期刊文献+
共找到168篇文章
< 1 2 9 >
每页显示 20 50 100
Brain region-specific roles of brain-derived neurotrophic factor in social stress-induced depressive-like behavior 被引量:3
1
作者 Man Han Deyang Zeng +7 位作者 Wei Tan Xingxing Chen Shuyuan Bai Qiong Wu Yushan Chen Zhen Wei Yufei Mei Yan Zeng 《Neural Regeneration Research》 SCIE CAS 2025年第1期159-173,共15页
Brain-derived neurotrophic factor is a key factor in stress adaptation and avoidance of a social stress behavioral response.Recent studies have shown that brain-derived neurotrophic factor expression in stressed mice ... Brain-derived neurotrophic factor is a key factor in stress adaptation and avoidance of a social stress behavioral response.Recent studies have shown that brain-derived neurotrophic factor expression in stressed mice is brain region–specific,particularly involving the corticolimbic system,including the ventral tegmental area,nucleus accumbens,prefrontal cortex,amygdala,and hippocampus.Determining how brain-derived neurotrophic factor participates in stress processing in different brain regions will deepen our understanding of social stress psychopathology.In this review,we discuss the expression and regulation of brain-derived neurotrophic factor in stress-sensitive brain regions closely related to the pathophysiology of depression.We focused on associated molecular pathways and neural circuits,with special attention to the brain-derived neurotrophic factor–tropomyosin receptor kinase B signaling pathway and the ventral tegmental area–nucleus accumbens dopamine circuit.We determined that stress-induced alterations in brain-derived neurotrophic factor levels are likely related to the nature,severity,and duration of stress,especially in the above-mentioned brain regions of the corticolimbic system.Therefore,BDNF might be a biological indicator regulating stress-related processes in various brain regions. 展开更多
关键词 AMYGDALA chronic mild stress chronic social defeat stress corticolimbic system DEPRESSION HIPPOCAMPUS medial prefrontal cortex nucleus accumbens social stress models ventral tegmental area
暂未订购
Glucocorticoid receptor signaling in the brain and its involvement in cognitive function 被引量:1
2
作者 Chonglin Su Taiqi Huang +3 位作者 Meiyu Zhang Yanyu Zhang Yan Zeng Xingxing Chen 《Neural Regeneration Research》 SCIE CAS 2025年第9期2520-2537,共18页
The hypothalamic-pituitary-adrenal axis regulates the secretion of glucoco rticoids in response to environmental challenges.In the brain,a nuclear receptor transcription fa ctor,the glucocorticoid recepto r,is an impo... The hypothalamic-pituitary-adrenal axis regulates the secretion of glucoco rticoids in response to environmental challenges.In the brain,a nuclear receptor transcription fa ctor,the glucocorticoid recepto r,is an important component of the hypothalamicpituitary-a d renal axis's negative feedback loop and plays a key role in regulating cognitive equilibrium and neuroplasticity.The glucoco rticoid receptor influences cognitive processes,including glutamate neurotransmission,calcium signaling,and the activation of brain-derived neurotrophic factor-mediated pathways,through a combination of genomic and non-genomic mechanisms.Protein interactions within the central nervous system can alter the expression and activity of the glucocorticoid receptor,there by affecting the hypothalamic-pituitary-a d renal axis and stress-related cognitive functions.An appropriate level of glucocorticoid receptor expression can improve cognitive function,while excessive glucocorticoid receptors or long-term exposure to glucoco rticoids may lead to cognitive impairment.Patients with cognitive impairment-associated diseases,such as Alzheimer's disease,aging,depression,Parkinson's disease,Huntington's disease,stroke,and addiction,often present with dysregulation of the hypothalamic-pituitary-adrenal axis and glucocorticoid receptor expression.This review provides a comprehensive overview of the functions of the glucoco rticoid receptor in the hypothalamic-pituitary-a d renal axis and cognitive activities.It emphasizes that appropriate glucocorticoid receptor signaling fa cilitates learning and memory,while its dysregulation can lead to cognitive impairment.This provides clues about how glucocorticoid receptor signaling can be targeted to ove rcome cognitive disability-related disorders. 展开更多
