期刊文献+
共找到113篇文章
< 1 2 6 >
每页显示 20 50 100
Predicting the Yield Loss of Winter Wheat Due to Drought in the Llano Estacado Region of the United States Based on the Cultivar-Specific Sensitivity to Drought
1
作者 Prem Woli Gerald R. Smith +1 位作者 Charles R. Long Francis M. Rouquette Jr. 《Agricultural Sciences》 2025年第1期13-30,共18页
In most agricultural areas in the semi-arid region of the southern United States, wheat (Triticum aestivum L.) production is a primary economic activity. This region is drought-prone and projected to have a drier clim... In most agricultural areas in the semi-arid region of the southern United States, wheat (Triticum aestivum L.) production is a primary economic activity. This region is drought-prone and projected to have a drier climate in the future. Predicting the yield loss due to an anticipated drought is crucial for wheat growers. A reliable way for predicting the drought-induced yield loss is to use a plant physiology-based drought index, such as Agricultural Reference Index for Drought (ARID). Since different wheat cultivars exhibit varying levels of sensitivity to water stress, the impact of drought could be different on the cultivars belonging to different drought sensitivity groups. The objective of this study was to develop the cultivar drought sensitivity (CDS) group-specific, ARID-based models for predicting the drought-induced yield loss of winter wheat in the Llano Estacado region in the southern United States by accounting for the phenological phase-specific sensitivity to drought. For the study, the historical (1947-2021) winter wheat grain yield and daily weather data of two locations in the region (Bushland, TX and Clovis, NM) were used. The logical values of the drought sensitivity parameters of the yield models, especially for the moderately-sensitive and highly-sensitive CDS groups, indicated that the yield models reflected the phenomenon of water stress decreasing the winter wheat yields in this region satisfactorily. The reasonable values of the Nash-Sutcliffe Index (0.65 and 0.72), the Willmott Index (0.88 and 0.92), and the percentage error (23 and 22) for the moderately-sensitive and highly-sensitive CDS groups, respectively, indicated that the yield models for these groups performed reasonably well. These models could be useful for predicting the drought-induced yield losses and scheduling irrigation allocation based on the phenological phase-specific drought sensitivity as influenced by cultivar genotype. 展开更多
关键词 ARID CULTIVAR DROUGHT Model Phase Prediction SEMI-ARID Stage Wheat Yield
在线阅读 下载PDF
Genomic insights into oxalate content in spinach:A genome-wide association study and genomic prediction approach
2
作者 Haizheng Xiong Kenani Chiwina +6 位作者 Waltram Ravelombola Yilin Chen Ibtisam Alatawi Qun Luo Theresa Makawa Phiri Beiquan Mou Ainong Shi 《Horticultural Plant Journal》 2025年第3期1140-1151,共12页
Oxalate content in spinach is a key trait of interest due to its relevance to human health.Understanding the genetic basis of it can facilitate the development of spinach varieties with reduced oxalate levels.In pursu... Oxalate content in spinach is a key trait of interest due to its relevance to human health.Understanding the genetic basis of it can facilitate the development of spinach varieties with reduced oxalate levels.In pursuit of understanding the genetic determinants,a diverse panel comprising 288 spinach accessions underwent thorough phenotyping of oxalate content and were subjected to whole-genome resequencing,resulting in a comprehensive dataset encompassing 14386 single-nucleotide polymorphisms(SNPs).Leveraging this dataset,we conducted a genome-wide association study(GWAS)to identify noteworthy SNPs associated with oxalate content.Furthermore,we employed genomic prediction(GP)via cross-prediction,utilizing five GP models,to assess genomic estimated breeding values(GEBVs)for oxalate content.The observed normal distribution and the wide range of oxalate content,exceeding 600.0 mg$100 g^(-1),underscore the complex and quantitative nature of this trait,likely influenced by multiple genes.Additionally,our analysis revealed distinct stratification,delineating the population into four discernible subpopulations.Furthermore,GWAS analysis employing five models in GAPIT 3 and TASSEL 5 unveiled nine significant SNPs(four SNPs on chromosome 1 and five on chromosome 5)associated with oxalate content.These loci exhibited associations with six candidate genes,which might have potential contribution to oxalate content regulation.Remarkably,our GP models exhibited notable predictive abilities,yielding average accuracies of up to 0.51 for GEBV estimation.The integration of GWAS and GP approaches offers a holistic comprehension of the genetic underpinnings of oxalate content in spinach.These findings offered a promising avenue for the development of spinach cultivars and hybrids optimized for oxalate levels,promoting consumer health. 展开更多
关键词 GWAS Spinach breeding OXALATE Genomic prediction
在线阅读 下载PDF
Genome-Wide Association Study and Genomic Selection for Plant Growth Habit in Peanuts Using the USDA Public Data
3
作者 Aurora Manley Madeline Brown +2 位作者 Waltram Ravelombola John Cason Hanh Pham 《American Journal of Plant Sciences》 CAS 2024年第9期811-834,共24页
