Parkinson's disease is primarily caused by the loss of dopaminergic neurons in the substantia nigra compacta.Ferroptosis,a novel form of regulated cell death characterized by iron accumulation and lipid peroxidati...Parkinson's disease is primarily caused by the loss of dopaminergic neurons in the substantia nigra compacta.Ferroptosis,a novel form of regulated cell death characterized by iron accumulation and lipid peroxidation,plays a vital role in the death of dopaminergic neurons.However,the molecular mechanisms underlying ferroptosis in dopaminergic neurons have not yet been completely elucidated.NADPH oxidase 4 is related to oxidative stress,however,whether it regulates dopaminergic neuronal ferroptosis remains unknown.The aim of this study was to determine whether NADPH oxidase 4 is involved in dopaminergic neuronal ferroptosis,and if so,by what mechanism.We found that the transcriptional regulator activating transcription factor 3 increased NADPH oxidase 4 expression in dopaminergic neurons and astrocytes in an 1-methyl-4-phenyl-1,2,3,6 tetrahydropyridine-induced Parkinson's disease model.NADPH oxidase 4 inhibition improved the behavioral impairments observed in the Parkinson's disease model animals and reduced the death of dopaminergic neurons.Moreover,NADPH oxidase 4 inhibition reduced lipid peroxidation and iron accumulation in the substantia nigra of the Parkinson's disease model animals.Mechanistically,we found that NADPH oxidase 4 interacted with activated protein kinase Cαto prevent ferroptosis of dopaminergic neurons.Furthermore,by lowering the astrocytic lipocalin-2 expression,NADPH oxidase 4 inhibition reduced 1-methyl-4-phenyl-1,2,3,6 tetrahydropyridine-induced neuroinflammation.These findings demonstrate that NADPH oxidase 4 promotes ferroptosis of dopaminergic neurons and neuroinflammation,which contribute to dopaminergic neuron death,suggesting that NADPH oxidase 4 is a possible therapeutic target for Parkinson's disease.展开更多
Subarachnoid hemorrhage leads to a series of pathological changes,including vascular spasm,cellular apoptosis,blood–brain barrier damage,cerebral edema,and white matter injury.Microglia,which are the key immune cells...Subarachnoid hemorrhage leads to a series of pathological changes,including vascular spasm,cellular apoptosis,blood–brain barrier damage,cerebral edema,and white matter injury.Microglia,which are the key immune cells in the central nervous system,maintain homeostasis in the neural environment,support neurons,mediate apoptosis,participate in immune regulation,and have neuroprotective effects.Increasing evidence has shown that microglia play a pivotal role in the pathogenesis of subarachnoid hemorrhage and affect the process of injury and the prognosis of subarachnoid hemorrhage.Moreover,microglia play certain neuroprotective roles in the recovery phase of subarachnoid hemorrhage.Several approaches aimed at modulating microglia function are believed to attenuate subarachnoid hemorrhage injury.This provides new targets and ideas for the treatment of subarachnoid hemorrhage.However,an in-depth and comprehensive summary of the role of microglia after subarachnoid hemorrhage is still lacking.This review describes the activation of microglia after subarachnoid hemorrhage and their roles in the pathological processes of vasospasm,neuroinflammation,neuronal apoptosis,blood–brain barrier disruption,cerebral edema,and cerebral white matter lesions.It also discusses the neuroprotective roles of microglia during recovery from subarachnoid hemorrhage and therapeutic advances aimed at modulating microglial function after subarachnoid hemorrhage.Currently,microglia in subarachnoid hemorrhage are targeted with TLR inhibitors,nuclear factor-κB and STAT3 pathway inhibitors,glycine/tyrosine kinases,NLRP3 signaling pathway inhibitors,Gasdermin D inhibitors,vincristine receptorαreceptor agonists,ferroptosis inhibitors,genetic modification techniques,stem cell therapies,and traditional Chinese medicine.However,most of these are still being evaluated at the laboratory stage.More clinical studies and data on subarachnoid hemorrhage are required to improve the treatment of subarachnoid hemorrhage.展开更多
The E3 ubiquitin ligase,carboxyl terminus of heat shock protein 70(Hsp70)interacting protein(CHIP),also functions as a co-chaperone and plays a crucial role in the protein quality control system.In this study,we aimed...The E3 ubiquitin ligase,carboxyl terminus of heat shock protein 70(Hsp70)interacting protein(CHIP),also functions as a co-chaperone and plays a crucial role in the protein quality control system.In this study,we aimed to investigate the neuroprotective effect of overexpressed CHIP on Alzheimer’s disease.We used an adeno-associated virus vector that can cross the blood-brain barrier to mediate CHIP overexpression in APP/PS1 mouse brain.CHIP overexpression significantly ameliorated the performance of APP/PS1 mice in the Morris water maze and nest building tests,reduced amyloid-βplaques,and decreased the expression of both amyloid-βand phosphorylated tau.CHIP also alleviated the concentration of microglia and astrocytes around plaques.In APP/PS1 mice of a younger age,CHIP overexpression promoted an increase in ADAM10 expression and inhibitedβ-site APP cleaving enzyme 1,insulin degrading enzyme,and neprilysin expression.Levels of HSP70 and HSP40,which have functional relevance to CHIP,were also increased.Single nuclei transcriptome sequencing in the hippocampus of CHIP overexpressed mice showed that the lysosomal pathway and oligodendrocyte-related biological processes were up-regulated,which may also reflect a potential mechanism for the neuroprotective effect of CHIP.Our research shows that CHIP effectively reduces the behavior and pathological manifestations of APP/PS1 mice.Indeed,overexpression of CHIP could be a beneficial approach for the treatment of Alzheimer’s disease.展开更多
BACKGROUND Transforming growth factor-β(TGF-β)superfamily plays an important role in tumor progression and metastasis.Activin A receptor type 1C(ACVR1C)is a TGF-βtype I receptor that is involved in tumorigenesis th...BACKGROUND Transforming growth factor-β(TGF-β)superfamily plays an important role in tumor progression and metastasis.Activin A receptor type 1C(ACVR1C)is a TGF-βtype I receptor that is involved in tumorigenesis through binding to dif-ferent ligands.AIM To evaluate the correlation between single nucleotide polymorphisms(SNPs)of ACVR1C and susceptibility to esophageal squamous cell carcinoma(ESCC)in Chinese Han population.METHODS In this hospital-based cohort study,1043 ESCC patients and 1143 healthy controls were enrolled.Five SNPs(rs4664229,rs4556933,rs77886248,rs77263459,rs6734630)of ACVR1C were assessed by the ligation detection reaction method.Hardy-Weinberg equilibrium test,genetic model analysis,stratified analysis,linkage disequi-librium test,and haplotype analysis were conducted.RESULTS Participants carrying ACVR1C rs4556933 GA mutant had significantly decreased risk of ESCC,and those with rs77886248 TA mutant were related with higher risk,especially in older male smokers.In the haplotype analysis,ACVR1C Trs4664229Ars4556933Trs77886248Crs77263459Ars6734630 increased risk of ESCC,while Trs4664229Grs4556933Trs77886248Crs77263459Ars6734630 was associated with lower susceptibility to ESCC.CONCLUSION ACVR1C rs4556933 and rs77886248 SNPs were associated with the susceptibility to ESCC,which could provide a potential target for early diagnosis and treatment of ESCC in Chinese Han population.展开更多
BACKGROUND Rebleeding after recovery from esophagogastric variceal bleeding(EGVB)is a severe complication that is associated with high rates of both incidence and mortality.Despite its clinical importance,recognized p...BACKGROUND Rebleeding after recovery from esophagogastric variceal bleeding(EGVB)is a severe complication that is associated with high rates of both incidence and mortality.Despite its clinical importance,recognized prognostic models that can effectively predict esophagogastric variceal rebleeding in patients with liver cirrhosis are lacking.AIM To construct and externally validate a reliable prognostic model for predicting the occurrence of esophagogastric variceal rebleeding.METHODS This study included 477 EGVB patients across 2 cohorts:The derivation cohort(n=322)and the validation cohort(n=155).The primary outcome was rebleeding events within 1 year.The least absolute shrinkage and selection operator was applied for predictor selection,and multivariate Cox regression analysis was used to construct the prognostic model.Internal validation was performed with bootstrap resampling.We assessed the discrimination,calibration and accuracy of the model,and performed patient risk stratification.RESULTS Six predictors,including albumin and aspartate aminotransferase concentrations,white blood cell count,and the presence of ascites,portal vein thrombosis,and bleeding signs,were selected for the rebleeding event prediction following endoscopic treatment(REPET)model.In predicting rebleeding within 1 year,the REPET model ex-hibited a concordance index of 0.775 and a Brier score of 0.143 in the derivation cohort,alongside 0.862 and 0.127 in the validation cohort.Furthermore,the REPET model revealed a significant difference in rebleeding rates(P<0.01)between low-risk patients and intermediate-to high-risk patients in both cohorts.CONCLUSION We constructed and validated a new prognostic model for variceal rebleeding with excellent predictive per-formance,which will improve the clinical management of rebleeding in EGVB patients.展开更多