关键词 brain-derived neurotrophic factor calcium signaling glucocorticoid receptor GLUCOCORTICOID glutamate transmission hypothalamic-pituitary-adrenal axis long-term potentiation neurocognitive disorders NEUROPLASTICITY stress
暂未订购
Output Voltage Stabilization of Non-Ideal DC-DC Zeta Converter with Output Voltage Error Elimination via Hybrid Control
3
作者 Hafez Sarkawi Noridah Mohd Ridzuan +1 位作者 Muhammad Idzdihar Idris Mohd Syafiq Mispan 《Journal of Power and Energy Engineering》 2025年第1期18-31,共14页
In this paper, we proposed an output voltage stabilization of a DC-DC Zeta converter using hybrid control. We modeled the Zeta converter under continuous conduction mode operation. We derived a switching control law t... In this paper, we proposed an output voltage stabilization of a DC-DC Zeta converter using hybrid control. We modeled the Zeta converter under continuous conduction mode operation. We derived a switching control law that brings the output voltage to the desired level. Due to infinite switching occurring at the desired level, we enhanced the switching control law by allowing a sizeable output voltage ripple. We derived mathematical models that allow one to choose the desired switching frequency. In practice, the existence of the non-ideal properties of the Zeta converter results in steady-state output voltage error. By analyzing the power loss in the zeta converter, we proposed an improved switching control law that eliminates the steady-state output voltage error. The effectiveness of the proposed method is illustrated with simulation results. 展开更多
关键词 Continuous Conduction Mode DC-DC Zeta Converter Hybrid Control Output Voltage Error Switching Control Law Switching Frequency
在线阅读 下载PDF
Seismic resilience design of prefabricated modular pressurized buildings
4
作者 Zhiwu Ye Haifeng Bu +3 位作者 Zhimao Liu Deng Lu Dong Min Hongbo Shan 《Resilient Cities and Structures》 2025年第1期53-70,共18页
The seismic intensity is generally high in the Qinghai-Tibet Plateau region of China.The seismic performance of the new prefabricated modular pressurized buildings used to solve the plateau response is insufficient.To... The seismic intensity is generally high in the Qinghai-Tibet Plateau region of China.The seismic performance of the new prefabricated modular pressurized buildings used to solve the plateau response is insufficient.To solve this problem,the small friction pendulum bearing(FPB)isolation design is proposed for modular pressurized buildings.Firstly,a simplified model of cross-truss support for the pressurized module is proposed to simplify the modeling and calculation of the pressurized buildings.The reasonability of the simplified model is verified by comparing the refined finite element model.Subsequently,according to the FPB design process for modular pressurized buildings,a small FPB for isolation is provided for a two-story modular pressurized building under 8-degree fortification earthquakes.Lastly,the seismic effectiveness and constructional feasibility of the isolation structure are verified compared with the non-isolated structure using dynamic time-history analysis.The study results show that the size of FPBs for modular pressurized buildings should consider both displacement and dimension requirements to weigh seismic isolation performance and installation feasibility,respectively.When adopting FPBs,the response of the structure is significantly reduced,and the seismic isolation effect is obvious.The proposed construction process can improve the seismic resilience of the prefabricated modular pressurized buildings by replacing post-earthquake damaged components quickly.It provides ideas for the seismic isolation design of the prefabricated modular pressurized buildings in high seismic intensity areas. 展开更多