Peanut (Arachis hypogaea L.) production is valued at $1.28 billion annually in the USA. Plant growth habit can be used to determine plant population density and cultivation practices a given farmer uses. Erect plants ... Peanut (Arachis hypogaea L.) production is valued at $1.28 billion annually in the USA. Plant growth habit can be used to determine plant population density and cultivation practices a given farmer uses. Erect plants are generally more compact and can be more densely planted unlike plants with more prostrate growth. The objectives of this study were to analyze publicly available datasets to identify single-nucleotide polymorphism (SNP) markers associated with plant growth habit in peanuts and to conduct genomic selection. A genome-wide association study (GWAS) was used to identify SNPs for growth habit type among 775 USDA peanut accessions. A total of 13,306 SNPs were used to conduct GWAS using five statistical models. The models used were single-marker regression, generalized linear model (PCA), generalized linear model (Q), mixed linear model (PCA), and mixed linear model (Q) and a total of 181, 1, 108, 1, and 10 SNPs were found associated with growth habit respectively. Based on this dataset, results showed that genomic selection can achieve up to 61% accuracy, depending on the training population size being used for the prediction. SNP AX-176821681 was found in all models. Gene ontology for this location shows an annotated gene, Araip.0F3YM, found 2485 bp upstream of this SNP and encodes for a peptidyl-prolyl cis-trans isomerase. To the best of our knowledge, this is the first report identifying molecular markers linked to plant growth habit type in peanuts. This finding suggests that a molecular marker can be developed to identify specific plant growth habits in peanuts, enabling early generation selection by peanut breeders. 展开更多
关键词 SNP Cultivated Peanut GS GWAS Growth Habit
在线阅读 下载PDF
Laboratory and numerical modelling of irrigation infiltration and nitrogen leaching in homogeneous soils
4
作者 Lei WU Ruizhi LI +4 位作者 Yan WANG Zongjun GUO Jiaheng LI Hang YANG Xiaoyi MA 《Pedosphere》 SCIE CAS CSCD 2024年第1期146-158,共13页
Nitrogen (N) plays a key role in crop growth and production;however,data are lacking especially regarding the interaction of biochar,grass cover,and irrigation on N leaching in saturated soil profiles.Eighteen soil co... Nitrogen (N) plays a key role in crop growth and production;however,data are lacking especially regarding the interaction of biochar,grass cover,and irrigation on N leaching in saturated soil profiles.Eighteen soil columns with 20-cm diameter and 60-cm height were designed to characterize the effects of different grass cover and biochar combinations,i.e.,bare soil+0%biochar (control,CK),perennial ryegrass+0%biochar (C1),Festuca arundinacea+0%biochar (C2),perennial ryegrass+1%biochar (C3),perennial ryegrass+2%biochar (C4),perennial ryegrass+3%biochar (C5),F.arundinacea+1%biochar (C6),F.arundinacea+2% biochar (C7),and F.arundinacea+3%biochar (C8),on periodic irrigation infiltration and N leaching in homogeneous loess soils from July to December 2020.Leachates in CK were 10.2%–35.3%higher than those in C1 and C2.Both perennial ryegrass and F.arundinacea decreased the volumes of leachates and delayed the leaching process in the 1%,2%,and 3%biochar treatments,and the vertical leaching rate decreased with biochar addition.The N leaching losses were concentrated in the first few leaching tests,and both total N (TN) and nitrate (NO_(3)^(-))-N concentrations in CK and C1–C8 decreased with increasing leaching test times.Biochar addition (1%,2%,and 3%) could further reduce the leaching risk of NO_(3)^(-)-N and the NO_(3)^(-)-N loss decreased with biochar addition.However,compared to 1%biochar,2% biochar promoted the leaching of TN under both grass cover types.The N leaching losses in CK,C1,C2,C3,C4,C6,and C7 were primarily in the form of NO_(3)^(-)-N.Among these treatments,CK,C1,and C2had the highest cumulative leaching fractions NO_(3)^(-)-N (>90%),followed by those in C3,C4,C6,and C7 (>80%).The cumulative leaching fraction of NO_(3)^(-)-N decreased with increasing leaching test times and biochar addition,and 3%biochar addition (i.e.,C5 and C8) reduced it to approximately 50%.The one-dimensional advective-dispersive-reactive transport equation can be used as an effective numerical approach to simulate and predict NO_(3)^(-)-N leaching in saturated homogeneous soils.Understanding the effects of different biochar and grass combinations on N leaching can help us design environmentally friendly interventions to manage irrigated farming ecosystems and reduce N leaching into groundwater. 展开更多
关键词 leaching loss nitrate nitrogen BIOCHAR grass cover analytical modelling
原文传递
Near Infrared Spectroscopy (NIRS) Model-Based Prediction for Protein Content in Cowpea
5
作者 Kavera Biradar Waltram Ravelombola +1 位作者 Aurora Manley Caroline Ruhl 《American Journal of Plant Sciences》 CAS 2024年第3期145-160,共16页
