期刊文献+
共找到3,136篇文章
< 1 2 157 >
每页显示 20 50 100
Agronomy and Economy: Impact of Tillage and Poultry Manure on Mazie (<i>Zea mays</i>L.)
1
作者 Hafiz Muhammad Rashad Javeed Muhammad Shahid Ibni Zamir +3 位作者 Nasir Masood Rafi Qamar Muhammad Shehzad Muhammad Nadeem 《American Journal of Plant Sciences》 2014年第6期799-810,共12页
Seedling emergence and seedling establishment are two important phases for the good crop stand and final maize crop harvest. A field study was conducted to explore the effects of different tillage practices and poultr... Seedling emergence and seedling establishment are two important phases for the good crop stand and final maize crop harvest. A field study was conducted to explore the effects of different tillage practices and poultry manure levels on the seedling emergence, growth, development, yield, and economics of the spring planted maize during 2010 and 2011. Experimental treatments include four tillage treatments (zero, minimum, conventional and deep tillage) and three poultry manure amendments (control (no manure), 5 Mg·ha-1 and 10 Mg·ha-1). Seedling emergence was linearly affected as the tillage intensity was increased. Significant relationship of tillage with leaf area index, leaf area duration, crop growth rate, net assimilation rate and total dry matter was recorded during the both years. Poultry manure at the rate of 10 Mg·ha-1 produced the higher leaf area index, leaf area duration, crop growth rate, total dry matter and grain yield as compared to 5 Mg·ha-1 and control. Moreover, experimental results concluded that the deep tillage practice has taken less time to start emergence. Similarly, higher values trend of leaf area index, leaf area duration, crop growth rate, total dry matter accumulation and grain yield was shifted from deep tillage to conventional, minimum and zero tillage practices during both years. Economically, the minimum tillage with poultry manure at rate of 10 Mg·ha-1 gave the better benefit to cost ratio and crop productivity as compared to conventional, deep and zero tillage. The experiment suggested the minimum tillage with poultry manure at the rate of 10 Mg·ha-1 may ensure the maize grain yield sustainability. 展开更多
关键词 AGRONOMY ECONOMY Leaf Area Index Maize Seedling Growth TILLAGE Pakistan
在线阅读 下载PDF
Advanced technology in agronomy to secure food,fiber,feed,and fuel supply and maintain environmental sustainability
2
作者 Xinhua(Frank)Yin Yanfeng Ding 《Technology in Agronomy》 2021年第1期1-2,共2页
Corn,wheat,rice,soybean,cotton,rape seeds,alfalfa,and sugar beets are among the top agronomic crops grown around the world for food,fiber,feed,and fuel(4Fs).Huge progress has been made in increasing production of 4Fs ... Corn,wheat,rice,soybean,cotton,rape seeds,alfalfa,and sugar beets are among the top agronomic crops grown around the world for food,fiber,feed,and fuel(4Fs).Huge progress has been made in increasing production of 4Fs over the last few decades.In 2018-2019,approximately 1.09 billion tons of corn,735 million tons of wheat,and 497 million tons of rice were produced worldwide.Increased food production has greatly helped to reduce global starvation and undernourished populations from 15%during 2000-2004 to 8.9%in 2019. 展开更多
关键词 FIBER MAINTAIN CROPS
在线阅读 下载PDF
垂穗披碱草TCP转录因子家族鉴定及激素响应模式分析
3
作者 彭晓梅 孟晨 +3 位作者 GARC A-CAPARR S Pedro 张宇 杨永平 孙旭东 《广西植物》 北大核心 2025年第5期916-930,共15页
垂穗披碱草(Elymus nutans)是青藏高原地区的优质牧草,具有较高的生态价值和经济价值。TCP是植物特有的转录因子家族,参与调控植物叶片发育、侧枝形成、植物激素合成与信号转导等生理过程。为鉴定垂穗披碱草TCP转录因子家族成员,该研究... 垂穗披碱草(Elymus nutans)是青藏高原地区的优质牧草,具有较高的生态价值和经济价值。TCP是植物特有的转录因子家族,参与调控植物叶片发育、侧枝形成、植物激素合成与信号转导等生理过程。为鉴定垂穗披碱草TCP转录因子家族成员,该研究利用单分子实时(SMRT)测序技术获得了垂穗披碱草全长转录组数据,并对4种激素处理后的垂穗披碱草叶片进行Illumina测序,以探究EnTCP s基因在不同激素处理下的表达模式。结果表明:(1)垂穗披碱草全长转录组测序共获得90956条非冗余转录本。(2)基于全长转录组数据共鉴定到26个EnTCP s,氨基酸数为186~575 aa,亚细胞定位预测显示TCP蛋白均位于细胞核。(3)根据进化树的分支情况可将26个EnTCP s分为Class I、ClassⅡ-a(CIN)和ClassⅡ-b(CYC/TB1)3个亚家族,保守结构域分析表明EnTCPs均含有TCP结构域。(4)不同激素处理后的表达模式分析显示,7个EnTCP s家族成员(En108950、En35573、En10347、En16325、En128790、En10346和En14028)在激素处理后上调/下调表达,它们可能参与了激素合成与信号转导通路;qRT-PCR分析结果显示,En35573和En14028参与生长素响应,En108950、En10347、En128790、En10346和En14028均参与细胞分裂素响应,En14028参与脱落酸响应,En108950参与茉莉酸响应,而En16325可能参与多种激素信号转导通路。该研究结果为后续EnTCP s基因功能研究奠定了基础,为研究EnTCP s对激素响应的分子机制提供了参考依据。 展开更多
关键词 垂穗披碱草 TCP转录因子家族 全长转录组 外源植物激素 表达模式
在线阅读 下载PDF
30个马铃薯品种(系)块茎品质综合评价与形态特征分析
4
作者 马丽 郭学良 +6 位作者 范融 齐红志 陈亚伟 Francois Serneels Berengere Delbecq 陶亚含 李欣 《江苏农业科学》 北大核心 2025年第17期90-96,共7页
对30个马铃薯品种(系)的淀粉、蛋白质、维生素C、还原糖、可溶性糖含量进行测定,采用主成分分析、隶属函数值、系统聚类分析方法对马铃薯块茎品质进行综合评价,结合形态特征分析,筛选出加工用途不同、品质优良的马铃薯品种(系)。结果表... 对30个马铃薯品种(系)的淀粉、蛋白质、维生素C、还原糖、可溶性糖含量进行测定,采用主成分分析、隶属函数值、系统聚类分析方法对马铃薯块茎品质进行综合评价,结合形态特征分析,筛选出加工用途不同、品质优良的马铃薯品种(系)。结果表明,30个马铃薯品种(系)的薯形主要是椭圆形,芽眼较浅,表皮、肉多为浅黄色,供试品种(系)的还原糖、可溶性糖、淀粉、蛋白质、维生素C含量的变异系数较大,分别为105.4%、46.4%、27.9%、23.5%、37.4%,其中HR227-1的淀粉含量最高,HR313-12-1、麦肯1号的蛋白质含量最高,麦肯1号的维生素C含量最高,CL2008-8的还原糖含量最高,HR313-12-1、DB-17的可溶性糖含量最高。采用主成分分析法对30个马铃薯品种(系)的5个块茎品质指标进行分析,提取出4个主成分,对其中贡献率较高的4个指标(淀粉含量、蛋白质含量、可溶性糖含量、还原糖含量)进行隶属函数分析,根据平均隶属函数值对30个马铃薯品种(系)的品质进行排序,结果为HR227-1 > HR313-12-1 > HR198A > 16-2 >麦肯1号>蓝威1号> HR106 > DB20-24 > HR168-2 > ES-2 > HR227-2 > N1 > HR313-12-3 > HR313-12-2 > HR194 > HR11 > DB-1 > HR313 > HR313-8 > WX-2 > HR9 > HR179 >DB-17 > HR11-4 > ZS-16-20 > DB20-04 > HR170 > HR168 > HR170-3 > CL2008-8。通过系统聚类分析可知,HR198A、HR227-1、HR313-12-1的综合品质较高。其中,HR198A的淀粉、蛋白质、维生素C、可溶性糖含量较高,且还原糖含量较低,可用于油炸食品加工、鲜用等;HR227-1的淀粉含量最高,蛋白质、维生素C含量也较高,还原糖含量较低,适合鲜用、全粉加工、油炸食品加工等;HR313-12-1的蛋白质含量最高,淀粉含量较高,可作为全粉加工的专用型品种(系)。HR198A芽眼浅,肉色为深黄色,HR227-1、HR313-12-1均为椭圆形,芽眼浅,表皮、肉的颜色为浅黄色,比较适应目前鲜食市场的需求。 展开更多