The M1/M2 phenotypic shift of microglia after spinal cord injury plays an important role in the regulation of neuroinflammation during the secondary injury phase of spinal cord injury.Regulation of shifting microglia ...The M1/M2 phenotypic shift of microglia after spinal cord injury plays an important role in the regulation of neuroinflammation during the secondary injury phase of spinal cord injury.Regulation of shifting microglia polarization from M1(neurotoxic and proinflammatory type)to M2(neuroprotective and anti-inflammatory type)after spinal cord injury appears to be crucial.Tryptanthrin possesses an anti-inflammatory biological function.However,its roles and the underlying molecular mechanisms in spinal cord injury remain unknown.In this study,we found that tryptanthrin inhibited microglia-derived inflammation by promoting polarization to the M2 phenotype in vitro.Tryptanthrin promoted M2 polarization through inactivating the cGAS/STING/NF-κB pathway.Additionally,we found that targeting the cGAS/STING/NF-κB pathway with tryptanthrin shifted microglia from the M1 to M2 phenotype after spinal cord injury,inhibited neuronal loss,and promoted tissue repair and functional recovery in a mouse model of spinal cord injury.Finally,using a conditional co-culture system,we found that microglia treated with tryptanthrin suppressed endoplasmic reticulum stress-related neuronal apoptosis.Taken together,these results suggest that by targeting the cGAS/STING/NF-κB axis,tryptanthrin attenuates microglia-derived neuroinflammation and promotes functional recovery after spinal cord injury through shifting microglia polarization to the M2 phenotype.展开更多
Epilepsy is a severe,relapsing,and multifactorial neurological disorder.Studies regarding the accurate diagnosis,prognosis,and in-depth pathogenesis are crucial for the precise and effective treatment of epilepsy.The ...Epilepsy is a severe,relapsing,and multifactorial neurological disorder.Studies regarding the accurate diagnosis,prognosis,and in-depth pathogenesis are crucial for the precise and effective treatment of epilepsy.The pathogenesis of epilepsy is complex and involves alterations in variables such as gene expression,protein expression,ion channel activity,energy metabolites,and gut microbiota composition.Satisfactory results are lacking for conventional treatments for epilepsy.Surgical resection of lesions,drug therapy,and non-drug interventions are mainly used in clinical practice to treat pain associated with epilepsy.Non-pharmacological treatments,such as a ketogenic diet,gene therapy for nerve regeneration,and neural regulation,are currently areas of research focus.This review provides a comprehensive overview of the pathogenesis,diagnostic methods,and treatments of epilepsy.It also elaborates on the theoretical basis,treatment modes,and effects of invasive nerve stimulation in neurotherapy,including percutaneous vagus nerve stimulation,deep brain electrical stimulation,repetitive nerve electrical stimulation,in addition to non-invasive transcranial magnetic stimulation and transcranial direct current stimulation.Numerous studies have shown that electromagnetic stimulation-mediated neuromodulation therapy can markedly improve neurological function and reduce the frequency of epileptic seizures.Additionally,many new technologies for the diagnosis and treatment of epilepsy are being explored.However,current research is mainly focused on analyzing patients’clinical manifestations and exploring relevant diagnostic and treatment methods to study the pathogenesis at a molecular level,which has led to a lack of consensus regarding the mechanisms related to the disease.展开更多
Amyotrophic lateral sclerosis is a devastating neurodegenerative disease for which the current treatment approaches remain severely limited.The principal pathological alterations of the disease include the selective d...Amyotrophic lateral sclerosis is a devastating neurodegenerative disease for which the current treatment approaches remain severely limited.The principal pathological alterations of the disease include the selective degeneration of motor neurons in the brain,brainstem,and spinal cord,as well as abnormal protein deposition in the cytoplasm of neurons and glial cells.The biological markers under extensive scrutiny are predominantly located in the cerebrospinal fluid,blood,and even urine.Among these biomarke rs,neurofilament proteins and glial fibrillary acidic protein most accurately reflect the pathologic changes in the central nervous system,while creatinine and creatine kinase mainly indicate pathological alterations in the peripheral nerves and muscles.Neurofilament light chain levels serve as an indicator of neuronal axonal injury that remain stable throughout disease progression and are a promising diagnostic and prognostic biomarker with high specificity and sensitivity.However,there are challenges in using neurofilament light chain to diffe rentiate amyotrophic lateral sclerosis from other central nervous system diseases with axonal injury.Glial fibrillary acidic protein predominantly reflects the degree of neuronal demyelination and is linked to non-motor symptoms of amyotrophic lateral sclerosis such as cognitive impairment,oxygen saturation,and the glomerular filtration rate.TAR DNA-binding protein 43,a pathological protein associated with amyotrophic lateral sclerosis,is emerging as a promising biomarker,particularly with advancements in exosome-related research.Evidence is currently lacking for the value of creatinine and creatine kinase as diagnostic markers;however,they show potential in predicting disease prognosis.Despite the vigorous progress made in the identification of amyotrophic lateral sclerosis biomarkers in recent years,the quest for definitive diagnostic and prognostic biomarke rs remains a formidable challenge.This review summarizes the latest research achievements concerning blood biomarkers in amyotrophic lateral sclerosis that can provide a more direct basis for the differential diagnosis and prognostic assessment of the disease beyond a reliance on clinical manifestations and electromyography findings.展开更多
The organotypic retinal explant culture has been established for more than a decade and offers a range of unique advantages compared with in vivo experiments and cell cultures.However,the lack of systematic and contin...The organotypic retinal explant culture has been established for more than a decade and offers a range of unique advantages compared with in vivo experiments and cell cultures.However,the lack of systematic and continuous comparison between in vivo retinal development and the organotypic retinal explant culture makes this model controversial in postnatal retinal development studies.Thus,we aimed to verify the feasibility of using this model for postnatal retinal development studies by comparing it with the in vivo retina.In this study,we showed that postnatal retinal explants undergo normal development,and exhibit a consistent structure and timeline with retinas in vivo.Initially,we used SOX2 and PAX6 immunostaining to identify retinal progenitor cells.We then examined cell proliferation and migration by immunostaining with Ki-67 and doublecortin,respectively.Ki-67-and doublecortin-positive cells decreased in both in vivo and explants during postnatal retinogenesis,and exhibited a high degree of similarity in abundance and distribution between groups.Additionally,we used Ceh-10 homeodomain-containing homolog,glutamate-ammonia ligase(glutamine synthetase),neuronal nuclei,and ionized calcium-binding adapter molecule 1 immunostaining to examine the emergence of bipolar cells,Müller glia,mature neurons,and microglia,respectively.The timing and spatial patterns of the emergence of these cell types were remarkably consistent between in vivo and explant retinas.Our study showed that the organotypic retinal explant culture model had a high degree of consistency with the progression of in vivo early postnatal retina development.The findings confirm the accuracy and credibility of this model and support its use for long-term,systematic,and continuous observation.展开更多
Spinal cord injuries lead to significant loss of motor, sensory, and autonomic functions, presenting major challenges in neural regeneration. Achieving effective therapeutic concentrations at injury sites has been a s...Spinal cord injuries lead to significant loss of motor, sensory, and autonomic functions, presenting major challenges in neural regeneration. Achieving effective therapeutic concentrations at injury sites has been a slow process, partly due to the difficulty of delivering drugs effectively. Nanoparticles, with their targeted delivery capabilities, biocompatibility, and enhanced bioavailability over conventional drugs, are garnering attention for spinal cord injury treatment. This review explores the current mechanisms and shortcomings of existing treatments, highlighting the benefits and progress of nanoparticle-based approaches. We detail nanoparticle delivery methods for spinal cord injury, including local and intravenous injections, oral delivery, and biomaterial-assisted implantation, alongside strategies such as drug loading and surface modification. The discussion extends to how nanoparticles aid in reducing oxidative stress, dampening inflammation, fostering neural regeneration, and promoting angiogenesis. We summarize the use of various types of nanoparticles for treating spinal cord injuries, including metallic, polymeric, protein-based, inorganic non-metallic, and lipid nanoparticles. We also discuss the challenges faced, such as biosafety, effectiveness in humans, precise dosage control, standardization of production and characterization, immune responses, and targeted delivery in vivo. Additionally, we explore future directions, such as improving biosafety, standardizing manufacturing and characterization processes, and advancing human trials. Nanoparticles have shown considerable progress in targeted delivery and enhancing treatment efficacy for spinal cord injuries, presenting significant potential for clinical use and drug development.展开更多