Cowpea (Vigna unguiculata L. Walp) is a multi-purpose legume with high quality protein for human consumption and livestock. The objective of this work was to develop near-infrared spectroscopy (NIRS) prediction models... Cowpea (Vigna unguiculata L. Walp) is a multi-purpose legume with high quality protein for human consumption and livestock. The objective of this work was to develop near-infrared spectroscopy (NIRS) prediction models to estimate protein content in cowpea. A total of 116 cowpea breeding lines with a wide range of protein contents (19.28 % to 32.04%) were selected to build the model using whole seed and ground seed samples. Partial least-squares discriminant analysis (PLS-DA) regression technique with different pre-treatments (derivatives, standard normal variate, and multiplicative scatter correction) were carried out to develop the protein prediction model. Results showed: 1) spectral plots of both the whole seed and ground seed showed higher spectral scatter at higher wavelengths (>1450 nm), 2) data pre-processing affects prediction accuracy for bot whole seed and ground seed samples, 3) prediction using ground seed samples (0.64 R<sup>2</sup> 0.85) is better than the whole seed (0.33 R<sup>2</sup> 0.78), and 4) the data pre-processing second derivative with standard normal variate has the best prediction (R<sup>2</sup>_whole seed = 0.78, R<sup>2</sup>_ground seed = 0.85). The results will be of interest in cowpea breeding programs aimed at improving total seed protein content. 展开更多
关键词 COWPEA GERMPLASM PROTEIN Near-Infrared Spectroscopy (NIRS) Partial Least Squares (PLS)
在线阅读 下载PDF
Estimating the Yield Loss of Winter Wheat from Drought in the United States Southern Plains Region as Influenced by El Niño-Southern Oscillation (ENSO)
6
作者 Prem Woli Gerald R. Smith +1 位作者 Charles R. Long Francis M. Rouquette, Jr. 《Agricultural Sciences》 2024年第9期1018-1034,共17页
Wheat (Triticum aestivum L.) production is a major economic activity in most regional and rural areas in the Southern Plains, a semi-arid region of the United States. This region is vulnerable to drought and is projec... Wheat (Triticum aestivum L.) production is a major economic activity in most regional and rural areas in the Southern Plains, a semi-arid region of the United States. This region is vulnerable to drought and is projected to experience a drier climate in the future. Since the interannual variability in climate in this region is linked to an ocean-atmospheric phenomenon, called El Niño-Southern Oscillation (ENSO), droughts in this region may be associated with ENSO. Droughts that occur during the critical growth phases of wheat can be extremely costly. However, the losses due to an impending drought can be minimized through mitigation measures if it is predicted in advance. Predicting the yield loss from an imminent drought is crucial for stakeholders. One of the reliable ways for such prediction is using a plant physiology-based agricultural drought index, such as Agricultural Reference Index for Drought (ARID). This study developed ENSO phase-specific, ARID-based models for predicting the drought-induced yield loss for winter wheat in this region by accounting for its phenological phase-specific sensitivity to drought. The reasonable values of the drought sensitivity coefficients of the yield model for each ENSO phase (El Niño, La Niña, or Neutral) indicated that the yield models reflected reasonably well the phenomena of water stress decreasing the winter wheat yields in this region during different ENSO phases. The values of various goodness-of-fit measures used, including the Nash-Sutcliffe Index (0.54 to 0.67), the Willmott Index (0.82 to 0.89), and the percentage error (20 to 26), indicated that the yield models performed fairly well at predicting the ENSO phase-specific loss of wheat yields from drought. This yield model may be useful for predicting yield loss from drought and scheduling irrigation allocation based on the phenological phase-specific sensitivity to drought as impacted by ENSO. 展开更多
关键词 ARID DROUGHT Drought Index ENSO El Niño Growth-Stage Model Phenological-Phase Prediction Semi-Arid Wheat Yield Loss
在线阅读 下载PDF
Estimating the Drought-Induced Yield Loss for Winter Wheat in a Semi-Arid Region of the Southern United States Using a Drought Index
7
作者 Prem Woli Qingwu Xue +2 位作者 Gerald R. Smith Charles R. Long Francis M. Rouquette Jr. 《Agricultural Sciences》 2024年第8期812-829,共18页
The economy of most rural locations in the semi-arid region of Llano Estacado in the southern United States is predominantly based on agriculture, primarily beef and wheat (Triticum aestivum L.) production. This regio... The economy of most rural locations in the semi-arid region of Llano Estacado in the southern United States is predominantly based on agriculture, primarily beef and wheat (Triticum aestivum L.) production. This region is prone to drought and is projected to experience a drier climate. Droughts that coincide with the critical phenological phases of a crop can be remarkably costly. Although drought cannot be prevented, its losses can be minimized through mitigation measures if it is predicted in advance. Predicting yield loss from an imminent drought is an important need of stakeholders. One way to fulfill this need is using an agricultural drought index, such as the Agricultural Reference Index for Drought (ARID). Being plant physiology-based, ARID can represent drought-yield relationships accurately. This study developed an ARID-based yield model for predicting the drought-induced yield loss for winter wheat in this region by accounting for its phenological phase-specific sensitivity to water stress. The reasonable values of the drought sensitivity coefficients of the yield model indicated that it could reflect the phenomenon of water stress decreasing the winter wheat yields in this region reasonably. The values of the various metrics used to evaluate the model, including Willmott Index (0.86), Nash-Sutcliffe Index (0.61), and percentage error (26), indicated that the yield model performed fairly well at predicting the drought-induced yield loss for winter wheat. The yield model may be useful for predicting the drought-induced yield loss for winter wheat in the study region and scheduling irrigation allocation based on phenological phase-specific drought sensitivity. 展开更多