关键词 马铃薯 品质评价 主成分分析 隶属函数分析 系统聚类分析
在线阅读 下载PDF
Split nitrogen application increases maize root growth,yield,and nitrogen use efficiency under soil warming conditions 被引量:2
5
作者 Zhenqing Xia Yuxiang Gong +3 位作者 Xiangyue Lyu Junchen Lin Yi Yang Haidong Lu 《The Crop Journal》 2025年第2期565-575,共11页
The increase in soil temperature associated with climate change has introduced considerable challenges to crop production.Split nitrogen application(SN)represents a potential strategy for improving crop nitrogen use e... The increase in soil temperature associated with climate change has introduced considerable challenges to crop production.Split nitrogen application(SN)represents a potential strategy for improving crop nitrogen use efficiency and enhancing crop stress resistance.Nevertheless,the precise interaction between soil warming(SW)and SN remains unclear.In order to ascertain the impact of SW on maize growth and whether SN can improve the tolerance of maize to SW,a two-year field experiment was conducted(2022-2023).The aim was to examine the influence of two SW ranges(MT,warming 1.40℃;HT,warming 2.75℃)and two nitrogen application methods(N1,one-time basal application of nitrogen fertilizer;N2,one third of base nitrogen fertilizer+two thirds of jointing stage supplemental nitrogen fertilizer)on maize root growth,photosynthetic characteristics,nitrogen use efficiency,and yield.The results demonstrated that SW impeded root growth and precipitated the premature aging of maize leaves following anthesis,particularly in the HT,which led to a notable reduction in maize yield.In comparison to N1,SN has been shown to increase root length density by 8.54%,root bleeding rate by 8.57%,and enhance root distribution ratio in the middle soil layers(20-60 cm).The interaction between SW and SN had a notable impact on maize growth and yield.The SN improved the absorption and utilization efficiency of nitrogen by promoting root development and downward canopy growth,thus improving the tolerance of maize to SW at the later stage of growth.In particular,the N2HT resulted in a 14.51%increase in the photosynthetic rate,a 18.58%increase in nitrogen absorption efficiency,and a 18.32%increase in maize yield compared with N1HT.It can be posited that the SN represents a viable nitrogen management measure with the potential to enhance maize tolerance to soil high-temperature stress. 展开更多
关键词 Maize(Zea mays L.) Soil warming Split nitrogen application Root growth Nitrogen use efficiency Grain yield
在线阅读 下载PDF
Effects of micro-sprinkler irrigation and topsoil compaction on winter wheat grain yield and water use efficiency in the Huaibei Plain, China 被引量:1
6
作者 Jinpeng Li Siqi Wang +6 位作者 Zhongwei Li Kaiyi Xing Xuefeng Tao Zhimin Wang Yinghua Zhang Chunsheng Yao Jincai Li 《Journal of Integrative Agriculture》 2025年第8期2974-2988,共15页
Increasing the grain yield(GY) and water use efficiency(WUE) of winter wheat in the Huaibei Plain(HP), China are essential. However, the effects of micro-sprinkler irrigation and topsoil compaction after wheat seed so... Increasing the grain yield(GY) and water use efficiency(WUE) of winter wheat in the Huaibei Plain(HP), China are essential. However, the effects of micro-sprinkler irrigation and topsoil compaction after wheat seed sowing on the GY and WUE are unclear. Therefore, a two-year field experiment was conducted during the 2021–2023 winter wheat growing seasons with a total six treatments: rain-fed(RF), conventional irrigation(CI) and micro-sprinkler irrigation(MI), as well as topsoil compaction after seed sowing under these three irrigation methods(RFC, CIC, and MIC). The results in the two years indicated that MI significantly increased GY compared to CI and RF, by averages of 17.9 and 42.1%, respectively. The increase in GY of MI was due to its significant increases in the number of spikes, kernels per spike, and grain weight. The chlorophyll concentration in flag leaves of MI after the anthesis stage maintained higher levels than with CI and RF, and was the lowest in RF. This was due to the dramatically enhanced catalase and peroxidase activities and lower malondialdehyde content under MI. Compared with RF and CI, MI significantly promoted dry matter remobilization and production after anthesis, as well as its contribution to GY. In addition, MI significantly boosted root growth, and root activity during the grain-filling stage was remarkably enhanced compared to CI and RF. In 2021–2022, there was no significant difference in WUE between MI and RF, but the WUE of RF was significantly lower than that of MI in 2022–2023. However, the WUE in MI was significantly improved compared to CI, and it increased by averages of 15.1 and 17.6% for the two years. Topsoil compaction significantly increased GY and WUE under rain-fed conditions due to improved spike numbers and dry matter production. Overall, topsoil compaction is advisable for enhancing GY and WUE in rain-fed conditions, whereas micro-sprinkler irrigation can be adopted to simultaneously achieve high GY and WUE in the HP. 展开更多
