model for isogeometric analysis.ATimoshenko beam element is established for an initially curved spacial beam with arbitrary curvature.The approximation and interpolation methods to get parametric models of curves from given points are examined,and three strategies of parameterization,meaning the equally spaced method,the chord length method and the centripetal method are considered.The influences of the different geometric approximation algorithms on the precision of isogeometric analysis are examined.The static analysis and the modal analysis with the established parametric models are carried out.Three examples with different complexities,the quarter arc curved beam,the Tschirnhausen beam and the Archimedes spiral beam are examined.The results show that for the geometric approximation the interpolation method performs good and maintains high precision.The fitting algorithms are able to provide parametric models for isogeometric analysis of spacial beam with Timoshenko model.The equally spaced method and centripetal method perform better than the chord length method for the algorithm to carry out the parameterization for the sampling points.
文摘The author studies the effect of uncertain conductivity on the electroencephalography (EEG) forward problem. A three-layer spherical head model with different and random layer conductivities is considered. Polynomial Chaos (PC) is used to model the randomness. The author performs a sensitivity and correlation analysis of EEG sensors influenced by uncertain conductivity. The author addressed the sensitivity analysis at three stages: dipole location and moment averaged out, only the dipole moment averaged out, and both fixed. On average, the author observes the least influenced electrodes along the great longitudinal fissure. Also, sensors located closer to a dipole source, are of greater influence to a change in conductivity. The highly influenced sensors were on average located temporal. This was also the case in the correlation analysis. Sensors in the temporal parts of the brain are highly correlated. Whereas the sensors in the occipital and lower frontal region, though they are close together, are not so highly correlated as in the temporal regions. This study clearly shows that intrinsic sensor correlation exists, and therefore cannot be discarded, especially in the inverse problem. In the latter it makes it possible not to specify the conductivities. It also offers an easy but rigorous modeling of the stochastic propagation of uncertain conductivity to sensorial potentials (e.g., making it suited for research on optimal placing of these sensors).
文摘The dominant element in ballet is the search for flawless performance. The specific training required from early years may cause some changes compared to the normal human anatomy and physiology. The aim of this study was to investigate the potential of motion analysis technologies for the evaluation of frequent changes in biomechanics of posture and dance. This paper presents an overview of the literature on the main postural compensation employed by the dancer; more specifically on the training effect of the fundamental basic techniques in ballet. It then focuses on the characteristics and potential of motion analysis technologies for the biomechanical evaluation of the dancer. The technologies investigated in this study are the optoelectronic system of gait analysis, which is one of the most advanced technologies for multifactorial motion analysis, integrated with the use of the force platform and the electromyography. These technologies enable a quantitative three-dimensional integrated multifactorial motion analysis in relation to kinematics and dynamics. Through specific systems of motion analysis, the instrumental analysis can describe objectively and with reasonable accuracy the biomechanics, the postural compensation, and the gait of the dancer.
文摘Background: Weibo is a Twitter-like micro-blog platform in China where people post their real-life events as well as express their feelings in short texts. Since the outbreak of the Covid-19 pandemic, thousands of people have expressed their concerns and worries about the outbreak via Weibo, showing the existence of public panic. Methods: This paper comes up with a sentiment analysis approach to discover public panic. First, we used Octoparse to obtain Weibo posts about the hot topic Covid-19 Pandemic. Second, we break down those sentences into independent words and clean the data by removing stop words. Then, we use the sentiment score function that deals with negative words, adverbs, and sentiment words to get the sentiment score of each Weibo post. Results: We observe the distribution of sentiment scores and get the benchmark to evaluate public panic. Also, we apply the same process to test the mass sentiment under other topics to test the efficiency of the sentiment function, which shows that our function works well.
基金financial support from the National Natural Science Foundation of China(No.81673398)
文摘The development of pharmaceutical analytical methods represents one of the most significant aspects of drug development. Recent advances in microfabrication and microfluidics could provide new approaches for drug analysis, including drug screening, active testing and the study of metabolism. Microfluidic chip technologies, such as lab-on-a-chip technology, three-dimensional (3D) cell culture, organs-on-chip and droplet techniques, have all been developed rapidly. Microfluidic chips coupled with various kinds of detection techniques are suitable for the high-throughput screening, detection and mechanistic study of drugs. This review highlights the latest (2010–2018) microfluidic technology for drug analysis and discusses the potential future development in this field.