关键词 Modular pressurized buildings Seismic isolation Time-history dynamic analysis Fast construction Seismic resilient design
在线阅读 下载PDF
Evolution Analysis of Network Attack and Defense Situation Based on Game Theory
5
作者 Haiyan Sun Chenglong Shao +2 位作者 Jianwei Zhang Kun Wang Wanwei Huang 《Computers, Materials & Continua》 2025年第4期1475-1494,共20页
To address the problem that existing studies lack analysis of the relationship between attack-defense game behaviors and situation evolution from the game perspective after constructing an attack-defense model,this pa... To address the problem that existing studies lack analysis of the relationship between attack-defense game behaviors and situation evolution from the game perspective after constructing an attack-defense model,this paper proposes a network attack-defense game model(ADGM).Firstly,based on the assumption of incomplete information between the two sides of the game,the ADGM model is established,and methods of payoff quantification,equilibrium solution,and determination of strategy confrontation results are presented.Then,drawing on infectious disease dynamics,the network attack-defense situation is defined based on the density of nodes in various security states,and the transition paths of network node security states are analyzed.Finally,the network zero-day virus attack-defense behaviors are analyzed,and comparative experiments on the attack-defense evolution trends under the scenarios of different strategy combinations,interference methods,and initial numbers are conducted using the NetLogo simulation tool.The experimental results indicate that this model can effectively analyze the evolution of the macro-level network attack-defense situation from the micro-level attack-defense behaviors.For instance,in the strategy selection experiment,when the attack success rate decreases from 0.49 to 0.29,the network destruction rate drops by 11.3%,in the active defense experiment,when the interference coefficient is reduced from 1 to 0.7,the network destruction rate decreases by 7%,and in the initial node number experiment,when the number of initially infected nodes increases from 10 to 30,the network destruction rate rises by 3%. 展开更多
关键词 Network attack-defense situation evolution zero-day virus NETLOGO
在线阅读 下载PDF
New insight into manganese-enhanced abiotic degradation of microplastics:Processes and mechanisms
6
作者 Yunlong Sun Wei Ding +6 位作者 Yanhao Wang Zhening Zhang Ruyun Wang Yinghui Guo Zhiyuan Gao Haiyan Du Dong Ma 《Chinese Chemical Letters》 2025年第3期144-150,共7页
Microplastics(MPs) are an emerging environmental pollutant and have penetrated the most remote and primitive areas. MPs degradation has received widespread attention. Manganese(Mn) is a highly reactive metal element i... Microplastics(MPs) are an emerging environmental pollutant and have penetrated the most remote and primitive areas. MPs degradation has received widespread attention. Manganese(Mn) is a highly reactive metal element in the environment, yet its contribution to MPs degradation remains unclear. Herein,we simulated the aging of polyethylene MPs with Mn(Ⅱ) under aqueous conditions at pH 5 and 8 for720 days. Mn greatly promoted the MPs degradation, and the average particle sizes of polyethylene MPs were reduced from 9.2 μm to 5.9 μm after aging at pH 5 under light irradiation for 720 days. Plenty of oxygen-containing groups were generated on the MPs surfaces, and the carbonyl index remarkably increased, reaching four times that of the control without adding Mn. Mechanistically, the adsorbed Mn(Ⅱ)on the MPs surfaces were primarily oxidized to high-valence Mn(Ⅲ/Ⅳ) profited from the photoproduced radicals, followed by the MPs oxidation via Mn(Ⅲ/Ⅳ), which were reduced to regenerate Mn(Ⅱ), initiating a new redox cycling. During the degradation, dissolved organic matter was continuously released, mainly including bisphenol A and phthalic acid esters. Mn acts as a catalyst to accelerate the MPs degradation by redox cycling. Our results provide a new insight into the mechanisms of abiotic degradation of MPs in aqueous environments. 展开更多
