The effective utilization of steel slag, a byproduct produced in large quantities from the steel refining process, is an important issue. Because steel slag contains abundant mineral components, the effects of steel s...The effective utilization of steel slag, a byproduct produced in large quantities from the steel refining process, is an important issue. Because steel slag contains abundant mineral components, the effects of steel slag on soil bacterial biomass and plant mineral uptake were analyzed in this study. The soil pH increased in proportion to the amount of steel slag added. A lower concentration (0.2% to 1%) of steel slag addition did not change the bacterial biomass. However, a higher concentration of steel slag (above 1%) had a negative effect on bacterial biomass. A lower amount of steel slag (0.2% to 1%) addition in soil leads to increased mineral (Ca, Mg, and Fe) uptake and plant growth in Brassica rapa var. periviridis and Spinacia oleracea L. However, mineral uptake by the plants decreased when a large amount of steel slag (above 1%) was added to the soil. Low concentrations of steel slag (0.2% to 1%) in soil had positive effects on plant growth, mineral uptake of plants, and bacterial biomass.展开更多
We observe surface plasmon polariton (SPP) refraction on a metal heterostructured sample with a scattered-type scanning near-field optical microscope (SNOM). The sample consists of AI and Au in-plane whose boundar...We observe surface plasmon polariton (SPP) refraction on a metal heterostructured sample with a scattered-type scanning near-field optical microscope (SNOM). The sample consists of AI and Au in-plane whose boundary is smooth enough with proper etching time. SPPs excited on the AI film travel to the boundary and a portion of SPPs propagates into the Au film. In addition, interference fringes appear in the SNOM image bent at the boundary. The result is analysed with effective index method and the refracted angle is explained by Shell's law.展开更多
In-situ impedance spectroscopy (IS) observations of the photoconductivity of the carriers induced by photo-irradiation in organic hetero-junction structured photovoltaic devices are presented. In the IS measurements, ...In-situ impedance spectroscopy (IS) observations of the photoconductivity of the carriers induced by photo-irradiation in organic hetero-junction structured photovoltaic devices are presented. In the IS measurements, the externally applied voltage and the dependence of the light intensity applied to the device were investigated. Analysis of the frequency characteristics which was measured by changing the light intensity shows there is a proportional relationship between the changes in the conductivities of the two components. The mobilities of the CuPc and C60 layers were calculated from the conductivities and were in the orders of 10﹣4 and 10﹣3 cm2/Vs, respectively.展开更多
The carrier dynamics in organic photovoltaic (OPV) cells were investigated by impedance spectroscopy. We introduced a novel impedance spectrum representation called dynamic modulus plot (DMP), which allowed us to obse...The carrier dynamics in organic photovoltaic (OPV) cells were investigated by impedance spectroscopy. We introduced a novel impedance spectrum representation called dynamic modulus plot (DMP), which allowed us to observe the layer-to-layer carrier injection behavior graphically. In this work, the impedance responses were characterized in the N,N’-diphenyl-N,N’-di-m-tolyl- 4,4’-diaminobiphenyl (TPD)/C60 p-n heterostructured OPV cells against applied voltages. The dependence of impedance responses on the layer thickness revealed a constant internal electric field that disturbed the carrier transport within the OPV cells. We applied this technique to new donor materials, in which thiophene units were inserted to the center of TPD. By increasing the number of thiophene units in TPD the fill-factor (FF) improved from 33% to 59%, which increased the power conversion efficiency (PCE). Based on the DMP analysis, we assigned the improvement in device performance to the reduction of the internal electric field.展开更多
Although hydraulic drives have an advantage of high power density, volumetric shrinkage of hydraulic fluids due to pressure causes various disadvantages such as delay of hydraulic response and compression energy loss....Although hydraulic drives have an advantage of high power density, volumetric shrinkage of hydraulic fluids due to pressure causes various disadvantages such as delay of hydraulic response and compression energy loss. Hydraulic fluids of new concept, high bulk modulus oils, have been developed as a new approach to improve the performance of a hydraulic servo system and verified. In this paper, practical performances of high bulk modulus oil, such as oil temperature rise during pump test, air bubbles generation by ultrasonic wave vibration, oxidation stability and anti-wear property, were studied. And the new oil was confirmed to have excellent practical performances besides advantages in pressure response and volumetric efficiency of pumps. Various new applications of the new oil are promising.展开更多
