The vortex shedding noise has been revealed as an important wing noise source on some modern commercial aircraft based on the fly-over measurements with a planar microphone array by Michel (1998). In this paper, an an...The vortex shedding noise has been revealed as an important wing noise source on some modern commercial aircraft based on the fly-over measurements with a planar microphone array by Michel (1998). In this paper, an analytical model is presented for predicting this vortex shedding noise. The downstream wake of a 2-dimensional airfoil is assumed to be dominated by the von Karman vortex street, and the strength and the shedding frequency of the wake vortex are determined from the wake structure model. An aero-acoustic model is developed based on the Howe's unified theory of trailing edge noise and is incorporated with the wake model to predict the sound pressure level and directivity of vortex shedding noise. The predicted vortex shedding frequencies, sound pressure levels and directivities compare favorably with the measured results for 6 modern commercial aircraft.展开更多
基金the Bundersministerium for Building und Forschung(BMBF) of Germany
文摘The vortex shedding noise has been revealed as an important wing noise source on some modern commercial aircraft based on the fly-over measurements with a planar microphone array by Michel (1998). In this paper, an analytical model is presented for predicting this vortex shedding noise. The downstream wake of a 2-dimensional airfoil is assumed to be dominated by the von Karman vortex street, and the strength and the shedding frequency of the wake vortex are determined from the wake structure model. An aero-acoustic model is developed based on the Howe's unified theory of trailing edge noise and is incorporated with the wake model to predict the sound pressure level and directivity of vortex shedding noise. The predicted vortex shedding frequencies, sound pressure levels and directivities compare favorably with the measured results for 6 modern commercial aircraft.