关键词 ARID DROUGHT Drought index Growth-stage Model Phenological-Phase Prediction SEMI-ARID Wheat Yield
在线阅读 下载PDF
Legume Green Manure and Intercropping for High Biomass Sorghum Production
8
作者 Clark B. Neely Francis M. Rouquette Jr. +3 位作者 Cristine L. S. Morgan Frank M. Hons William L. Rooney Gerald R. Smith 《Agricultural Sciences》 2024年第6期605-621,共17页
Before the advent of cheap, synthetic fertilizers, legumes were commonly used as green manure crops for their ability to fix atmospheric nitrogen (N). A three-year study at Overton, TX examined legume integration into... Before the advent of cheap, synthetic fertilizers, legumes were commonly used as green manure crops for their ability to fix atmospheric nitrogen (N). A three-year study at Overton, TX examined legume integration into high-biomass sorghum (Sorghum bicolor L.) production systems on a Lilbert loamy fine sand recently cultivated after a fertilized bermudagrass [Cynodon dactylon (L.) Pers.] pasture. In this split-split plot design, ‘Dixie’ crimson clover (Trifolium incarnatum L.) and ‘Iron and Clay’ cowpea (Vigna unguiculata L.) were integrated into a high-biomass sorghum production system to evaluate impacts on N concentration, C concentration, and yield of high-biomass sorghum and their impacts on soil total N and soil organic carbon (SOC). Main plots were split into crimson clover green manure (CLGM) and winter fallow (FALL) followed by three sub-plots split into warm-season crop rotations: cowpea green manure (CPGM), cowpea-sorghum intercrop (CPSR), and sorghum monocrop (SORG). Three N fertilizer treatments (0, 45, 90 kg N∙ha−1) were randomized and applied as sub-sub plots. The CLGM increased (P sorghum biomass yield (16.5 t DM∙ha−1) 28% in year three but had no effect in the first two years. The CPSR treatment reduced sorghum yield up to 62% compared to SORG;whereas CPGM increased sorghum yield 56% and 18% the two years following cowpea incorporation. Rate of N fertilizer had no effect on sorghum biomass yield. Decrease in SOC and soil N over time indicated mineralization of organic N and may explain why no N fertilizer response was observed in sorghum biomass yield. Cowpea showed strong potential as a green manure crop but proved to be too competitive for successful intercropping in high-biomass sorghum production systems. 展开更多
关键词 High-Biomass Sorghum Legumes Green Manure INTERCROP COWPEA Crimson Clover Soil Organic Carbon Soil Nitrogen
在线阅读 下载PDF
Impact on Soil Organic C and Total Soil N from Cool- and Warm-Season Legumes Used in a Green Manure-Forage Cropping System
9
作者 Clark B. Neely Francis M. Rouquette Jr. +3 位作者 Cristine L.S. Morgan Frank M. Hons William L. Rooney Gerald R. Smith 《Agricultural Sciences》 2024年第3期333-357,共25页
Annual forage legumes are important components of livestock production systems in East Texas and the southeastern US. Forage legumes contribute nitrogen (N) to cropping systems through biological N fixation, and their... Annual forage legumes are important components of livestock production systems in East Texas and the southeastern US. Forage legumes contribute nitrogen (N) to cropping systems through biological N fixation, and their seasonal biomass production can be managed to complement forage grasses. Our research objectives were to evaluate both warm- and cool-season annual forage legumes as green manure for biomass, N content, ability to enhance soil organic carbon (SOC) and soil N, and impact on post season forage grass crops. Nine warm-season forage legumes (WSL) were spring planted and incorporated as green manure in the fall. Forage rye (Secale cereale L.) was planted following the incorporation of WSL treatments. Eight cool-season forage legumes (CSL) were fall planted in previously fallow plots and incorporated as green manure in late spring. Sorghum-sudangrass (Sorghum bicolor x Sorghum bicolor var. sudanense) was planted over all treatments in early summer after forage rye harvest and incorporation of CSL treatments. Sorghum-sudangrass was harvested in June, August and September, and treatments were evaluated for dry matter and N concentration. Soil cores were taken from each plot, split into depths of 0 to 15, 15 to 30 and 30 to 60 cm, and soil C and N were measured using combustion analysis. Nylon mesh bags containing plant samples were buried at 15 cm and used to evaluate decomposition rate of above ground legume biomass, including change in C and N concentrations. Mungbean (Vigna radiata L. [Wilczek]) had the highest shoot biomass yield (6.24 t DM ha<sup>-1</sup>) and contributed the most total N (167 kg∙ha<sup>-1</sup>) and total C (3043 kg∙ha<sup>-1</sup>) of the WSL tested. Decomposition rate of WSL biomass was rapid in the first 10 weeks and very slow afterward. Winter pea (Pisum sativum L. spp. sativum), arrow leaf clover (Trifolium vesiculosum Savi.), and crimson clover (Trifolium incarnatum L.) were the most productive CSL in this trial. Austrian winter pea produced 8.41 t DM ha<sup>-1</sup> with a total N yield of 319 kg N ha<sup>-1</sup> and total C production of 3835 kg C ha<sup>-1</sup>. The WSL treatments had only small effects on rye forage yield and N concentration, possibly due to mineralization of N from a large SOC pool already in place. The CSL treatments also had only minimal effects on sorghum-sudangrass forage production. Winter pea, arrow leaf and crimson clover were productive cool season legumes and could be useful as green manure crops. Mungbean and cowpea (Vigna unguiculata [L.] Walp.) were highly productive warm season legumes but may include more production risk in green manure systems due to soil moisture competition. 展开更多