Mononuclear macrophage infiltration in the central nervous system is a prominent feature of neuroinflammation. Recent studies on the pathogenesis and progression of multiple sclerosis have highlighted the multiple rol...Mononuclear macrophage infiltration in the central nervous system is a prominent feature of neuroinflammation. Recent studies on the pathogenesis and progression of multiple sclerosis have highlighted the multiple roles of mononuclear macrophages in the neuroinflammatory process. Monocytes play a significant role in neuroinflammation, and managing neuroinflammation by manipulating peripheral monocytes stands out as an effective strategy for the treatment of multiple sclerosis, leading to improved patient outcomes. This review outlines the steps involved in the entry of myeloid monocytes into the central nervous system that are targets for effective intervention: the activation of bone marrow hematopoiesis, migration of monocytes in the blood, and penetration of the blood–brain barrier by monocytes. Finally, we summarize the different monocyte subpopulations and their effects on the central nervous system based on phenotypic differences. As activated microglia resemble monocyte-derived macrophages, it is important to accurately identify the role of monocyte-derived macrophages in disease. Depending on the roles played by monocyte-derived macrophages at different stages of the disease, several of these processes can be interrupted to limit neuroinflammation and improve patient prognosis. Here, we discuss possible strategies to target monocytes in neurological diseases, focusing on three key aspects of monocyte infiltration into the central nervous system, to provide new ideas for the treatment of neurodegenerative diseases.展开更多
BACKGROUND Chronic schistosomiasis causes multiple organ and multiple system diseases,especially the digestive system.Schistosome eggs are mainly deposited in the stomach,liver and colorectal,but a few eggs are deposi...BACKGROUND Chronic schistosomiasis causes multiple organ and multiple system diseases,especially the digestive system.Schistosome eggs are mainly deposited in the stomach,liver and colorectal,but a few eggs are deposited in the appendix and cause disease.At present,there are few studies on schistosomal appendicitis.AIM To explore the differences in epidemiological,clinical and pathological characteristics between schistosomal appendicitis and non-schistosomal appendicitis over the past decade in order to assess the impact of schistosomiasis on appendicitis.METHODS The differences of general data,clinical data and laboratory examination data of patients with appendicitis from October 2013 to October 2023 were retrospectively analyzed.All patients were divided into two groups for analysis.There were 136 patients in schistosomal appendicitis group and 5418 patients in non-schistosomal appendicitis group.RESULTS Schistosomal appendicitis accounted for 2.45%of all patients with appendicitis,and the annual proportion in the past decade was 2.2%,2.9%,1.8%,1.9%,3.4%,3.1%,1.9%,1.6%,3%,2.6%,respectively.The prevalence of schistosomal appendicitis was middle-aged and elderly males,with an average age of 61.73±15.335 years.The main population of non-schistosomal appendicitis was middle-aged men,with an average age of 35.8±24.013 years(P<0.001).The distribution of pathological types of appendicitis was different between the two groups(P<0.001).The incidence of acute suppurative appendicitis in non-schistosomal appendicitis was higher than that in schistosomal appendicitis[odds ratio(OR)=0.504;95%confidence interval(CI):0.349-0.728;P<0.001].The proportion of acute attack of chronic appendicitis in schistosomal appendicitis was higher than that in non-schistosomal appendicitis(OR=2.614;95%CI:1.815-3.763;P<0.001).The proportion of schistosomal appendicitis patients complicated with colorectal cancer was higher than that of nonschistosomal appendicitis patients(OR=5.087;95%CI:1.427-18.132;P=0.012).There was no difference in clinical symptoms between the two groups.In the laboratory examination,there was a significant difference in white blood cells between schistosomal appendicitis and non-schistosomal appendicitis.The level of white blood cells in schistosomal appendicitis group was slightly higher than the upper limit of the normal range.Other statistically significant indicators were in the normal range.CONCLUSION Schistosomal appendicitis is a severe condition that is often associated with intestinal malignancies,potentially leading to a poor prognosis.Schistosomal appendicitis is more likely to be misdiagnosed and missed diagnosed in clinical work because of its nonspecific clinical manifestations and laboratory examination.It is crucial to differentiate schistosomal appendicitis in middle-aged and elderly male patients presenting with appendicitis,and to ensure early detection and treatment.展开更多
Gestational diabetes mellitus(GDM)refers to varying degrees of abnormal glucose metabolism that occur during pregnancy and excludes patients pre-viously diagnosed with diabetes.GDM is a unique among the four subtypes ...Gestational diabetes mellitus(GDM)refers to varying degrees of abnormal glucose metabolism that occur during pregnancy and excludes patients pre-viously diagnosed with diabetes.GDM is a unique among the four subtypes of diabetes classified by the international World Health Organization standards.Although GDM patients constitute a small proportion of the total number of diabetes cases,the incidence of GDM has risen significantly over the past decade,posing substantial risk to pregnant women and infants.Therefore,it warrants considerable attention.The pathogenesis of GDM is generally considered to resemble that of type II diabetes,though it may have distinct characteristics.Analyzing blood biochemical proteins in the context of GDM can help elucidate its pathogenesis,thereby facilitating more effective prevention and management strategies.This article reviews this critical clinical issue to enhance the medical community's sufficient understanding of GDM.展开更多
BACKGROUND Esophageal stricture ranks among the most significant complications following endoscopic submucosal dissection(ESD).Excessive fibrotic repair is a typical pathological feature leading to stenosis after ESD....BACKGROUND Esophageal stricture ranks among the most significant complications following endoscopic submucosal dissection(ESD).Excessive fibrotic repair is a typical pathological feature leading to stenosis after ESD.AIM To examine the effectiveness and underlying mechanism of Kangfuxin solution(KFX)in mitigating excessive fibrotic repair of the esophagus post-ESD.METHODS Pigs received KFX at 0.74 mL/kg/d for 21 days after esophageal full circumferential ESD.Endoscopic examinations occurred on days 7 and 21 post-ESD.In vitro,recombinant transforming growth factor(TGF)-β1(5 ng/mL)induced a fibrotic microenvironment in primary esophageal fibroblasts(pEsF).After 24 hours of KFX treatment(at 1.5%,1%,and 0.5%),expression ofα-smooth muscle actin-2(ACTA2),fibronectin(FN),and type collagen I was assessed.Profibrotic signaling was analyzed,including TGF-β1,Smad2/3,and phosphor-smad2/3(p-Smad2/3).RESULTS Compared to the Control group,the groups treated with KFX and prednisolone exhibited reduced esophageal stenosis,lower weight loss rates,and improved food tolerance 21 d after ESD.After treatment,Masson staining revealed thinner and less dense collagen fibers in the submucosal layer.Additionally,the expression of fibrotic effector molecules was notably inhibited.Mechanistically,KFX downregulated the transduction levels of fibrotic functional molecules such as TGF-β1,Smad2/3,and p-Smad2/3.In vitro,pEsF exposed to TGF-β1-induced fibrotic microenvironment displayed increased fibrotic activity,which was reversed by KFX treatment,leading to reduced activation of ACTA2,FN,and collagen I.The 1.5%KFX treatment group showed decreased expression of p-Smad 2/3 in TGF-β1-activated pEsF.CONCLUSION KFX showed promise as a therapeutic option for post-full circumferential esophageal ESD strictures,potentially by suppressing fibroblast fibrotic activity through modulation of the TGF-β1/Smads signaling pathway.展开更多
BACKGROUND Gastric cancer(GC)is a prevalent malignancy with a substantial health burden and high mortality rate,despite advances in prevention,early detection,and treatment.Compared with the global average,Asia,notabl...BACKGROUND Gastric cancer(GC)is a prevalent malignancy with a substantial health burden and high mortality rate,despite advances in prevention,early detection,and treatment.Compared with the global average,Asia,notably China,reports disproportionately high GC incidences.The disease often progresses asymptoma-tically in the early stages,leading to delayed diagnosis and compromised out-comes.Thus,it is crucial to identify early diagnostic biomarkers and enhance treatment strategies to improve patient outcomes and reduce mortality.METHODS Retrospectively analyzed the clinical data of 148 patients with GC treated at the Civil Aviation Shanghai Hospital between December 2022 and December 2023.The associations of coagulation indices-partial thromboplastin time(APTT),prothrombin time(PT),thrombin time(TT),fibrinogen,fibrinogen degradation products(FDP),fasting blood glucose,and D-dimer(D-D)with TNM stage and distant metastasis were examined.RESULTS Prolongation of APTT,PT,and TT was significantly correlated with the GC TNM stage.Hence,abnormal coagulation system activation was closely related to disease progression.Elevated FDP and D-D were significantly associated with distant metastasis in GC(P<0.05),suggesting that increased fibrinolytic activity contributes to increased metastatic risk.CONCLUSION Our Results reveal coagulation indices,FDPs as GC biomarkers,reflecting abnormal coagulation/fibrinolysis,aiding disease progression,metastasis prediction,and helping clinicians assess thrombotic risk for early intervention and personalized treatment plans.展开更多