关键词 winter wheat MICRO-SPRINKLER grain yield root distribution water utilization
在线阅读 下载PDF
Managing cotton canopy architecture for machine picking cotton via high plant density and plant growth retardants 被引量:1
7
作者 LAKSHMANAN Sankar SOMASUNDARAM Selvaraj +4 位作者 SHRI RANGASAMI Silambiah ANANTHARAJU Pokkharu VIJAYALAKSHMI Dhashnamurthi RAGAVAN Thiruvengadam DHAMODHARAN Paramasivam 《Journal of Cotton Research》 2025年第1期102-114,共13页
Machine picking in cotton is an emerging practice in India,to solve the problems of labour shortages and production costs increasing.Cotton production has been declining in recent years;however,the high density planti... Machine picking in cotton is an emerging practice in India,to solve the problems of labour shortages and production costs increasing.Cotton production has been declining in recent years;however,the high density planting system(HDPS)offers a viable method to enhance productivity by increasing plant populations per unit area,optimizing resource utilization,and facilitating machine picking.Cotton is an indeterminate plant that produce excessive vegeta-tive growth in favorable soil fertility and moisture conditions,which posing challenges for efficient machine picking.To address this issue,the application of plant growth retardants(PGRs)is essential for controlling canopy architecture.PGRs reduce internode elongation,promote regulated branching,and increase plant compactness,making cotton plants better suited for machine picking.PGRs application also optimizes photosynthates distribution between veg-etative and reproductive growth,resulting in higher yields and improved fibre quality.The integration of HDPS and PGRs applications results in an optimal plant architecture for improving machine picking efficiency.However,the success of this integration is determined by some factors,including cotton variety,environmental conditions,and geographical variations.These approaches not only address yield stagnation and labour shortages but also help to establish more effective and sustainable cotton farming practices,resulting in higher cotton productivity. 展开更多
关键词 COTTON High density planting system Plant growth retardant Canopy management Defoliators Machine picking Yield improvement
在线阅读 下载PDF
Review on physiological and ecological characteristics and agronomic regulatory pathways of intercropping to delay root and canopy senescence of crops 被引量:1
8
作者 Wen Yin Qiang Chai +8 位作者 Zhilong Fan Falong Hu Lianhao Zhao Hong Fan Wei He Cai Zhao Aizhong Yu Yali Sun Feng Wang 《Journal of Integrative Agriculture》 2025年第1期1-22,共22页
Intercropping has been widely used in arid and semi-arid regions because of its high yield,stable productivity,and efficient utilization of resources.However,in recent years,the high yield of traditional intercropping... Intercropping has been widely used in arid and semi-arid regions because of its high yield,stable productivity,and efficient utilization of resources.However,in recent years,the high yield of traditional intercropping is mainly attributed to the large amount of purchased resources such as water and fertilizer,plastic film,and mechanical power.These lead to a decline in cultivated land quality and exacerbate intercrops'premature root and canopy senescence.So,the application of traditional intercropping faces major challenges in crop production.This paper analyzes the manifestations,occurrence mechanisms,and agronomic regulatory pathways of crop senescence.The physiological and ecological characteristics of intercropping to delay root and canopy senescence of crops are reviewed in this paper.The main agronomic regulatory pathways of intercropping to delay root and canopy senescence of crops are based on above-and blow-ground interactions,including collocation of crop varieties,spatial arrangement,water and fertilizer management,and tillage and mulch practices.Future research fields of intercropping to delay root and canopy senescence should focus on the aspects of selecting and breeding special varieties,application of molecular biology techniques,and developing or applying models to predict and evaluate the root and canopy senescence process of intercrops.Comprehensive analysis and evaluation of different research results could provide a basis for enhancing intercropping delay root and canopy senescence through adopting innovative technologies for regulating the physio-ecological characteristics of intercrops.This would support developing and adopting high-yield,efficient,and sustainable intercropping systems in arid and semi-arid areas with high population density,limited land,and abundant light and heat resources. 展开更多