关键词 Annual Legumes Soil N Soil Organic C Green Manure Deer Browse Forage Cropping Systems
在线阅读 下载PDF
A changing river:Long-term changes of sinuosity and land cover in the Navasota River Watershed,Texas
10
作者 Edward C.Rhodes Rocky Talchabhadel Taylor Jordan 《River》 2024年第2期152-165,共14页
The Navasota River Basin,itself a tributary of the Brazos River in Texas,is a dynamic watershed undergoing many natural and anthropogenic changes.Local stakeholder involvement in this watershed is quite high,and many ... The Navasota River Basin,itself a tributary of the Brazos River in Texas,is a dynamic watershed undergoing many natural and anthropogenic changes.Local stakeholder involvement in this watershed is quite high,and many landowners in the southern portion of the watershed have concerns regarding the increasing frequency and duration of flooding on private property adjacent to the river,often attributing these impacts to the construction of the Lake Limestone dam.In this study,we examine historical flow data,channel morphology,land use/land cover,and precipitation.Our findings indicate that while there appears to be increasing flow in the northern portion of the watershed,temporal data gaps near the watershed outfall prevent the indication of such a trend in the southern portion of the watershed.Nevertheless,other natural and anthropogenic factors are evident in the watershed that may have a significant influence on downstream flooding.Overall river sinuosity(meandering)declined over the study period,with some river segments encountering significant straightening.Total river length declined by 4.3 km from 1972 to 2020.The number and length of offtake channels also decreased substantially during this period.Land use/land cover use shifted dramatically,with a 39.2%increase in impervious cover and a 12.5%decrease in herbaceous cover since 1972.Finally,yearly precipitation increased,with the change point occurring in 1972.Our findings suggest that the shortening and straightening of the river has reduced its volumetric capacity over time.Coupled with increasing impervious surface cover and precipitation,more water is being delivered downstream at a rate exceeding the watershed's ability to discharge it,thereby contributing to flooding issues expressed by stakeholders.We recommend that bathymetric data and supplemental flow monitoring and modeling within the watershed is needed to fully understand how anthropogenic and natural forces may further affect streamflow in the future. 展开更多
关键词 fluvial geomorphology land use MEANDERING surface water URBANIZATION
在线阅读 下载PDF
Assessment of Agricultural Soil Quality Indices Using Mechanistic Models
11
作者 Mohammadali Nikpey Javad Robatjazi +3 位作者 Shahabeddin Garmehei Hendra Gonsalve W. Lasar Nguyen Khoi Nghia Benjamin Kwadwo Agyei 《Open Journal of Soil Science》 2024年第6期333-352,共20页
Assessing soil quality is a critical strategy for diagnosing soil status and anticipating concerns in land use systems for agricultural sustainability. In this study, two soil quality assessment indices, the Integrate... Assessing soil quality is a critical strategy for diagnosing soil status and anticipating concerns in land use systems for agricultural sustainability. In this study, two soil quality assessment indices, the Integrated Quality Index (IQI) and Nemoro Quality Index (NQI), were employed using two indicator selection methods: Total Data Set (TDS) and Minimum Data Set (MDS), focusing on agricultural fields in Golestan province, Iran. A total of 89 soil samples were collected and analyzed for particle size distribution, organic carbon, calcium carbonate equivalent (CCE), electrical conductivity (EC), pH, and plant-essential nutrients, including nitrogen, phosphorus, potassium, zinc, copper, manganese, and iron. Principal component analysis (PCA) was used to extract MDS from TDS, and geostatistical adaptation and correlation analyses were performed to determine the optimal soil quality evaluation index. Our results show that the exponential model better suits the spatial structure of soil quality indicators (IQIMDS: 0.955). Conformity and correlation analyses indicate that the IQI index outperformed the NQI index in estimating soil quality. The superiority of the TDS technique over the MDS technique in terms of accuracy (IQITDSs kappa: 0.155). Linear relationships between different methods showed a higher correlation coefficient (R2 = 0.43) through the application of IQI. This study suggests the use of IQIMDS to provide a reliable measurement that is particularly useful in assessing the quality of agricultural soil. 展开更多
关键词 Soil Quality Geographic Information System Integrated Quality Index Nemoro Quality Index
在线阅读 下载PDF
寄生蜂取食寄主特性及其在害虫生物防治中的作用 被引量:23
12
作者 史树森 臧连生 +2 位作者 刘同先 阮长春 孙光芝 《昆虫学报》 CAS CSCD 北大核心 2009年第4期424-433,共10页