Direct catalytic conversion of methane to benzene at non-oxidative condition is considered as one of key reac-tions for constitution of sustainable carbon-cycling processes,since either biomethane or CO_(2)-based synt...Direct catalytic conversion of methane to benzene at non-oxidative condition is considered as one of key reac-tions for constitution of sustainable carbon-cycling processes,since either biomethane or CO_(2)-based synthetic methane can serve as its feed source.While this concern may motivate many researchers over the world to make their continuous effort to gain deep insight into the catalytic mechanism of this catalysis system and the essential cause of the catalyst deactivation,successful development of a catalyst with high performance,enhanced coking resistance and long-term operating stability will be the key to its industrial application.Here in this review pa-per,we demonstrate the high catalytic activity and stability of our two shaped Mo/HZSM-5 catalysts developed respectively for fixed-bed and fluidized-bed operations at severe reaction conditions.Thermodynamically,a pos-sibly high aromatization temperature is required to attain a desired high benzene formation rate,but adopting such a temperature will certainly accelerate coke formation and catalyst deactivation.Therefore,the focus of the catalyst development was laid on finding various effective ways of suppressing coke accumulation and catalyst deactivation at practically required severe reaction conditions,and much effort was made to attain the purpose.As a result,a highly active and selective pelleted Mo/HZSM-5 catalyst has been successfully developed and was stably run in a fixed-bed reactor under cyclic regeneration operation mode over 1000 h.In parallel a binder-free,fluidizable Mo/HZSM-5 catalyst with certain mechanical strength has also been developed and successfully tested in a dual circulating fluidized-bed reactor system to provide a stable benzene yield of about 12%at 1073 K and 3000 ml/g/h space velocity.展开更多
To advance the development of high-strength polycrystalline metallic materials towards achieving carbon neutrality,it is essential to design materials in which the atomic level control of general grain boundaries(GGBs...To advance the development of high-strength polycrystalline metallic materials towards achieving carbon neutrality,it is essential to design materials in which the atomic level control of general grain boundaries(GGBs),which govern the material properties,is achieved.However,owing to the complex and diverse structures of GGBs,there have been no reports on interatomic potentials capable of reproducing them.展开更多
文摘The effective utilization of steel slag, a byproduct produced in large quantities from the steel refining process, is an important issue. Because steel slag contains abundant mineral components, the effects of steel slag on soil bacterial biomass and plant mineral uptake were analyzed in this study. The soil pH increased in proportion to the amount of steel slag added. A lower concentration (0.2% to 1%) of steel slag addition did not change the bacterial biomass. However, a higher concentration of steel slag (above 1%) had a negative effect on bacterial biomass. A lower amount of steel slag (0.2% to 1%) addition in soil leads to increased mineral (Ca, Mg, and Fe) uptake and plant growth in Brassica rapa var. periviridis and Spinacia oleracea L. However, mineral uptake by the plants decreased when a large amount of steel slag (above 1%) was added to the soil. Low concentrations of steel slag (0.2% to 1%) in soil had positive effects on plant growth, mineral uptake of plants, and bacterial biomass.
文摘We observe surface plasmon polariton (SPP) refraction on a metal heterostructured sample with a scattered-type scanning near-field optical microscope (SNOM). The sample consists of AI and Au in-plane whose boundary is smooth enough with proper etching time. SPPs excited on the AI film travel to the boundary and a portion of SPPs propagates into the Au film. In addition, interference fringes appear in the SNOM image bent at the boundary. The result is analysed with effective index method and the refracted angle is explained by Shell's law.