关键词 INTERCROPPING root and canopy senescence photosynthetic physiology ecological adaptability regulatory pathway
在线阅读 下载PDF
Brassinosteroids alleviate wheat floret degeneration under low nitrogen stress by promoting the redistribution of sucrose from stems to spikes 被引量:1
9
作者 Zimeng Liang Xidan Cao +4 位作者 Rong Gao Nian Guo Yangyang Tang Vinay Nangia Yang Liu 《Journal of Integrative Agriculture》 2025年第2期497-516,共20页
The trade-off between yield and environmental effects caused by nitrogen fertilizer application is an important issue in wheat production.A reduction in fertile florets is one of the main reasons for the lower yields ... The trade-off between yield and environmental effects caused by nitrogen fertilizer application is an important issue in wheat production.A reduction in fertile florets is one of the main reasons for the lower yields under low nitrogen application rates.Brassinosteroids(BRs)have been found to play a role in nitrogen-induced rice spikelet degeneration.However,whether BRs play a role in wheat floret development and the mechanisms involved are not clear.Therefore,a nitrogen gradient experiment and exogenous spraying experiment were conducted to investigate the role and mechanism of BRs in wheat floret development under low nitrogen stress.The results showed that as the nitrogen application decreased,the endogenous BRs content of the spikes decreased,photosynthesis weakened,and total carbon,soluble sugar and starch in the spikes decreased,leading to a reduction in the number of fertile florets.Under low nitrogen stress,exogenous spraying of 24-epibrassinolide promoted photosynthesis,and stimulated stem fructan hydrolysis and the utilization and storage of sucrose in spikes,which directed more carbohydrates to the spikes and increased the number of fertile florets.In conclusion,BRs mediate the effects of nitrogen fertilizer on wheat floret development,and under low nitrogen stress,foliar spraying of 24-epibrassinolide promotes the flow of carbohydrates from the stem to the spikes,alleviating wheat floret degeneration. 展开更多
关键词 BRASSINOSTEROIDS fertile florets nitrogen application rate sucrose metabolism WHEAT
在线阅读 下载PDF
An integrated physiology and proteomics analysis reveals the response of wheat grain to low temperature stress during booting 被引量:1
10
作者 Anmin Zhang Zihong Li +7 位作者 Qirui Zhou Jiawen Zhao Yan Zhao Mengting Zhao Shangyu Ma Yonghui Fan Zhenglai Huang Wenjing Zhang 《Journal of Integrative Agriculture》 2025年第1期114-131,共18页
Low temperature(LT)in spring has become one of the principal abiotic stresses that restrict the growth and development of wheat.Diverse analyses were performed to investigate the mechanism underlying the response of w... Low temperature(LT)in spring has become one of the principal abiotic stresses that restrict the growth and development of wheat.Diverse analyses were performed to investigate the mechanism underlying the response of wheat grain development to LT stress during booting.These included morphological observation,measurements of starch synthase activity,and determination of amylose and amylopectin content of wheat grain after exposure to treatment with LT during booting.Additionally,proteomic analysis was performed using tandem mass tags(TMT).Results showed that the plumpness of wheat grains decreased after LT stress.Moreover,the activities of sucrose synthase(SuS,EC 2.4.1.13)and ADP-glucose pyrophosphorylase(AGPase,EC 2.7.7.27)exhibited a significant reduction,leading to a significant reduction in the contents of amylose and amylopectin.A total of 509 differentially expressed proteins(DEPs)were identified by proteomics analysis.The Gene Ontology(GO)enrichment analysis showed that the protein difference multiple in the nutritional repository activity was the largest among the molecular functions,and the up-regulated seed storage protein(ssP)played an active role in the response of grains to LT stress and subsequent damage.The Kyoto Encyclopedia of Genes and Genomes(KEGG)enrichment analysis showed that LT stress reduced the expression of DEPs such as sucrose phosphate synthase(SPS),glucose-1-phosphate adenylyltransferase(glgC),andβ-fructofuranosidase(FFase)in sucrose and starch metabolic pathways,thus affecting the synthesis of grain starch.In addition,many heat shock proteins(HsPs)were found in the protein processing in endoplasmic reticulum pathways,which can resist some damage caused by LT stress.These findings provide a new theoretical foundation for elucidating the underlying mechanism governing wheat yield developmentafterexposuretoLTstress inspring. 展开更多
关键词 low temperature at booting WHEAT GRAIN starch synthesis PROTEOMICS