许多寄生性天敌昆虫的雌虫不仅寄生寄主,而且还能取食寄主。在卵育型(synovigenic)寄生蜂类群中,取食寄主行为是较为普遍的现象。本文综合近20年相关研究进展,从寄生蜂类群、取食类型、生态学意义及影响因子等方面对寄生蜂的取食寄主行... 许多寄生性天敌昆虫的雌虫不仅寄生寄主,而且还能取食寄主。在卵育型(synovigenic)寄生蜂类群中,取食寄主行为是较为普遍的现象。本文综合近20年相关研究进展,从寄生蜂类群、取食类型、生态学意义及影响因子等方面对寄生蜂的取食寄主行为进行了归纳总结。寄生蜂通过取食不仅可以杀死寄主,直接起到控制害虫种群数量的作用,还能通过取食策略为卵的成熟和再生提供营养来源,对延长雌虫的寿命也有一定的帮助。对取食寄主行为的了解可为筛选优势寄生性天敌种类、评估寄生蜂在害虫生物防治中的作用提供重要信息。 展开更多
关键词 取食寄主行为 寄生 卵育型寄生蜂 天敌 生物防治
原文传递
基于中分辨卫星影像的农用航空喷药效果评估(英文) 被引量:6
13
作者 张东彦 兰玉彬 +4 位作者 王秀 周新根 陈立平 李斌 马伟 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2016年第6期1971-1977,共7页
遥感技术能被用于大尺度作物化学喷药效果检测,这为精准农业航空施药发展提供了重要的技术支撑。利用M-18B农用飞机在4米的飞行高度喷施化学农药混合剂(杀菌剂和植物生长调节剂),去控制水稻爆发性疾病--叶片纹枯病和促进水稻植株的生长... 遥感技术能被用于大尺度作物化学喷药效果检测,这为精准农业航空施药发展提供了重要的技术支撑。利用M-18B农用飞机在4米的飞行高度喷施化学农药混合剂(杀菌剂和植物生长调节剂),去控制水稻爆发性疾病--叶片纹枯病和促进水稻植株的生长。施药一周后,喷药区的卫星影像被获取并计算植被指数,同时采集了地面化学农药的药液沉积量。分析了药液雾滴沉积量和植被指数的关系,结果显示,单相光谱特征(NDVI)和液滴沉积点密度(DDPD点·cm^(-2))的相关系数是0.315,p-value为0.035;时间变化特征(MSAVI)和液滴沉积体积密度(DDVDμL·cm^(-2))之间的相关系数是0.312,p-value为0.038。另外,水稻生长活力最旺盛的范围都出现在喷洒区域内,植株活力随着药液漂移距离的增加逐步减少。同时,相同的变化趋势也出现在雾滴沉积量与光谱特征的空间变化插值图中。由此得知,从卫星图像中计算的植被指数NDVI和MSAVI,可以用来评估大尺度农田的农用航空药液喷洒效果。 展开更多
关键词 卫星影像 植被指数 航空喷药 雾滴沉积 漂移
在线阅读 下载PDF
Comparison of Organ Morphology and Yield Composition in Different Rice Cultivars
14
作者 严定春 王勋 +1 位作者 L.T.Wilson Y. Yang 《Agricultural Science & Technology》 CAS 2012年第10期2088-2092,2151,共6页
[Objective] The study aimed to compare the difference of organ morphology and yield composition in 10 rice cultivars with 3 sowing date,and to correlate leaf length and plant height with exogenous variables like tempe... [Objective] The study aimed to compare the difference of organ morphology and yield composition in 10 rice cultivars with 3 sowing date,and to correlate leaf length and plant height with exogenous variables like temperature accumulation and sunshine duration.[Method] Detailed data of organ morphology and yield component were obtained and analyzed through repeated field observations and destructive samplings over the growing season,including leaf length,node number,tiller number,plant height and grain yield of 10 rice cultivars(Takanari,IR72,Sankeiso,CH86,IR65564-44-2-2,Nipponbare,Takenari,Banten,WAB450-1-B-P-38-HB,Wuxiangjing 9) with 3 sowing dates(May 11,May 22,and June 19,2002).[Result] Max leaf length for each node increased at the early growth stage and decreased at the later growth stage.The leaf length of CH86 and Banten was the maximum in 4 Indica cultivars and 6 Japonica cultivars,respectively.Node number and plant height decreased with the later sowing date,and that of CH86 was the maximum.The maximum grain yield was found in Wuxiangjing 9,and the greatest genotypic variation existed in rice yield,panicle number,spikelet per panicle,and grain weight;the grain yield ranged from 4 358 to 7 443 kg ha-1;the panicle number ranged from 158×104 to 330×104 ha-1;no direct correlation between yield,tiller number and plant height was observed in this experiment.[Conclusion] Empirical regression fitting of the resulting data was developed for leaf length and plant height prediction and yield component comparison,which could be used to construct deeper and more mechanistic models or to optimize rice growing conditions. 展开更多
关键词 LEAF Plant height YIELD GDD Sunshine duration
在线阅读 下载PDF
低空遥感平台下可见光与多光谱传感器在水稻纹枯病病害评估中的效果对比研究 被引量:24
15
作者 赵晓阳 张建 +3 位作者 张东彦 周新根 刘小辉 谢静 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2019年第4期1192-1198,共7页
高效无损地评估农作物病害等级,对于实际农业生产和研究都具有重要意义。研究探讨了基于低空无人机遥感平台进行水稻纹枯病病害等级评估的可行性,分析可见光与多光谱传感器的光谱响应差异及其对感病水稻光谱反射率获取的影响,并定量对... 高效无损地评估农作物病害等级,对于实际农业生产和研究都具有重要意义。研究探讨了基于低空无人机遥感平台进行水稻纹枯病病害等级评估的可行性,分析可见光与多光谱传感器的光谱响应差异及其对感病水稻光谱反射率获取的影响,并定量对比两种传感器的病害监测效果。实验研究区由67个不同品种的水稻小区组成,每块小区均分为相接的纹枯病接种区和侵染区。以大疆精灵Phantom 3 Advanced小型消费级无人机作为搭载平台,分别搭载该无人机系统自带的可见光传感器和MicasenseRedEdge^(TM)多光谱传感器获取遥感影像。同时,通过植保专家现场调查的方式识别病害等级,并利用Trimble公司的手持式NDVI测量仪获取实测NDVI值。基于影像拼接、波段叠合、辐射校正后的预处理结果,对可见光图像的接种区和侵染区共134个小区计算七种可见光植被指数,即NDI(normalized difference index), ExG(excess green), ExR(excess red), ExG-ExR, B~*, G~*, R~*,多光谱图像除上述可见光指数外再计算NDVI(normalized difference vegetation index), RVI(ratio vegetation index)和NDWI(normalized difference water Index)三种多光谱植被指数。将计算得到的图像植被指数与地面实测NDVI进行相关性分析,以选取两种传感器的最优图像植被指数建立水稻纹枯病病害等级反演模型。相关性分析结果表明,基于多光谱传感器计算的图像NDVI与实测NDVI拟合度最高,接种区R^2为0.914, RMSE为0.024,侵染区R^2为0.863, RMSE为0.024。对于可见光传感器, NDI与实测NDVI的相关性最好,接种区R^2为0.875, RMSE为0.011,侵染区R^2为0.703, RMSE为0.014。比较两种传感器两种区域的同一图像植被指数与实测NDVI的一致性,除B~*外, NDI, ExR, ExG-ExR, G~*, ExG, R~*与实测NDVI基本属于高度相关,在病害严重的接种区,两种传感器对水稻纹枯病的监测效果相近,但在病害相对较轻的侵染区,多光谱传感器的监测更为精确灵敏。基于多光谱图像NDVI建立的病害等级反演模型,R^2达到0.624, RMSE为0.801,预测精度达到90.04%,模型效果良好。而基于可见光图像NDI建立的反演模型,R^2为0.580, RMSE为0.847,预测精度为89.45%,效果稍差。对比分析可见光与多光谱传感器的光谱响应曲线,可见光传感器可获取可见光范围的红、绿、蓝三个波段,波段范围互相重叠,多光谱传感器包含五个成像单元,可独立获取从可见光到近红外的五个窄波光谱波段,提供更加准确的光谱信息。比较传感器获取的接种区和侵染区水稻平均反射率曲线得出,多光谱传感器不仅在可见光波段反映了较可见光传感器更强的差异,在红边和近红外波段差异则更加明显,这说明专业窄波段传感器在病害监测方面较宽波段消费级传感器更有优势。综上所述,基于可见光与多光谱传感器的低空无人机遥感平台进行水稻纹枯病病害等级评估是可行的,多光谱传感器精确灵敏,可用于纹枯病的早期监测,可见光传感器效果稍差但经济易于推广。研究结果为病虫害防治提供决策支持,有助于推动实现精准农业,保障粮食安全。 展开更多
关键词 多光谱传感器 可见光传感器 低空遥感 水稻纹枯病 病害等级评估 植被指数
在线阅读 下载PDF
Effects of saline irrigation on soil salt accumulation and grain yield in the winter wheat-summer maize double cropping system in the low plain of North China 被引量:15
16
作者 LIU Xiu-wei Til Feike +3 位作者 CHEN Su-ying SHAO Li-wei SUN Hong-yong ZHANG Xi-ying 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2016年第12期2886-2898,共13页