关键词 POLYETHYLENE Microplastics MANGANESE DEGRADATION Carbonyl index
原文传递
Contamination and ecological risk of heavy metals in sediments of urban rivers in a typical economic development zone,southern China
7
作者 Xiaohui Wu Kaixiong Yang +4 位作者 Jinna Lu Bolin Li Ye Li Yaqiu Zhang Li Ye 《Journal of Environmental Sciences》 2025年第7期264-274,共11页
Urban rivers are one of the main water sources for local residents.However,the rapid industrialization and urbanization caused serious heavy metals pollution in urban rivers,which posed harmful impact on human health ... Urban rivers are one of the main water sources for local residents.However,the rapid industrialization and urbanization caused serious heavy metals pollution in urban rivers,which posed harmful impact on human health and ecosystem.In this study,134 sediment samples were collected fromurban rivers in a typical Economic and Technological Development Zone(ETDZ)to evaluate the contamination status,ecological risk,biotoxicity,and potential source of 8 heavy metals including arsenic(As),cadmium(Cd),chromium(Cr),copper(Cu),mercury(Hg),nickel(Ni),plumbum(Pb),and zinc(Zn).Results showed that the average concentrations of all 8 metals exceeded their corresponding background values and followed the trend:Cr(248.67 mg/kg)>Pb(123.58 mg/kg)>Zn(67.06 mg/kg)>Ni(47.19 mg/kg)>Cu(27.40 mg/kg)>As(16.15 mg/kg)>Cd(0.62mg/kg)>Hg(0.21mg/kg).A high contamination and accumulation tendency of Cd and Cr were found in the sediments.Moreover,Cd and Hg were the main contributors of ecological risk,and posed moderate to high risk.In terms of biotoxicity,all the sediment samples were harmful to benthic organisms.Two possible pollution sources of heavy metals were identified:one is a combined source of industrial and traffic pollution dominated by Cr and Pd,the other is an industrial pollution source consisting of six heavy metals(Ni,Zn,Cd,Hg,As,and Cu).This study provides insights into heavy metals pollution management and risk control in the ETDZ and similar urban rivers worldwide due to intense industrialization. 展开更多
关键词 RIVERS URBANIZATION Heavy metals Ecological risk Biological toxicity
原文传递
Scalable and Sustainable Chitosan/Carbon Nanotubes Composite Protective Layer for Dendrite-Free and Long-Cycling Aqueous Zinc-Metal Batteries
8
作者 Jinchang Wang Alessandro Innocenti +5 位作者 Hang Wei Yuanyuan Zhang Jingsong Peng Yuanting Qiao Weifeng Huang Jian Liu 《Nano-Micro Letters》 2025年第12期732-746,共15页
Rechargeable aqueous zinc(Zn)-metal batteries hold great promise for next-generation energy storage systems.However,their practical application is hindered by several challenges,including dendrite formation,corrosion,... Rechargeable aqueous zinc(Zn)-metal batteries hold great promise for next-generation energy storage systems.However,their practical application is hindered by several challenges,including dendrite formation,corrosion,and the competing hydrogen evolution reaction.To address these issues,we designed and fabricated a composite protective layer for Zn anodes by integrating carbon nanotubes(CNTs)with chitosan through a simple and scalable scraping process.The CNTs ensure uniform electric field distribution due to their high electrical conductivity,while protonated chitosan regulates ion transport and suppresses dendrite formation at the anode interface.The chitosan/CNTs composite layer also facilitates smooth Zn^(2+)deposition,enhancing the stability and reversibility of the Zn anode.As a result,the chitosan/CNTs@Zn anode demonstrates exceptional cycling stability,achieving over 3000 h of plating/stripping with minimal degradation.When paired with a V_(2)O_(5)cathode,the composite-protected anode significantly improves the cycle stability and energy density of the full cell.Techno-economic analysis confirms that batteries incorporating the chitosan/CNTs protective layer outperform those with bare Zn anodes in terms of energy density and overall performance under optimized conditions.This work provides a scalable and sustainable strategy to overcome the critical challenges of aqueous Zn-metal batteries,paving the way for their practical application in next-generation energy storage systems. 展开更多