Aminoglycosides are a widely used class of antibacterials renowned for their effectiveness and broad antimicrobial spectrum.However,their use leads to irreversible hearing damage by causing apoptosis of hair cells as ...Aminoglycosides are a widely used class of antibacterials renowned for their effectiveness and broad antimicrobial spectrum.However,their use leads to irreversible hearing damage by causing apoptosis of hair cells as their direct target.In addition,the hearing damage caused by aminoglycosides involves damage of spiral ganglion neurons upon exposure.To investigate the mechanisms underlying spiral ganglion neuron degeneration induced by aminoglycosides,we used a C57BL/6J mouse model treated with kanamycin.We found that the mice exhibited auditory deficits following the acute loss of outer hair cells.Spiral ganglion neurons displayed hallmarks of pyroptosis and exhibited progressive degeneration over time.Transcriptomic profiling of these neurons showed significant upregulation of genes associated with inflammation and immune response,particularly those related to the NLRP3 inflammasome.Activation of the canonical pyroptotic pathway in spiral ganglion neurons was observed,accompanied by infiltration of macrophages and the release of proinflammatory cytokines.Pharmacological intervention targeting NLRP3 using Mcc950 and genetic intervention using NLRP3 knockout ameliorated spiral ganglion neuron degeneration in the injury model.These findings suggest that NLRP3 inflammasome-mediated pyroptosis plays a role in aminoglycoside-induced spiral ganglion neuron degeneration.Inhibition of this pathway may offer a potential therapeutic strategy for treating sensorineural hearing loss by reducing spiral ganglion neuron degeneration.展开更多
This study aims to evaluate the performance of six distinct Z-score formulas in diagnosing coronary artery dilation in Kawasaki disease(KD)patients,with a focus on their clinical applicability across diverse populatio...This study aims to evaluate the performance of six distinct Z-score formulas in diagnosing coronary artery dilation in Kawasaki disease(KD)patients,with a focus on their clinical applicability across diverse populations.A retrospective analysis was conducted using comparative statistical methods to assess the sensitivity and specificity of each formula.The Kobayashi and Dallaire formulas demonstrated the highest sensitivity in China,particularly in younger patients with prolonged fever duration.Our findings provide evidence-based recommend-ations for selecting Z-score formulas to optimize diagnostic precision in KD patients.展开更多
Alzheimer’s disease is a debilitating,progressive neurodegenerative disorder characterized by the progressive accumulation of abnormal proteins,including amyloid plaques and intracellular tau tangles,primarily within...Alzheimer’s disease is a debilitating,progressive neurodegenerative disorder characterized by the progressive accumulation of abnormal proteins,including amyloid plaques and intracellular tau tangles,primarily within the brain.Lysosomes,crucial intracellular organelles responsible for protein degradation,play a key role in maintaining cellular homeostasis.Some studies have suggested a link between the dysregulation of the lysosomal system and pathogenesis of neurodegenerative diseases,including Alzheimer’s disease.Restoring the normal physiological function of lysosomes hold the potential to reduce the pathological burden and improve the symptoms of Alzheimer’s disease.Currently,the efficacy of drugs in treating Alzheimer’s disease is limited,with major challenges in drug delivery efficiency and targeting.Recently,nanomaterials have gained widespread use in Alzheimer’s disease drug research owing to their favorable physical and chemical properties.This review aims to provide a comprehensive overview of recent advances in using nanomaterials(polymeric nanomaterials,nanoemulsions,and carbon-based nanomaterials)to enhance lysosomal function in treating Alzheimer’s disease.This review also explores new concepts and potential therapeutic strategies for Alzheimer’s disease through the integration of nanomaterials and modulation of lysosomal function.In conclusion,this review emphasizes the potential of nanomaterials in modulating lysosomal function to improve the pathological features of Alzheimer’s disease.The application of nanotechnology to the development of Alzheimer’s disease drugs brings new ideas and approaches for future treatment of this disease.展开更多
Human brain development is a complex process,and animal models often have significant limitations.To address this,researchers have developed pluripotent stem cell-derived three-dimensional structures,known as brain-li...Human brain development is a complex process,and animal models often have significant limitations.To address this,researchers have developed pluripotent stem cell-derived three-dimensional structures,known as brain-like organoids,to more accurately model early human brain development and disease.To enable more consistent and intuitive reproduction of early brain development,in this study,we incorporated forebrain organoid culture technology into the traditional unguided method of brain organoid culture.This involved embedding organoids in matrigel for only 7 days during the rapid expansion phase of the neural epithelium and then removing them from the matrigel for further cultivation,resulting in a new type of human brain organoid system.This cerebral organoid system replicated the temporospatial characteristics of early human brain development,including neuroepithelium derivation,neural progenitor cell production and maintenance,neuron differentiation and migration,and cortical layer patterning and formation,providing more consistent and reproducible organoids for developmental modeling and toxicology testing.As a proof of concept,we applied the heavy metal cadmium to this newly improved organoid system to test whether it could be used to evaluate the neurotoxicity of environmental toxins.Brain organoids exposed to cadmium for 7 or 14 days manifested severe damage and abnormalities in their neurodevelopmental patterns,including bursts of cortical cell death and premature differentiation.Cadmium exposure caused progressive depletion of neural progenitor cells and loss of organoid integrity,accompanied by compensatory cell proliferation at ectopic locations.The convenience,flexibility,and controllability of this newly developed organoid platform make it a powerful and affordable alternative to animal models for use in neurodevelopmental,neurological,and neurotoxicological studies.展开更多
Background : To study the relationships among emodin, synovial fibroblasts (FLSs), and macrophages (STMs) to provide guidance for the use of emodin in rheumatoid arthritis (RA) treatment. Methods : RA clinical samples...Background : To study the relationships among emodin, synovial fibroblasts (FLSs), and macrophages (STMs) to provide guidance for the use of emodin in rheumatoid arthritis (RA) treatment. Methods : RA clinical samples from patients with different pathological processes were collected, and the correlations between the subsets of FLSs and STMs and pathological processes were analyzed via flow cytometry. In vitro experimental methods such as enzyme linked immunosorbent assay (ELISA), Western blotting, Transwell assays, CCK- 8 assays and cell coculture were used to assess cell proliferation, migration and secretion of inflammatory factors. A collagen- induced arthritis mouse model was constructed to investigate the therapeutic potential of emodin in RA by flow cytometry, micro- CT and staining. Results : Unique subsets of FLSs and STMs, namely, FAPα ^(+)THY1 − FLSs, FAPα ^(+)THY1 ^(+)FLSs, and MerTK ^(pos) TREM2 ^(high) STMs, were identified in synovial tissues from RA patients. The number of MerTK ^(pos) TREM2 ^(high) STMs was negatively correlated with the degree of damage in RA, while the number of FAPα ^(+)THY1 − FLSs was positively correlated with damage. On the one hand, emodin promoted the aggregation of MerTKposTREM2high STMs. Moreover, MerTK pos TREM2 high STM- mediated secretion of exosomes was promoted, which can inhibit the secretion of pro- inflammatory factors by FAPα ^(+)THY1 ^(+)FLSs and promote the secretion of anti- inflammatory factors by FAPα ^(+)THY1 ^(+)FLSs, thereby inhibiting FAPα ^(+)THY1 − FLS proliferation and migration, improving the local immune microenvironment, and inhibiting RA damage. Conclusion : Emodin was shown to regulate the aggregation of STM subsets and exosome secretion, affecting the secretion, proliferation and migration of inflammatory factors in FLS subsets, and ultimately achieving good therapeutic efficacy in RA patients, suggesting that it has important clinical value.展开更多
基金supported by the National Natural Science Foundation of China,Nos.82271444(to JP),82271268(to BZ),and 82001346(to YL)the National Key Research and Development Program of China,No.2022YFE0210100(to BZ)。
文摘Parkinson's disease is primarily caused by the loss of dopaminergic neurons in the substantia nigra compacta.Ferroptosis,a novel form of regulated cell death characterized by iron accumulation and lipid peroxidation,plays a vital role in the death of dopaminergic neurons.However,the molecular mechanisms underlying ferroptosis in dopaminergic neurons have not yet been completely elucidated.NADPH oxidase 4 is related to oxidative stress,however,whether it regulates dopaminergic neuronal ferroptosis remains unknown.The aim of this study was to determine whether NADPH oxidase 4 is involved in dopaminergic neuronal ferroptosis,and if so,by what mechanism.We found that the transcriptional regulator activating transcription factor 3 increased NADPH oxidase 4 expression in dopaminergic neurons and astrocytes in an 1-methyl-4-phenyl-1,2,3,6 tetrahydropyridine-induced Parkinson's disease model.NADPH oxidase 4 inhibition improved the behavioral impairments observed in the Parkinson's disease model animals and reduced the death of dopaminergic neurons.Moreover,NADPH oxidase 4 inhibition reduced lipid peroxidation and iron accumulation in the substantia nigra of the Parkinson's disease model animals.Mechanistically,we found that NADPH oxidase 4 interacted with activated protein kinase Cαto prevent ferroptosis of dopaminergic neurons.Furthermore,by lowering the astrocytic lipocalin-2 expression,NADPH oxidase 4 inhibition reduced 1-methyl-4-phenyl-1,2,3,6 tetrahydropyridine-induced neuroinflammation.These findings demonstrate that NADPH oxidase 4 promotes ferroptosis of dopaminergic neurons and neuroinflammation,which contribute to dopaminergic neuron death,suggesting that NADPH oxidase 4 is a possible therapeutic target for Parkinson's disease.