In the dominant winter wheat (WW)-summer maize (SM) double cropping system in the low plain located in the North China, limited access to fresh water, especially during dry season, constitutes a major obstacle to ... In the dominant winter wheat (WW)-summer maize (SM) double cropping system in the low plain located in the North China, limited access to fresh water, especially during dry season, constitutes a major obstacle to realize high crop productivity. Using the vast water resources of the saline upper aquifer for irrigation during WW jointing stage, may help to bridge the peak of dry season and relieve the tight water situation in the region. A field experiment was conducted during 2009-2012 to investigate the effects of saline irrigation during WW jointing stage on soil salt accumulation and productivity of WW and SM. The experiment treatments comprised no irrigation (T1), fresh water irrigation (T2), slightly saline water irrigation (T3:2.8 dS m-l), and strongly saline water irrigation (T4:8.2 dS m-1) at WW jointing stage. With regard to WW yields and aggregated annual WW-SM yields, clear benefits of saline water irrigation (T3 & T4) compared to no irrigation (T1), as well as insignificant yield losses compared to fresh water irrigation (T2) occurred in all three experiment years. However, the increased soil salinity in eady SM season in consequence of saline irrigation exerted a negative effect on SM photosynthesis and final yield in two of three experiment years. To avoid the negative aftereffects of saline irrigation, sufficient fresh water irrigation during SM sowing phase (i.e., increase from 60 to 90 mm) is recommended to guarantee good growth conditions during the sensitive early growing period of SM. The risk of long-term accumulation of salts as a result of saline irrigation during the peak of dry season is considered low, due to deep leaching of salts during regularly occurring wet years, as demonstrated in the 2012 experiment year. Thus, applying saline water irrigation at jointing stage of WW and fresh water at sowing of SM is most promising to realize high yield and fresh irrigation water saving. 展开更多
关键词 winter wheat summer maize soil salinity saline water irrigation salt balance
在线阅读 下载PDF
Effect of Source-Sink Manipulation on Photosynthetic Characteristics of Flag Leaf and the Remobilization of Dry Mass and Nitrogen in Vegetative Organs of Wheat 被引量:7
17
作者 ZHANG Ying-hua SUN Na-na +6 位作者 HONG Jia-pei ZHANG Qi WANG Chao XUE Qing-wu ZHOU Shun-li HUANG Qin WANG Zhi-min 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2014年第8期1680-1690,共11页
The photosynthetic characteristics of flag leaf and the accumulation and remobilization of pre-anthesis dry mass(DM) and nitrogen(N) in vegetable organs in nine wheat cultivars under different source-sink manipula... The photosynthetic characteristics of flag leaf and the accumulation and remobilization of pre-anthesis dry mass(DM) and nitrogen(N) in vegetable organs in nine wheat cultivars under different source-sink manipulation treatments including defoliation(DF), spike shading(SS) and half spikelets removal(SR) were investigated. Results showed that the SS treatment increased the photosynthetic rate(Pn) of flag leaf in source limited cultivar, but had no significant effect on sink limited cultivar. The SR treatment decreased the Pn of flag leaf. Grain DM accumulation was limited by source in some cultivars, in other cultivars, it was limited by sink. Grain N accumulation was mainly limited by source supply. The contribution of pre-anthesis dry mass to grain yield from high to low was stem, leaf and chaff, while the contribution of pre-anthesis N to grain N from high to low was leaf, stem and chaff. Cultivars S7221 and TA9818 can increase the contribution of remobilization of DM and N to grain at the maximum ratio under reducing source treatments, which may be the major reason for these cultivars having lower decrease in grain yield and N content under reducing source treatments. 展开更多
关键词 genotypic variation remobilization of pre-anthesis dry mass and nitrogen source-sink treatment WHEAT
在线阅读 下载PDF
Soil Enzyme Activities and Organic Matter Composition Affected by 26 Years of Continuous Cropping 被引量:13
18
作者 Fugen DOU Alan L.WRIGHT +2 位作者 Rao S.MYLAVARAPU JIANG Xianjun John E.MATOCHA 《Pedosphere》 SCIE CAS CSCD 2016年第5期618-625,共8页
The study was to determine the long-term effects of subtropical monoculture and rotational cropping systems and fertilization on soil enzyme activities and soil C, N, and P levels. Cropping systems included continuous... The study was to determine the long-term effects of subtropical monoculture and rotational cropping systems and fertilization on soil enzyme activities and soil C, N, and P levels. Cropping systems included continuous sorghum(Sorghum bicolor L.), cotton(Gossypium hirsutum L.), corn(Zea mays L.), and cotton/sorghum rotations after 26 years of treatment imposition. Soil under continuous sorghum and continuous corn had 15% and 11%, respectively, greater C concentrations than soil under continuous cotton.Organic C was 10% higher at 0–7.5 cm than at 7.5–15 cm. Total N followed similar trends with soil depth as organic C. Continuous sorghum had 19% higher total N than other crop species and rotations. With fertilization, continuous cotton had the highest total P at 0–7.5 cm and sorghum had the highest at 7.5–15 cm. Soil total P was 14% higher at 0–7.5 than at 7.5–15 cm, and fertilization increased 15% total P compared to unfertilized soil. Arylsulfatase, alkaline phosphatase, and β-d-glucosidase activity were the highest for sorghum and the lowest for cotton. Rotation increased enzyme activities compared to continuous cotton but not for continuous sorghum. Of all crop species and rotations, continuous cotton generally showed the lowest levels of organic matter and enzyme activities after 26 years. Fertilization significantly increased the yields for all cropping systems, but rotation had no significant effect on either sorghum or cotton lint yield compared to each crop grown in monoculture. Long-term cropping did not increase soil organic matter levels beyond short-term gains, indicating the difficulty in promoting C sequestration in subtropical soils. 展开更多