关键词 Zn anode Chitosan/CNTs Protective layer Techno-economic analysis BIOMIMETIC
在线阅读 下载PDF
Prediction of the Ultraviolet Luminescence Potential of Bi_(2)SeO_(5): First-Principles Insights
9
作者 Yining Zhou Jiamin Li +3 位作者 Yutong Feng Yichen Bian Longlinsen He Chen-Min Dai 《Journal of Electronic Research and Application》 2025年第4期224-228,共5页
As a new layered semiconductor material,Bi_(2)SeO_(5) has shown potential in the field of ultraviolet electronic devices in recent years because of its unique crystal structure and wide band gap.In this paper,the crys... As a new layered semiconductor material,Bi_(2)SeO_(5) has shown potential in the field of ultraviolet electronic devices in recent years because of its unique crystal structure and wide band gap.In this paper,the crystal structure,electronic structure,and thermodynamic stability of Bi_(2)SeO_(5) are studied based on first-principles calculations.The ultraviolet luminescence property of BiSe defect is predicated from defect property,which provides theoretical basis for experimental design of high-performance Bi2SeO5 photoelectric devices. 展开更多
关键词 First-principles calculation Bi_(2)SeO_(5) Ultraviolet luminescence property
在线阅读 下载PDF
Value of intravoxel incoherent motion and diffusion kurtosis imaging to differentiate hepatocellular carcinoma and intrahepatic cholangiocarcinoma
10
作者 Shan-Mei Li Meng-Wei Feng +6 位作者 Guang-Hai Ji Xiao-Peng Song Wei Mao Tao Zhou Xiao-Fang Guo Zi-Long Yuan Yu-Lin Liu 《World Journal of Gastrointestinal Oncology》 2025年第8期179-191,共13页
BACKGROUND The differential diagnosis between hepatocellular carcinoma(HCC)and intrahepatic cholangiocarcinoma(ICC)is crucial.The individual differences of patients increase the complexity of diagnosis.Currently,imagi... BACKGROUND The differential diagnosis between hepatocellular carcinoma(HCC)and intrahepatic cholangiocarcinoma(ICC)is crucial.The individual differences of patients increase the complexity of diagnosis.Currently,imaging diagnosis mainly relies on conventional computed tomography and magnetic resonance imaging(MRI),but few studies have investigated MRI functional imaging.This study combined MRI functional imaging including intravoxel incoherent motion(IVIM)and diffusion kurtosis imaging(DKI),facilitating differential diagnosis.AIM To explore the differential diagnostic value of IVIM imaging and DKI in differentiating between HCC and ICC.METHODS A total of 58 patients who underwent multi-b-value diffusion weighted imaging(DWI)on a 3.0 T magnetic MRI scanner were enrolled in this study.Standard apparent diffusion coefficient(SADC),IVIM quantitative parameters,including pure diffusion coefficient(D),pseudo diffusion coefficient(Dstar),and perfusion fraction(f),as well as the DKI quantitative parameters mean diffusion coefficient(MD)and mean kurtosis coefficient(MK)were computed by multi-b DWI images.Theχ2 test was used for classified data,and a one-way analysis of variance was performed for counted data.P<0.05 indicated statistical significance.The diagnostic value of parameters in HCC and ICC was analyzed using the receiver operating characteristic(ROC)curve.RESULTS The SADC,D,and MD values were significantly lower in the HCC group compared to the ICC group,whereas MK was significantly higher in the HCC group than in the ICC group(P<0.05).No significant difference in Dstar and f was observed between the HCC group and the ICC group(P>0.05).The optimal cutoff levels of the total values of SADC,D,MK,MD and all associated parameters were 1.25×10^(-3)mm^(2)/second,1.32×10^(-3)mm^(2)/second,650.2×10^(-3)mm^(2)/second,1.41×10^(-3)mm^(2)/second and 0.46×10^(-3)mm^(2)/second,respectively.The sensitivity of diagnosis was 95%,80%,90%,100%,and 70%,respectively,the specificity of diagnosis was 67.39%,69.57%,67.39%,43.48%,and 93.48%,respectively,and the area under the ROC curve was 0.874,0.793,0.733,0.757,and 0.895,respectively.CONCLUSION SADC,D,MK,and MD could be used to distinguish HCC from ICC,with the diagnostic value reaching a maximum after establishing a joint model. 展开更多