基金supported by the Natural Science Foundation of Shandong Province,No.ZR2022MH124the Youth Science Foundation of Shandong First Medical University,No.202201–105(both to YX)。
文摘Subarachnoid hemorrhage leads to a series of pathological changes,including vascular spasm,cellular apoptosis,blood–brain barrier damage,cerebral edema,and white matter injury.Microglia,which are the key immune cells in the central nervous system,maintain homeostasis in the neural environment,support neurons,mediate apoptosis,participate in immune regulation,and have neuroprotective effects.Increasing evidence has shown that microglia play a pivotal role in the pathogenesis of subarachnoid hemorrhage and affect the process of injury and the prognosis of subarachnoid hemorrhage.Moreover,microglia play certain neuroprotective roles in the recovery phase of subarachnoid hemorrhage.Several approaches aimed at modulating microglia function are believed to attenuate subarachnoid hemorrhage injury.This provides new targets and ideas for the treatment of subarachnoid hemorrhage.However,an in-depth and comprehensive summary of the role of microglia after subarachnoid hemorrhage is still lacking.This review describes the activation of microglia after subarachnoid hemorrhage and their roles in the pathological processes of vasospasm,neuroinflammation,neuronal apoptosis,blood–brain barrier disruption,cerebral edema,and cerebral white matter lesions.It also discusses the neuroprotective roles of microglia during recovery from subarachnoid hemorrhage and therapeutic advances aimed at modulating microglial function after subarachnoid hemorrhage.Currently,microglia in subarachnoid hemorrhage are targeted with TLR inhibitors,nuclear factor-κB and STAT3 pathway inhibitors,glycine/tyrosine kinases,NLRP3 signaling pathway inhibitors,Gasdermin D inhibitors,vincristine receptorαreceptor agonists,ferroptosis inhibitors,genetic modification techniques,stem cell therapies,and traditional Chinese medicine.However,most of these are still being evaluated at the laboratory stage.More clinical studies and data on subarachnoid hemorrhage are required to improve the treatment of subarachnoid hemorrhage.
基金supported by the National Natural Science Foundation of China,Nos.91849115 and U1904207(to YX),81974211 and 82171247(to CS)Non-profit Central Research Institute Fund of Chinese Academy of Medical Sciences,No.2020-PT310-01(to YX).
文摘The E3 ubiquitin ligase,carboxyl terminus of heat shock protein 70(Hsp70)interacting protein(CHIP),also functions as a co-chaperone and plays a crucial role in the protein quality control system.In this study,we aimed to investigate the neuroprotective effect of overexpressed CHIP on Alzheimer’s disease.We used an adeno-associated virus vector that can cross the blood-brain barrier to mediate CHIP overexpression in APP/PS1 mouse brain.CHIP overexpression significantly ameliorated the performance of APP/PS1 mice in the Morris water maze and nest building tests,reduced amyloid-βplaques,and decreased the expression of both amyloid-βand phosphorylated tau.CHIP also alleviated the concentration of microglia and astrocytes around plaques.In APP/PS1 mice of a younger age,CHIP overexpression promoted an increase in ADAM10 expression and inhibitedβ-site APP cleaving enzyme 1,insulin degrading enzyme,and neprilysin expression.Levels of HSP70 and HSP40,which have functional relevance to CHIP,were also increased.Single nuclei transcriptome sequencing in the hippocampus of CHIP overexpressed mice showed that the lysosomal pathway and oligodendrocyte-related biological processes were up-regulated,which may also reflect a potential mechanism for the neuroprotective effect of CHIP.Our research shows that CHIP effectively reduces the behavior and pathological manifestations of APP/PS1 mice.Indeed,overexpression of CHIP could be a beneficial approach for the treatment of Alzheimer’s disease.
基金Supported by The National Natural Science Foundation of China,No.82350127 and No.82241013the Shanghai Natural Science Foundation,No.20ZR1411600+2 种基金the Shanghai Shenkang Hospital Development Center,No.SHDC2020CR4039the Bethune Ethicon Excellent Surgery Foundation,No.CESS2021TC04Xuhui District Medical Research Project of Shanghai,No.SHXH201805.
文摘BACKGROUND Transforming growth factor-β(TGF-β)superfamily plays an important role in tumor progression and metastasis.Activin A receptor type 1C(ACVR1C)is a TGF-βtype I receptor that is involved in tumorigenesis through binding to dif-ferent ligands.AIM To evaluate the correlation between single nucleotide polymorphisms(SNPs)of ACVR1C and susceptibility to esophageal squamous cell carcinoma(ESCC)in Chinese Han population.METHODS In this hospital-based cohort study,1043 ESCC patients and 1143 healthy controls were enrolled.Five SNPs(rs4664229,rs4556933,rs77886248,rs77263459,rs6734630)of ACVR1C were assessed by the ligation detection reaction method.Hardy-Weinberg equilibrium test,genetic model analysis,stratified analysis,linkage disequi-librium test,and haplotype analysis were conducted.RESULTS Participants carrying ACVR1C rs4556933 GA mutant had significantly decreased risk of ESCC,and those with rs77886248 TA mutant were related with higher risk,especially in older male smokers.In the haplotype analysis,ACVR1C Trs4664229Ars4556933Trs77886248Crs77263459Ars6734630 increased risk of ESCC,while Trs4664229Grs4556933Trs77886248Crs77263459Ars6734630 was associated with lower susceptibility to ESCC.CONCLUSION ACVR1C rs4556933 and rs77886248 SNPs were associated with the susceptibility to ESCC,which could provide a potential target for early diagnosis and treatment of ESCC in Chinese Han population.
基金Supported by National Natural Science Foundation of China,No.81874390 and No.81573948Shanghai Natural Science Foundation,No.21ZR1464100+1 种基金Science and Technology Innovation Action Plan of Shanghai Science and Technology Commission,No.22S11901700the Shanghai Key Specialty of Traditional Chinese Clinical Medicine,No.shslczdzk01201.