在线阅读 下载PDF
Chalcone isomerase gene(OsCHI3)increases rice drought tolerance by scavenging ROS via flavonoid and ABA metabolic pathways 被引量:2
11
作者 Ting Liu Ling Liu +8 位作者 Tianshun Zhou Yinke Chen Huang Zhou Jiahan Lyu Di Zhang Xiwen Shi Dingyang Yuan Nenghui Ye Meijuan Duan 《The Crop Journal》 2025年第2期372-384,共13页
The chalcone isomerase gene OsCHI,one of the key genes in the flavonoid biosynthesis pathway,plays an important role in rice(Oryza sativa)resistance to abiotic stresses.This study reveals how the chalcone isomerase ge... The chalcone isomerase gene OsCHI,one of the key genes in the flavonoid biosynthesis pathway,plays an important role in rice(Oryza sativa)resistance to abiotic stresses.This study reveals how the chalcone isomerase gene family member OsCHI3 participates in rice responses to drought stress through the regulation of flavonoid biosynthesis.Overexpression of OsCHI3 increased the tolerance of rice to drought stress.In contrast,CRISPR/Cas9-mediated deletion of OsCHI3 reduced the drought tolerance of rice,an effect that is reversed by exogenous ABA treatment.Transcriptomic and physiological biochemical analyses indicated that flavonoids regulated by OsCHI3 not only scavenge reactive oxygen species(ROS)but also increase drought tolerance in rice by stimulating ABA biosynthesis through the regulation of OsNCED1 and OsABA8ox3 expression.These findings demonstrate that OsCHI3 increases drought stress tolerance in rice by activating the antioxidant defense system and the ABA metabolic pathway,providing new clues for drought-resistant rice breeding research. 展开更多
关键词 Chalcone isomerase gene FLAVONOIDS Abscisic acid Drought tolerance RICE
在线阅读 下载PDF
The fourth exon confers antagonistic activity of OsMFT1 and OsMFT2 in rice pre-harvest sprouting 被引量:1
12
作者 Jialing Zhang Fei Liu +3 位作者 Yang Kuang Ming Luo Chengcai Chu Fan Xu 《The Crop Journal》 2025年第1期135-144,共10页
Pre-harvest sprouting(PHS)describes the germination of physiologically mature grains in spikes prior to harvest in cereal crops.PHS could seriously decrease grain yield and quality,which makes it a major constraint to... Pre-harvest sprouting(PHS)describes the germination of physiologically mature grains in spikes prior to harvest in cereal crops.PHS could seriously decrease grain yield and quality,which makes it a major constraint to cereal production worldwide.A number of PHS-associated genes in cereals have been reported;however,the molecular mechanisms underlying PHS remain largely elusive.Here,we report a CRISPRCas9 mutant with severe PHS in a paddy field.The mutated gene OsMFT2 encodes a phosphatidylethanolamine-binding protein(PEBP).Intriguingly,the OsMFT1,in the same PEBP family,had the opposite effect in controlling rice PHS as does OsMFT2.Germination tests of seeds of chimeric protein-expressing plants revealed that the fourth exon conferred the antagonistic activity of OsMFT1 and OsMFT2 in rice PHS.Additionally,two lines of these plants showed elevated grain numbers per panicle,implying that chimeric protein has potential to significantly increase yield.Moreover,transcriptome analysis and genetic studies indicated that OsMFT1 and OsMFT2 performed opposing functions in rice PHS owing to three co-regulated genes that being contrastingly affected by OsMFT1 and OsMFT2.Overall,it seemed that the proper combination of PEBP family members could obtain optimal PHS resistance and high yield. 展开更多
关键词 RICE Pre-harvest sprouting PEBP MFT
在线阅读 下载PDF
A suitable organic fertilizer substitution ratio stabilizes rainfed maize yields and reduces gaseous nitrogen loss in the Loess Plateau, China 被引量:1
13
作者 Lihua Xie Lingling Li +4 位作者 Junhong Xie Jinbin Wang Zechariah Effah Setor Kwami Fudjoe Muhammad Zahid Mumtaz 《Journal of Integrative Agriculture》 2025年第6期2138-2154,共17页
The application of organic fertilizers has become an increasingly popular practice in maize production to reduce thegaseous nitrogen(N) loss and soil degradation caused by inorganic fertilizers. Organic fertilizer pla... The application of organic fertilizers has become an increasingly popular practice in maize production to reduce thegaseous nitrogen(N) loss and soil degradation caused by inorganic fertilizers. Organic fertilizer plays a key rolein improving soil quality and stabilizing maize yields, but few studies have compared different substitution rates. Afield study was carried out in 2021 and 2022, based on a long-term trial initiated in 2016, which included five organicfertilizer N substitution rates with equal inputs of 200 kg N ha^(–1): 0% organic fertilizer(T1, 100% inorganic fertilizer),50.0% organic+50.0% inorganic fertilizer(T2), 37.5% organic+62.5% inorganic fertilizer(T3), 25.0% organic+75.0%inorganic fertilizer(T4), and 12.5% organic+87.5% inorganic fertilizer(T5), as well as a no fertilizer control(T6). Theresults of the two years showed that T3 and T1 had the highest grain yield and biomass, respectively, and there wasno significant difference