关键词 C sequestration FERTILIZATION MONOCULTURE ROTATION subtropical soil
原文传递
The effects of soil moisture and salinity as functions of groundwater depth on wheat growth and yield in coastal saline soils 被引量:6
19
作者 ZHANG He LI Yan +5 位作者 MENG Ya-li CAO Nan LI Duan-sheng ZHOU Zhi-guo CHEN Bing-lin DOU Fu-gen 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2019年第11期2472-2482,共11页
In the coastal saline soils,moisture and salinity are the functions of groundwater depth affecting crop growth and yield.Accordingly,the objectives of this study were to:1)investigate the combined effects of moisture ... In the coastal saline soils,moisture and salinity are the functions of groundwater depth affecting crop growth and yield.Accordingly,the objectives of this study were to:1)investigate the combined effects of moisture and salinity stresses on wheat growth as affected by groundwater depth,and 2)find the optimal groundwater depth for wheat growth in coastal saline soils.The groundwater depths(0.7,1.1,1.5,1.9,2.3,and 2.7 m during 2013-2014(Y1)and 0.6,1.0,1.4,1.8,2.2,and 2.6 m during 2014-2015(Y2))of the field experiment were maintained by soil columns.There was a positive correlation between soil moisture and salinity.Water logging with high salinity(groundwater depth at 0.7 m in Y1 and 0.6 m in Y2)showed a greater decline towards wheat growth than that of slight drought with medium(2.3 m in Y1)or low salinity(2.7 m in Y1,2.2 and 2.6 m in Y2).The booting stage was the most sensitive stage of wheat crop under moisture and salinity stresses.Data showed the most optimal rate of photosynthesis,grain yield,and flour quality were obtained under the groundwater depth(ditch depth)of 1.9 m(standard soil moisture with medium salinity)and 2.3 m(slight drought with medium salinity)in Y1 and 1.8 m(standard soil moisture with medium salinity)and 2.2 m(slight drought with low salinity)in Y2.The corresponding optimal soil relative moisture content and conductivity with the 1:5 distilled water/soil dilution,in the depth of 0-20 cm and 20-40 cm in coastal saline soils,were equal to 58.67-63.07%and 65.51-72.66%in Y1,63.09-66.70%and 69.75-74.72%in Y2;0.86-1.01 dS m^-1 and 0.63-0.77 dS m^-1 in Y1,0.57-0.93 dS m^-1 and 0.40-0.63 dS m^-1 in Y2,respectively. 展开更多
关键词 COUPLE stress SOIL relative moisture content SOIL CONDUCTIVITY PHOTOSYNTHESIS growth stage
在线阅读 下载PDF
Co-incorporation of rice straw and leguminous green manure can increase soil available nitrogen(N)and reduce carbon and N losses:An incubation study 被引量:19
20
作者 Guopeng ZHOU Weidong CAO +5 位作者 Jinshun BAI Changxu XU Naohua ZENG Songjuan GAO Robert M.REES Fugen DOU 《Pedosphere》 SCIE CAS CSCD 2020年第5期661-670,共10页
Returning rice straw and leguminous green manure alone or in combination to soil is effective in improving soil fertility in South China.Despite the popularity of this practice,our understanding o f the underlying pro... Returning rice straw and leguminous green manure alone or in combination to soil is effective in improving soil fertility in South China.Despite the popularity of this practice,our understanding o f the underlying processes for straw and manure combined application is relatively poor.In this study,rice straw(carbon(C)/nitrogen(N)ratio of 63),green manure(hairy vetch,C/N ratio of 14),and their mixtures(C/N ratio of 25 and 35)were added into a paddy soil,and their effects on soil N availability and C or N loss under waterlogged conditions were evaluated in a 100-d incubation experiment.All plant residue treatments significantly enhanced C〇2 and CH4 emissions,but decreased N2O emission.Dissolved organic C(DOC)and N(DON)and microbial biomass C in soil and water-soluble organic C and N and mineral N in the upper aqueous layer above soil were also enhanced by all the plant residue treatments except the rice straw treatment,and soil microbial biomass N and mineral N were lower in the rice straw treatment than in the other treatments.Changes in plant residue C/N ratio,DOC/DON ratio,and cellulose content significantly affected greenhouse gas emissions and active C and N concentrations in soil.Additionally,the treatment with green manure alone yielded the largest C and N losses,and incorporation of the plant residue mixture with a C/N ratio of 35 caused the largest net global warming potential(nGWP)among the amended treatments.In conclusion,the co-incorporation of rice straw and green manure can alleviate the limitation resulting from only applying rice straw(N immobilization)or the sole application of leguminous green manure(high C and N losses),and the residue mixture with a C/N ratio of 25 is a better option because of lower nGWP. 展开更多
关键词 active C and N pools C/N ratio global warming potential greenhouse gas plant residues straw returning
原文传递
上一页 1 2 6 下一页 到第
使用帮助 返回顶部