文摘BACKGROUND Rebleeding after recovery from esophagogastric variceal bleeding(EGVB)is a severe complication that is associated with high rates of both incidence and mortality.Despite its clinical importance,recognized prognostic models that can effectively predict esophagogastric variceal rebleeding in patients with liver cirrhosis are lacking.AIM To construct and externally validate a reliable prognostic model for predicting the occurrence of esophagogastric variceal rebleeding.METHODS This study included 477 EGVB patients across 2 cohorts:The derivation cohort(n=322)and the validation cohort(n=155).The primary outcome was rebleeding events within 1 year.The least absolute shrinkage and selection operator was applied for predictor selection,and multivariate Cox regression analysis was used to construct the prognostic model.Internal validation was performed with bootstrap resampling.We assessed the discrimination,calibration and accuracy of the model,and performed patient risk stratification.RESULTS Six predictors,including albumin and aspartate aminotransferase concentrations,white blood cell count,and the presence of ascites,portal vein thrombosis,and bleeding signs,were selected for the rebleeding event prediction following endoscopic treatment(REPET)model.In predicting rebleeding within 1 year,the REPET model ex-hibited a concordance index of 0.775 and a Brier score of 0.143 in the derivation cohort,alongside 0.862 and 0.127 in the validation cohort.Furthermore,the REPET model revealed a significant difference in rebleeding rates(P<0.01)between low-risk patients and intermediate-to high-risk patients in both cohorts.CONCLUSION We constructed and validated a new prognostic model for variceal rebleeding with excellent predictive per-formance,which will improve the clinical management of rebleeding in EGVB patients.
基金supported by the National Natural Science Foundation of China,Nos.82071387(to HT),81971172(to YW)the Natural Science Foundation of Zhejiang Province,China,No.LY22H090012(to HT)the Basic Research Project of Wenzhou City,China,No.Y20220923(to MZ)。
文摘The M1/M2 phenotypic shift of microglia after spinal cord injury plays an important role in the regulation of neuroinflammation during the secondary injury phase of spinal cord injury.Regulation of shifting microglia polarization from M1(neurotoxic and proinflammatory type)to M2(neuroprotective and anti-inflammatory type)after spinal cord injury appears to be crucial.Tryptanthrin possesses an anti-inflammatory biological function.However,its roles and the underlying molecular mechanisms in spinal cord injury remain unknown.In this study,we found that tryptanthrin inhibited microglia-derived inflammation by promoting polarization to the M2 phenotype in vitro.Tryptanthrin promoted M2 polarization through inactivating the cGAS/STING/NF-κB pathway.Additionally,we found that targeting the cGAS/STING/NF-κB pathway with tryptanthrin shifted microglia from the M1 to M2 phenotype after spinal cord injury,inhibited neuronal loss,and promoted tissue repair and functional recovery in a mouse model of spinal cord injury.Finally,using a conditional co-culture system,we found that microglia treated with tryptanthrin suppressed endoplasmic reticulum stress-related neuronal apoptosis.Taken together,these results suggest that by targeting the cGAS/STING/NF-κB axis,tryptanthrin attenuates microglia-derived neuroinflammation and promotes functional recovery after spinal cord injury through shifting microglia polarization to the M2 phenotype.
基金supported by the National Natural Science Foundation of China,No.32130060(to XG).
文摘Epilepsy is a severe,relapsing,and multifactorial neurological disorder.Studies regarding the accurate diagnosis,prognosis,and in-depth pathogenesis are crucial for the precise and effective treatment of epilepsy.The pathogenesis of epilepsy is complex and involves alterations in variables such as gene expression,protein expression,ion channel activity,energy metabolites,and gut microbiota composition.Satisfactory results are lacking for conventional treatments for epilepsy.Surgical resection of lesions,drug therapy,and non-drug interventions are mainly used in clinical practice to treat pain associated with epilepsy.Non-pharmacological treatments,such as a ketogenic diet,gene therapy for nerve regeneration,and neural regulation,are currently areas of research focus.This review provides a comprehensive overview of the pathogenesis,diagnostic methods,and treatments of epilepsy.It also elaborates on the theoretical basis,treatment modes,and effects of invasive nerve stimulation in neurotherapy,including percutaneous vagus nerve stimulation,deep brain electrical stimulation,repetitive nerve electrical stimulation,in addition to non-invasive transcranial magnetic stimulation and transcranial direct current stimulation.Numerous studies have shown that electromagnetic stimulation-mediated neuromodulation therapy can markedly improve neurological function and reduce the frequency of epileptic seizures.Additionally,many new technologies for the diagnosis and treatment of epilepsy are being explored.However,current research is mainly focused on analyzing patients’clinical manifestations and exploring relevant diagnostic and treatment methods to study the pathogenesis at a molecular level,which has led to a lack of consensus regarding the mechanisms related to the disease.
文摘Amyotrophic lateral sclerosis is a devastating neurodegenerative disease for which the current treatment approaches remain severely limited.The principal pathological alterations of the disease include the selective degeneration of motor neurons in the brain,brainstem,and spinal cord,as well as abnormal protein deposition in the cytoplasm of neurons and glial cells.The biological markers under extensive scrutiny are predominantly located in the cerebrospinal fluid,blood,and even urine.Among these biomarke rs,neurofilament proteins and glial fibrillary acidic protein most accurately reflect the pathologic changes in the central nervous system,while creatinine and creatine kinase mainly indicate pathological alterations in the peripheral nerves and muscles.Neurofilament light chain levels serve as an indicator of neuronal axonal injury that remain stable throughout disease progression and are a promising diagnostic and prognostic biomarker with high specificity and sensitivity.However,there are challenges in using neurofilament light chain to diffe rentiate amyotrophic lateral sclerosis from other central nervous system diseases with axonal injury.Glial fibrillary acidic protein predominantly reflects the degree of neuronal demyelination and is linked to non-motor symptoms of amyotrophic lateral sclerosis such as cognitive impairment,oxygen saturation,and the glomerular filtration rate.TAR DNA-binding protein 43,a pathological protein associated with amyotrophic lateral sclerosis,is emerging as a promising biomarker,particularly with advancements in exosome-related research.Evidence is currently lacking for the value of creatinine and creatine kinase as diagnostic markers;however,they show potential in predicting disease prognosis.Despite the vigorous progress made in the identification of amyotrophic lateral sclerosis biomarkers in recent years,the quest for definitive diagnostic and prognostic biomarke rs remains a formidable challenge.This review summarizes the latest research achievements concerning blood biomarkers in amyotrophic lateral sclerosis that can provide a more direct basis for the differential diagnosis and prognostic assessment of the disease beyond a reliance on clinical manifestations and electromyography findings.
基金supported by the National Natural Science Foundation of China,Nos.81901156(to ZZ),82271200(to ZZ),82171308(to XC)the Fundamental Research Funds for the Central Universities,No.xzy012022035(to ZZ)+1 种基金the Natural Science Foundation of Shaanxi Province,Nos.2021JM-261(to QK),2023-YBSF-303(to ZZ)Traditional Chinese Medicine Project of Shaanxi Province,No.2019-ZZ-JC047(to QK)。
文摘The organotypic retinal explant culture has been established for more than a decade and offers a range of unique advantages compared with in vivo experiments and cell cultures.However,the lack of systematic and continuous comparison between in vivo retinal development and the organotypic retinal explant culture makes this model controversial in postnatal retinal development studies.Thus,we aimed to verify the feasibility of using this model for postnatal retinal development studies by comparing it with the in vivo retina.In this study,we showed that postnatal retinal explants undergo normal development,and exhibit a consistent structure and timeline with retinas in vivo.Initially,we used SOX2 and PAX6 immunostaining to identify retinal progenitor cells.We then examined cell proliferation and migration by immunostaining with Ki-67 and doublecortin,respectively.Ki-67-and doublecortin-positive cells decreased in both in vivo and explants during postnatal retinogenesis,and exhibited a high degree of similarity in abundance and distribution between groups.Additionally,we used Ceh-10 homeodomain-containing homolog,glutamate-ammonia ligase(glutamine synthetase),neuronal nuclei,and ionized calcium-binding adapter molecule 1 immunostaining to examine the emergence of bipolar cells,Müller glia,mature neurons,and microglia,respectively.The timing and spatial patterns of the emergence of these cell types were remarkably consistent between in vivo and explant retinas.Our study showed that the organotypic retinal explant culture model had a high degree of consistency with the progression of in vivo early postnatal retina development.The findings confirm the accuracy and credibility of this model and support its use for long-term,systematic,and continuous observation.