between T1 and T3. Compared with T1, the 12.5, 25.0, 37.5, and 50.0% substitution rates in T5, T4, T3, and T2 significantly reduced total nitrogen losses(NH_(3), N_(2)O) by 8.3, 16.1, 18.7, and 27.0%, respectively.Nitrogen use efficiency(NUE) was higher in T5, T3, and T1, and there were no significant differences among them.Organic fertilizer substitution directly reduced NH_(3)volatilization and N_(2)O emission from farmland by lowering theammonium nitrogen and alkali-dissolved N contents and by increasing soil moisture. These substitution treatmentsreduced N_(2)O emissions indirectly by regulating the abundances of AOB and nirK-harboring genes by promotingsoil moisture. Specifically, the 37.5% organic fertilizer substitution reduces NH_(3)volatilization and N_(2)O emission from farmland by reducing the ammonium nitrogen and alkali-dissolved N contents and increasing moisture, which negatively regulate the abundance of AOB and nir K-harboring genes to reduce N_(2)O emissions indirectly in rainfed maize fields on the Loess Plateau of China. 展开更多
关键词 organic fertilizer rainfed maize field gaseous nitrogen loss functional gene
在线阅读 下载PDF
Post-silking leaf senescence is delayed in low-N-tolerant maize cultivars under low N fertilization 被引量:1
14
作者 Gui Wei Xinglong Wang +6 位作者 Yawei Wu Fan Liu Tianqiong Lan Qinlin Liu Chengcheng Lyu Fanlei Kong Jichao Yuan 《The Crop Journal》 2025年第1期246-256,共11页
A four-year field experiment was conducted with two cultivars and four N rate to investigate the spatiotemporal characteristics of leaf senescence in maize after silking and its response to N fertilizer rates on them,... A four-year field experiment was conducted with two cultivars and four N rate to investigate the spatiotemporal characteristics of leaf senescence in maize after silking and its response to N fertilizer rates on them,as well as to reveal the differences in post-silking chlorophyll degradation between low-N-tolerant cultivars.The results showed that the order of leaf senescence after silking in maize was lower leaf>upper leaf>ear leaf,leaf tip>middle>base.Increasing N fertilizer down-regulated the expression of ZmCLH2 and ZmPPH in the leaves at 10-30 d after silking,reducing CLH and PPH activities,thereby delaying the leaf senescence.These effects were more prominent in low-N-sensitive cultivar Xianyu 508(XY508)than in low-N-tolerant cultivar Zhenghong 311(ZH311),especially in the lower leaves and leaf tip.Under low N condition,leaf yellowing and chlorophyll degradation occurred later and slower in ZH311 than in XY508.This resulted in a higher post-silking dry matter accumulation and grain yield in ZH311,which may be one of the important physiological bases of low nitrogen tolerant cultivars.Future research should focus on developing low-N-tolerant maize cultivars with slower leaf senescence near the ear after silking. 展开更多
关键词 Low-N-tolerant maize variety Nitrogen fertilizer Spatio-temporal characteristics Chlorophyll degradation
在线阅读 下载PDF
Enhancing carbon sequestration and greenhouse gas mitigation in semiarid farmland:The promising role of biochar application with biodegradable film mulching 被引量:2
15
作者 Jinwen Pang Zhonghong Tian +9 位作者 Mengjie Zhang Yuhao Wang Tianxiang Qi Qilin Zhang Enke Liu Weijun Zhang Xiaolong Ren Zhikuan Jia Kadambot H.M.Siddique Peng Zhang 《Journal of Integrative Agriculture》 2025年第2期517-535,共19页
Long-term mulching has improved crop yields and farmland productivity in semiarid areas,but it has also increased greenhouse gas(GHG)emissions and depleted soil fertility.Biochar application has emerged as a promising... Long-term mulching has improved crop yields and farmland productivity in semiarid areas,but it has also increased greenhouse gas(GHG)emissions and depleted soil fertility.Biochar application has emerged as a promising solution for addressing these issues.In this study,we investigated the effects of four biochar application rates(no biochar(N)=0 t ha^(-1),low(L)=3 t ha^(-1),medium(M)=6 t ha^(-1),and high(H)=9 t ha^(-1))under film mulching and no mulching conditions over three growing seasons.We assessed the impacts on GHG emissions,soil organic carbon sequestration(SOCS),and maize yield to evaluate the productivity and sustainability of farmland ecosystems.Our results demonstrated that mulching increased maize yield(18.68-41.80%),total fixed C in straw(23.64%),grain(28.87%),and root(46.31%)biomass,and GHG emissions(CO_(2),10.78%;N_(2)O,3.41%),while reducing SOCS(6.57%)and GHG intensity(GHGI;13.61%).Under mulching,biochar application significantly increased maize yield(10.20%),total fixed C in straw(17.97%),grain(17.69%)and root(16.75%)biomass,and SOCS(4.78%).Moreover,it reduced the GHG emissions(CO_(2),3.09%;N_(2)O,6.36%)and GHGI(12.28%).These effects correlated with the biochar addition rate,with the optimal rate being 9.0 t ha^(-1).In conclusion,biochar application reduces CO_(2) and N_(2)O emissions,enhances CH_(4) absorption,and improves maize yield under film mulching.It also improves the soil carbon fixation capacity while mitigating the warming potential,making it a promising sustainable management method for mulched farmland in semiarid areas. 展开更多