文摘In-situ impedance spectroscopy (IS) observations of the photoconductivity of the carriers induced by photo-irradiation in organic hetero-junction structured photovoltaic devices are presented. In the IS measurements, the externally applied voltage and the dependence of the light intensity applied to the device were investigated. Analysis of the frequency characteristics which was measured by changing the light intensity shows there is a proportional relationship between the changes in the conductivities of the two components. The mobilities of the CuPc and C60 layers were calculated from the conductivities and were in the orders of 10﹣4 and 10﹣3 cm2/Vs, respectively.
文摘The carrier dynamics in organic photovoltaic (OPV) cells were investigated by impedance spectroscopy. We introduced a novel impedance spectrum representation called dynamic modulus plot (DMP), which allowed us to observe the layer-to-layer carrier injection behavior graphically. In this work, the impedance responses were characterized in the N,N’-diphenyl-N,N’-di-m-tolyl- 4,4’-diaminobiphenyl (TPD)/C60 p-n heterostructured OPV cells against applied voltages. The dependence of impedance responses on the layer thickness revealed a constant internal electric field that disturbed the carrier transport within the OPV cells. We applied this technique to new donor materials, in which thiophene units were inserted to the center of TPD. By increasing the number of thiophene units in TPD the fill-factor (FF) improved from 33% to 59%, which increased the power conversion efficiency (PCE). Based on the DMP analysis, we assigned the improvement in device performance to the reduction of the internal electric field.
文摘Although hydraulic drives have an advantage of high power density, volumetric shrinkage of hydraulic fluids due to pressure causes various disadvantages such as delay of hydraulic response and compression energy loss. Hydraulic fluids of new concept, high bulk modulus oils, have been developed as a new approach to improve the performance of a hydraulic servo system and verified. In this paper, practical performances of high bulk modulus oil, such as oil temperature rise during pump test, air bubbles generation by ultrasonic wave vibration, oxidation stability and anti-wear property, were studied. And the new oil was confirmed to have excellent practical performances besides advantages in pressure response and volumetric efficiency of pumps. Various new applications of the new oil are promising.
文摘Direct catalytic conversion of methane to benzene at non-oxidative condition is considered as one of key reac-tions for constitution of sustainable carbon-cycling processes,since either biomethane or CO_(2)-based synthetic methane can serve as its feed source.While this concern may motivate many researchers over the world to make their continuous effort to gain deep insight into the catalytic mechanism of this catalysis system and the essential cause of the catalyst deactivation,successful development of a catalyst with high performance,enhanced coking resistance and long-term operating stability will be the key to its industrial application.Here in this review pa-per,we demonstrate the high catalytic activity and stability of our two shaped Mo/HZSM-5 catalysts developed respectively for fixed-bed and fluidized-bed operations at severe reaction conditions.Thermodynamically,a pos-sibly high aromatization temperature is required to attain a desired high benzene formation rate,but adopting such a temperature will certainly accelerate coke formation and catalyst deactivation.Therefore,the focus of the catalyst development was laid on finding various effective ways of suppressing coke accumulation and catalyst deactivation at practically required severe reaction conditions,and much effort was made to attain the purpose.As a result,a highly active and selective pelleted Mo/HZSM-5 catalyst has been successfully developed and was stably run in a fixed-bed reactor under cyclic regeneration operation mode over 1000 h.In parallel a binder-free,fluidizable Mo/HZSM-5 catalyst with certain mechanical strength has also been developed and successfully tested in a dual circulating fluidized-bed reactor system to provide a stable benzene yield of about 12%at 1073 K and 3000 ml/g/h space velocity.
基金This work used computational resources of the Supercomputer Fugaku provided by Riken through the HPCI System Research Project(Project ID:hp230272)Thisworkwas partly supported by AccompanyingUser Support Program(【23Z-03,23Z-05,24H1-01】,Support content:【porting of application program,execution performance tuning】)performed by Research Organization for Information Science and Technology.
文摘To advance the development of high-strength polycrystalline metallic materials towards achieving carbon neutrality,it is essential to design materials in which the atomic level control of general grain boundaries(GGBs),which govern the material properties,is achieved.However,owing to the complex and diverse structures of GGBs,there have been no reports on interatomic potentials capable of reproducing them.