基金supported by the Key Research Projects of Universities of Henan Province,No.21A320064 (to XS)the National Key Research and Development Program of China,No.2021YFA1201504 (to LZ)+1 种基金the Strategic Priority Research Program of the Chinese Academy of Science,No.XDB36000000 (to CW)the National Natural Science Foundation of China,Nos.31971295,12374406 (both to LZ)。
文摘Spinal cord injuries lead to significant loss of motor, sensory, and autonomic functions, presenting major challenges in neural regeneration. Achieving effective therapeutic concentrations at injury sites has been a slow process, partly due to the difficulty of delivering drugs effectively. Nanoparticles, with their targeted delivery capabilities, biocompatibility, and enhanced bioavailability over conventional drugs, are garnering attention for spinal cord injury treatment. This review explores the current mechanisms and shortcomings of existing treatments, highlighting the benefits and progress of nanoparticle-based approaches. We detail nanoparticle delivery methods for spinal cord injury, including local and intravenous injections, oral delivery, and biomaterial-assisted implantation, alongside strategies such as drug loading and surface modification. The discussion extends to how nanoparticles aid in reducing oxidative stress, dampening inflammation, fostering neural regeneration, and promoting angiogenesis. We summarize the use of various types of nanoparticles for treating spinal cord injuries, including metallic, polymeric, protein-based, inorganic non-metallic, and lipid nanoparticles. We also discuss the challenges faced, such as biosafety, effectiveness in humans, precise dosage control, standardization of production and characterization, immune responses, and targeted delivery in vivo. Additionally, we explore future directions, such as improving biosafety, standardizing manufacturing and characterization processes, and advancing human trials. Nanoparticles have shown considerable progress in targeted delivery and enhancing treatment efficacy for spinal cord injuries, presenting significant potential for clinical use and drug development.
基金supported by the National Natural Science Foundation of China,Nos.82060219,82271234the Natural Science Foundation of Jiangxi Province,Nos.20212ACB216009,20212BAB216048+1 种基金Jiangxi Province Thousands of Plans,No.jxsq2019201023Youth Team Project of the Second Affiliated Hospital of Nanchang University,No.2019YNTD12003(all to FH)。
文摘Mononuclear macrophage infiltration in the central nervous system is a prominent feature of neuroinflammation. Recent studies on the pathogenesis and progression of multiple sclerosis have highlighted the multiple roles of mononuclear macrophages in the neuroinflammatory process. Monocytes play a significant role in neuroinflammation, and managing neuroinflammation by manipulating peripheral monocytes stands out as an effective strategy for the treatment of multiple sclerosis, leading to improved patient outcomes. This review outlines the steps involved in the entry of myeloid monocytes into the central nervous system that are targets for effective intervention: the activation of bone marrow hematopoiesis, migration of monocytes in the blood, and penetration of the blood–brain barrier by monocytes. Finally, we summarize the different monocyte subpopulations and their effects on the central nervous system based on phenotypic differences. As activated microglia resemble monocyte-derived macrophages, it is important to accurately identify the role of monocyte-derived macrophages in disease. Depending on the roles played by monocyte-derived macrophages at different stages of the disease, several of these processes can be interrupted to limit neuroinflammation and improve patient prognosis. Here, we discuss possible strategies to target monocytes in neurological diseases, focusing on three key aspects of monocyte infiltration into the central nervous system, to provide new ideas for the treatment of neurodegenerative diseases.
文摘BACKGROUND Chronic schistosomiasis causes multiple organ and multiple system diseases,especially the digestive system.Schistosome eggs are mainly deposited in the stomach,liver and colorectal,but a few eggs are deposited in the appendix and cause disease.At present,there are few studies on schistosomal appendicitis.AIM To explore the differences in epidemiological,clinical and pathological characteristics between schistosomal appendicitis and non-schistosomal appendicitis over the past decade in order to assess the impact of schistosomiasis on appendicitis.METHODS The differences of general data,clinical data and laboratory examination data of patients with appendicitis from October 2013 to October 2023 were retrospectively analyzed.All patients were divided into two groups for analysis.There were 136 patients in schistosomal appendicitis group and 5418 patients in non-schistosomal appendicitis group.RESULTS Schistosomal appendicitis accounted for 2.45%of all patients with appendicitis,and the annual proportion in the past decade was 2.2%,2.9%,1.8%,1.9%,3.4%,3.1%,1.9%,1.6%,3%,2.6%,respectively.The prevalence of schistosomal appendicitis was middle-aged and elderly males,with an average age of 61.73±15.335 years.The main population of non-schistosomal appendicitis was middle-aged men,with an average age of 35.8±24.013 years(P<0.001).The distribution of pathological types of appendicitis was different between the two groups(P<0.001).The incidence of acute suppurative appendicitis in non-schistosomal appendicitis was higher than that in schistosomal appendicitis[odds ratio(OR)=0.504;95%confidence interval(CI):0.349-0.728;P<0.001].The proportion of acute attack of chronic appendicitis in schistosomal appendicitis was higher than that in non-schistosomal appendicitis(OR=2.614;95%CI:1.815-3.763;P<0.001).The proportion of schistosomal appendicitis patients complicated with colorectal cancer was higher than that of nonschistosomal appendicitis patients(OR=5.087;95%CI:1.427-18.132;P=0.012).There was no difference in clinical symptoms between the two groups.In the laboratory examination,there was a significant difference in white blood cells between schistosomal appendicitis and non-schistosomal appendicitis.The level of white blood cells in schistosomal appendicitis group was slightly higher than the upper limit of the normal range.Other statistically significant indicators were in the normal range.CONCLUSION Schistosomal appendicitis is a severe condition that is often associated with intestinal malignancies,potentially leading to a poor prognosis.Schistosomal appendicitis is more likely to be misdiagnosed and missed diagnosed in clinical work because of its nonspecific clinical manifestations and laboratory examination.It is crucial to differentiate schistosomal appendicitis in middle-aged and elderly male patients presenting with appendicitis,and to ensure early detection and treatment.
基金Supported by National Natural Science Foundation of China,No.32060182Qiannan Prefecture Science and Technology Plan Project in China:Qiannan Kehe She Zi[2022]No.1.
文摘Gestational diabetes mellitus(GDM)refers to varying degrees of abnormal glucose metabolism that occur during pregnancy and excludes patients pre-viously diagnosed with diabetes.GDM is a unique among the four subtypes of diabetes classified by the international World Health Organization standards.Although GDM patients constitute a small proportion of the total number of diabetes cases,the incidence of GDM has risen significantly over the past decade,posing substantial risk to pregnant women and infants.Therefore,it warrants considerable attention.The pathogenesis of GDM is generally considered to resemble that of type II diabetes,though it may have distinct characteristics.Analyzing blood biochemical proteins in the context of GDM can help elucidate its pathogenesis,thereby facilitating more effective prevention and management strategies.This article reviews this critical clinical issue to enhance the medical community's sufficient understanding of GDM.
基金Supported by Science and Technology Department of Sichuan Province,No.2020YFS0376National Natural Science Foundation of China,No.81900599Science and Technology Program of Hospital of TCM,Southwest Medical University,No.2022-CXTD-01.
文摘BACKGROUND Esophageal stricture ranks among the most significant complications following endoscopic submucosal dissection(ESD).Excessive fibrotic repair is a typical pathological feature leading to stenosis after ESD.AIM To examine the effectiveness and underlying mechanism of Kangfuxin solution(KFX)in mitigating excessive fibrotic repair of the esophagus post-ESD.METHODS Pigs received KFX at 0.74 mL/kg/d for 21 days after esophageal full circumferential ESD.Endoscopic examinations occurred on days 7 and 21 post-ESD.In vitro,recombinant transforming growth factor(TGF)-β1(5 ng/mL)induced a fibrotic microenvironment in primary esophageal fibroblasts(pEsF).After 24 hours of KFX treatment(at 1.5%,1%,and 0.5%),expression ofα-smooth muscle actin-2(ACTA2),fibronectin(FN),and type collagen I was assessed.Profibrotic signaling was analyzed,including TGF-β1,Smad2/3,and phosphor-smad2/3(p-Smad2/3).RESULTS Compared to the Control group,the groups treated with KFX and prednisolone exhibited reduced esophageal stenosis,lower weight loss rates,and improved food tolerance 21 d after ESD.After treatment,Masson staining revealed thinner and less dense collagen fibers in the submucosal layer.Additionally,the expression of fibrotic effector molecules was notably inhibited.Mechanistically,KFX downregulated the transduction levels of fibrotic functional molecules such as TGF-β1,Smad2/3,and p-Smad2/3.In vitro,pEsF exposed to TGF-β1-induced fibrotic microenvironment displayed increased fibrotic activity,which was reversed by KFX treatment,leading to reduced activation of ACTA2,FN,and collagen I.The 1.5%KFX treatment group showed decreased expression of p-Smad 2/3 in TGF-β1-activated pEsF.CONCLUSION KFX showed promise as a therapeutic option for post-full circumferential esophageal ESD strictures,potentially by suppressing fibroblast fibrotic activity through modulation of the TGF-β1/Smads signaling pathway.