关键词 BIOCHAR film mulching greenhouse gas emissions carbon sequestration
在线阅读 下载PDF
Regulation of Regeneration Rate to Enhance Ratoon Rice Production 被引量:1
16
作者 NIE Lixiao GUO Xiayu +3 位作者 WANG Weiqin QI Yucheng AI Zhiyong HE Aibin 《Rice science》 2025年第2期177-192,共16页
Ratoon rice(Oryza sativa L.)is a sustainable planting model,and its planting area has been increasing year by year.However,there is a lack of literature reviewing the measures and mechanisms to regulate the regenerati... Ratoon rice(Oryza sativa L.)is a sustainable planting model,and its planting area has been increasing year by year.However,there is a lack of literature reviewing the measures and mechanisms to regulate the regeneration rate,as well as the challenges in the production of ratoon rice.This study explores the effects of different varieties,climatic conditions(light and temperature),and cultivation measures(fertilizer management,cropping system,harvest method,water management,and plant growth regulators)on the regeneration rate and grain yield of the ratoon season.It summarizes and analyzes the possible mechanisms that affect the germination of regenerated buds from the perspectives of material accumulation and transportation,hormone metabolism,and molecular mechanisms,and identifies main factors currently limiting the development of ratoon rice.A significant positive correlation between the regeneration rate and grain yield of the ratoon season was found,regulated by varieties,temperatures,light resources,and cultivation measures.Improving the regeneration rate can effectively increase the production of ratoon rice.Notably,rice varieties with high regeneration ability exhibit characteristics such as a suitable growth period,a developed root system,high single-stem weight,a relatively small ratio of grain number to green leaf area,and strong lodging resistance in the main season.Additionally,the germination of regenerated buds is regulated by the accumulation and transport of endogenous hormones(indole-3-acetic acid,gibberellins,and cytokinins),photoassimilates(non-structural carbohydrates),and reactive oxygen metabolism.To further demonstrate the grain yield potential of the ratoon season,improvements are needed in three key areas:the cultivation system of low-stubble ratoon rice,the development of specialized harvesters,and the breeding of rice varieties with high-temperature tolerance during the main crop and low-temperature tolerance during the ratoon crop. 展开更多
关键词 ratoon rice regeneration rate plant hormone grain yield
在线阅读 下载PDF
Cyt02 encodes cytochrome P450 monooxygenase,increasing rice(Oryza sativa L.)resistance to sheath blight 被引量:1
17
作者 Tengda Zheng Xiaolin Wang +9 位作者 Yuewen He Deqiang Li Andrews Danso Ofori Xing Xiang Abdul Ghani Kandhro Xiaoqun Yi Fu Huang Jianqing Zhu Ping Li Aiping Zheng 《The Crop Journal》 2025年第1期92-103,共12页
Rice sheath blight(RSB)is a major destructive disease impeding rice production.Identifying key germplasm resources with increased resistance remains a challenge.However,the mechanisms underlying disease resistance are... Rice sheath blight(RSB)is a major destructive disease impeding rice production.Identifying key germplasm resources with increased resistance remains a challenge.However,the mechanisms underlying disease resistance are not yet fully understood.Cytochrome P450 monooxygenases(CYP450s)serve biosynthesis and metabolic detoxification functions in plants,but there is limited information about their role in the response induced by RSB.This study demonstrated that CYT02 belongs to the CYP73A100 subfamily and is a typical member of the CYP450s.Overexpression(OE)in rice of the cytochrome P450 monooxygenase cyt02 conferred increased resistance to RSB and increased vegetative tillering.Cyt02 may increase RSB resistance by regulating plant hormone synthesis,regulate reactive oxygen species(ROS)by coordinating the activity of antioxidant enzymes,and initiate phytoalexin synthesis in response to fungal infection.These research findings have laid a foundation for a deeper understanding of the function of cyt02 and offered a potential target gene for breeding rice varieties resistant to sheath blight. 展开更多
关键词 RICE Sheath blight Cytochrome P450 monooxygenase Metabolomics analysis Functional analysis
在线阅读 下载PDF
Optimizing Hybrid with Improved Resistance to Rice Blast and Superior Ratooning Ability 被引量:1
18
作者 LIANG Yi YI Zhaofeng +9 位作者 ZHUANG Wen PENG Teng XIAO Gui JIN Yunkai TANG Qiyuan XIONG Jiaojun DENG Qiyun ZHOU Bo LIU Xionglun WU Jun 《Rice science》 2025年第3期292-297,I0022-I0030,共15页