文摘BACKGROUND Gastric cancer(GC)is a prevalent malignancy with a substantial health burden and high mortality rate,despite advances in prevention,early detection,and treatment.Compared with the global average,Asia,notably China,reports disproportionately high GC incidences.The disease often progresses asymptoma-tically in the early stages,leading to delayed diagnosis and compromised out-comes.Thus,it is crucial to identify early diagnostic biomarkers and enhance treatment strategies to improve patient outcomes and reduce mortality.METHODS Retrospectively analyzed the clinical data of 148 patients with GC treated at the Civil Aviation Shanghai Hospital between December 2022 and December 2023.The associations of coagulation indices-partial thromboplastin time(APTT),prothrombin time(PT),thrombin time(TT),fibrinogen,fibrinogen degradation products(FDP),fasting blood glucose,and D-dimer(D-D)with TNM stage and distant metastasis were examined.RESULTS Prolongation of APTT,PT,and TT was significantly correlated with the GC TNM stage.Hence,abnormal coagulation system activation was closely related to disease progression.Elevated FDP and D-D were significantly associated with distant metastasis in GC(P<0.05),suggesting that increased fibrinolytic activity contributes to increased metastatic risk.CONCLUSION Our Results reveal coagulation indices,FDPs as GC biomarkers,reflecting abnormal coagulation/fibrinolysis,aiding disease progression,metastasis prediction,and helping clinicians assess thrombotic risk for early intervention and personalized treatment plans.
基金supported by the National Natural Science Foundation of China,Nos.81800919(to YX),82171140(to PW)the International Cooperation and Exchange of the National Natural Science Foundation of China,Nos.82020108008(to HS),81720108010(to SY).
文摘Aminoglycosides are a widely used class of antibacterials renowned for their effectiveness and broad antimicrobial spectrum.However,their use leads to irreversible hearing damage by causing apoptosis of hair cells as their direct target.In addition,the hearing damage caused by aminoglycosides involves damage of spiral ganglion neurons upon exposure.To investigate the mechanisms underlying spiral ganglion neuron degeneration induced by aminoglycosides,we used a C57BL/6J mouse model treated with kanamycin.We found that the mice exhibited auditory deficits following the acute loss of outer hair cells.Spiral ganglion neurons displayed hallmarks of pyroptosis and exhibited progressive degeneration over time.Transcriptomic profiling of these neurons showed significant upregulation of genes associated with inflammation and immune response,particularly those related to the NLRP3 inflammasome.Activation of the canonical pyroptotic pathway in spiral ganglion neurons was observed,accompanied by infiltration of macrophages and the release of proinflammatory cytokines.Pharmacological intervention targeting NLRP3 using Mcc950 and genetic intervention using NLRP3 knockout ameliorated spiral ganglion neuron degeneration in the injury model.These findings suggest that NLRP3 inflammasome-mediated pyroptosis plays a role in aminoglycoside-induced spiral ganglion neuron degeneration.Inhibition of this pathway may offer a potential therapeutic strategy for treating sensorineural hearing loss by reducing spiral ganglion neuron degeneration.
文摘This study aims to evaluate the performance of six distinct Z-score formulas in diagnosing coronary artery dilation in Kawasaki disease(KD)patients,with a focus on their clinical applicability across diverse populations.A retrospective analysis was conducted using comparative statistical methods to assess the sensitivity and specificity of each formula.The Kobayashi and Dallaire formulas demonstrated the highest sensitivity in China,particularly in younger patients with prolonged fever duration.Our findings provide evidence-based recommend-ations for selecting Z-score formulas to optimize diagnostic precision in KD patients.
基金supported by the Natural Science Foundation of Shanghai,No.22ZR147750Science and Technology Innovation Action Plan of Shanghai Science and Technology Commission,No.23Y11906600Shanghai Changzheng Hospital Innovative Clinical Research Project,No.2020YLCYJ-Y02(all to YY).
文摘Alzheimer’s disease is a debilitating,progressive neurodegenerative disorder characterized by the progressive accumulation of abnormal proteins,including amyloid plaques and intracellular tau tangles,primarily within the brain.Lysosomes,crucial intracellular organelles responsible for protein degradation,play a key role in maintaining cellular homeostasis.Some studies have suggested a link between the dysregulation of the lysosomal system and pathogenesis of neurodegenerative diseases,including Alzheimer’s disease.Restoring the normal physiological function of lysosomes hold the potential to reduce the pathological burden and improve the symptoms of Alzheimer’s disease.Currently,the efficacy of drugs in treating Alzheimer’s disease is limited,with major challenges in drug delivery efficiency and targeting.Recently,nanomaterials have gained widespread use in Alzheimer’s disease drug research owing to their favorable physical and chemical properties.This review aims to provide a comprehensive overview of recent advances in using nanomaterials(polymeric nanomaterials,nanoemulsions,and carbon-based nanomaterials)to enhance lysosomal function in treating Alzheimer’s disease.This review also explores new concepts and potential therapeutic strategies for Alzheimer’s disease through the integration of nanomaterials and modulation of lysosomal function.In conclusion,this review emphasizes the potential of nanomaterials in modulating lysosomal function to improve the pathological features of Alzheimer’s disease.The application of nanotechnology to the development of Alzheimer’s disease drugs brings new ideas and approaches for future treatment of this disease.
基金supported by the National Key R&D Program of China,No.2019YFA0110300(to ZG)the National Natural Science Foundation of China,Nos.81773302(to YF),32070862(to ZG).
文摘Human brain development is a complex process,and animal models often have significant limitations.To address this,researchers have developed pluripotent stem cell-derived three-dimensional structures,known as brain-like organoids,to more accurately model early human brain development and disease.To enable more consistent and intuitive reproduction of early brain development,in this study,we incorporated forebrain organoid culture technology into the traditional unguided method of brain organoid culture.This involved embedding organoids in matrigel for only 7 days during the rapid expansion phase of the neural epithelium and then removing them from the matrigel for further cultivation,resulting in a new type of human brain organoid system.This cerebral organoid system replicated the temporospatial characteristics of early human brain development,including neuroepithelium derivation,neural progenitor cell production and maintenance,neuron differentiation and migration,and cortical layer patterning and formation,providing more consistent and reproducible organoids for developmental modeling and toxicology testing.As a proof of concept,we applied the heavy metal cadmium to this newly improved organoid system to test whether it could be used to evaluate the neurotoxicity of environmental toxins.Brain organoids exposed to cadmium for 7 or 14 days manifested severe damage and abnormalities in their neurodevelopmental patterns,including bursts of cortical cell death and premature differentiation.Cadmium exposure caused progressive depletion of neural progenitor cells and loss of organoid integrity,accompanied by compensatory cell proliferation at ectopic locations.The convenience,flexibility,and controllability of this newly developed organoid platform make it a powerful and affordable alternative to animal models for use in neurodevelopmental,neurological,and neurotoxicological studies.
文摘Background : To study the relationships among emodin, synovial fibroblasts (FLSs), and macrophages (STMs) to provide guidance for the use of emodin in rheumatoid arthritis (RA) treatment. Methods : RA clinical samples from patients with different pathological processes were collected, and the correlations between the subsets of FLSs and STMs and pathological processes were analyzed via flow cytometry. In vitro experimental methods such as enzyme linked immunosorbent assay (ELISA), Western blotting, Transwell assays, CCK- 8 assays and cell coculture were used to assess cell proliferation, migration and secretion of inflammatory factors. A collagen- induced arthritis mouse model was constructed to investigate the therapeutic potential of emodin in RA by flow cytometry, micro- CT and staining. Results : Unique subsets of FLSs and STMs, namely, FAPα ^(+)THY1 − FLSs, FAPα ^(+)THY1 ^(+)FLSs, and MerTK ^(pos) TREM2 ^(high) STMs, were identified in synovial tissues from RA patients. The number of MerTK ^(pos) TREM2 ^(high) STMs was negatively correlated with the degree of damage in RA, while the number of FAPα ^(+)THY1 − FLSs was positively correlated with damage. On the one hand, emodin promoted the aggregation of MerTKposTREM2high STMs. Moreover, MerTK pos TREM2 high STM- mediated secretion of exosomes was promoted, which can inhibit the secretion of pro- inflammatory factors by FAPα ^(+)THY1 ^(+)FLSs and promote the secretion of anti- inflammatory factors by FAPα ^(+)THY1 ^(+)FLSs, thereby inhibiting FAPα ^(+)THY1 − FLS proliferation and migration, improving the local immune microenvironment, and inhibiting RA damage. Conclusion : Emodin was shown to regulate the aggregation of STM subsets and exosome secretion, affecting the secretion, proliferation and migration of inflammatory factors in FLS subsets, and ultimately achieving good therapeutic efficacy in RA patients, suggesting that it has important clinical value.