The ratooning system enhances agricultural efficiency by reducing secondary sowing and resource input while maintaining rice yield parity with double cropping.However,the prolonged growth duration of the rice ratoonin... The ratooning system enhances agricultural efficiency by reducing secondary sowing and resource input while maintaining rice yield parity with double cropping.However,the prolonged growth duration of the rice ratooning system extends the exposure window to Magnaporthe oryzae infection,thereby elevating the probability of disease incidence. 展开更多
关键词 ratooning system double croppinghoweverthe hybrid optimization disease incidence rice blast resistance agricultural efficiency enhances agricultural efficiency magnaporthe oryzae
在线阅读 下载PDF
Optimizing tillage and fertilization practices to improve the carbon footprint and energy efficiency of wheat-maize cropping systems 被引量:1
19
作者 Kun Han Xinzhu Li +5 位作者 Liang Jia Dazhao Yu Wenhua Xu Hongkun Chen Tao Song Peng Liu 《Journal of Integrative Agriculture》 2025年第10期3789-3802,共14页
To make agricultural systems sustainable in terms of their greenness and efficiency,optimizing the tillage and fertilization practices is essential.To assess the effects of tilling and fertilization practices in wheat... To make agricultural systems sustainable in terms of their greenness and efficiency,optimizing the tillage and fertilization practices is essential.To assess the effects of tilling and fertilization practices in wheat-maize cropping systems,a three-year field experiment was designed to quantify the carbon footprint(CF)and energy efficiency of the cropping systems in the North China Plain.The study parameters included four tillage practices(no tillage(NT),conventional tillage(CT),rotary tillage(RT),and subsoiling rotary tillage(SRT))and two fertilizer regimes(inorganic fertilizer(IF)and hybrid fertilizer with organic and inorganic components(HF)).The results indicated that the most prominent energy inputs and greenhouse gas(GHG)emissions could be ascribed to the use of fertilizers and fuel consumption.Under the same fertilization regime,ranking the tillage patterns with respect to the value of the crop yield,profit,CF,energy use efficiency(EUE)or energy productivity(EP)for either wheat or maize always gave the same sequence of SRT>RT>CT>NT.For the same tillage,the energy consumption associated with HF was higher than IF,but its GHG emissions and CF were lower while the yield and profit were higher.In terms of overall performance,tilling is more beneficial than NT,and reduced tillage practices(RT and SRT)are more beneficial than CT.The fertilization regime with the best overall performance was HF.Combining SRT with HF has significant potential for reducing CF and increasing EUE,thereby improving sustainability.Adopting measures that promote these optimizations can help to overcome the challenges posed by a lack of food security,energy crises and ecological stress. 展开更多
关键词 reduced tillage organic fertilizer greenhouse gases C footprint energy use efficiency
在线阅读 下载PDF
The power of small signaling peptides in crop and horticultural plants 被引量:1
20
作者 Chao Ji Hui Li +5 位作者 Zilin Zhang Shuaiying Peng Jianping Liu Yong Zhou Youxin Yang Huibin Han 《The Crop Journal》 2025年第3期656-667,共12页
Small signaling peptides,generally comprising fewer than 100 amino acids,act as crucial signaling molecules in cell-to-cell communications.Upon perception by their membrane-localized corresponding receptors or co-rece... Small signaling peptides,generally comprising fewer than 100 amino acids,act as crucial signaling molecules in cell-to-cell communications.Upon perception by their membrane-localized corresponding receptors or co-receptors,these peptide-receptor modules then(de)activate either long-distance or local signaling pathways,thereby orchestrating developmental and adaptive responses via(post)transcriptional,(post)translational,and epigenetic regulations.The physiological functions of small signaling peptides are implicated in a multitude of developmental processes and adaptive responses,including but not limited to,shoot and root morphogenesis,organ abscission,nodulation,Casparian strip formation,pollen development,taproot growth,and various abiotic stress responses such as aluminum,cadmium,drought,cold,and salinity.Additionally,they play a critical role in response to pathogenic invasions.These small signaling peptides also modulate significant agronomic and horticultural traits,such as fruit size,maize kernel development,fiber elongation,and rice awn formation.Here,we underscore the roles of several small signaling peptide families such as CLE,RALF,EPFL,mi PEP,CEP,IDA/IDL,and PSK in regulating these biological processes.These novel insights will deepen our current understanding of small signaling peptides,and offer innovative strategies for genetic breeding stress-tolerant crops and horticultural plants,contributing to establish sustainable agricultural systems. 展开更多
关键词 Small signaling peptide RECEPTOR Growth and development Abiotic stress Biotic stress Agronomic trait CROP Horticultural plant
在线阅读 下载PDF
上一页 1 2 157 下一页 到第
使用帮助 返回顶部