关键词 Hepatocellular carcinoma Magnetic resonance imaging Intrahepatic cholangiocarcinoma Intravoxel incoherent motion Diffusion kurtosis imaging
暂未订购
Uncovering diverse roles of zincophilic and hydrophobic interactions at composite interfaces to enhance the longevity of zinc-ion batteries
11
作者 Botao Zhang Yongxin Huang +8 位作者 Shengyu Gao Ning Zhang Yang Mei Yanting Huang Taifeng Ding Xin Hu Li Li Feng Wu Renjie Chen 《Journal of Energy Chemistry》 2025年第8期908-918,共11页
Aqueous zinc-ion batteries(AZIBs)are pivotal for achieving net-zero goals,yet their commercialization is impeded by zinc dendrites,parasitic reactions,and interfacial instability.Current debates persist on the interpl... Aqueous zinc-ion batteries(AZIBs)are pivotal for achieving net-zero goals,yet their commercialization is impeded by zinc dendrites,parasitic reactions,and interfacial instability.Current debates persist on the interplay between zincophilic-hydrophilic and zincophobic-hydrophobic interactions at the anode-electrolyte interface.Herein,a conceptual framework that decouples these competing effects was proposed,enabling the rational design of a dual-layer architecture with an inner zincophilic layer for Zn^(2+)flux homogenization and an outer hydrophobic layer for water shielding.Through in situ and ex situ analyses,the synergistic mechanism was elucidated.During the cycling process,the zincophilic interface guides uniform Zn deposition,while the hydrophobic coating suppresses H_(2)O-induced side reactions.This dual modification achieves a Zn||Cu cell with an unprecedented 99.89%Coulombic efficiency and 975-cycle stability.This work resolves the long-standing controversy over interfacial affinity design,offering a scalable and industrially viable strategy to enhance AZIBs’durability without sacrificing energy density. 展开更多
关键词 Zinc-ion battery Zinc anode Spray coating Zincophilicity HYDROPHOBICITY
在线阅读 下载PDF
Enhancing patient rehabilitation predictions with a hybrid anomaly detection model:Density-based clustering and interquartile range methods
12
作者 Murad Ali Khan Jong-Hyun Jang +5 位作者 Naeem Iqbal Harun Jamil Syed Shehryar Ali Naqvi Salabat Khan Jae-Chul Kim Do-Hyeun Kim 《CAAI Transactions on Intelligence Technology》 2025年第4期983-1006,共24页
In recent years,there has been a concerted effort to improve anomaly detection tech-niques,particularly in the context of high-dimensional,distributed clinical data.Analysing patient data within clinical settings reve... In recent years,there has been a concerted effort to improve anomaly detection tech-niques,particularly in the context of high-dimensional,distributed clinical data.Analysing patient data within clinical settings reveals a pronounced focus on refining diagnostic accuracy,personalising treatment plans,and optimising resource allocation to enhance clinical outcomes.Nonetheless,this domain faces unique challenges,such as irregular data collection,inconsistent data quality,and patient-specific structural variations.This paper proposed a novel hybrid approach that integrates heuristic and stochastic methods for anomaly detection in patient clinical data to address these challenges.The strategy combines HPO-based optimal Density-Based Spatial Clustering of Applications with Noise for clustering patient exercise data,facilitating efficient anomaly identification.Subsequently,a stochastic method based on the Interquartile Range filters unreliable data points,ensuring that medical tools and professionals receive only the most pertinent and accurate information.The primary objective of this study is to equip healthcare pro-fessionals and researchers with a robust tool for managing extensive,high-dimensional clinical datasets,enabling effective isolation and removal of aberrant data points.Furthermore,a sophisticated regression model has been developed using Automated Machine Learning(AutoML)to assess the impact of the ensemble abnormal pattern detection approach.Various statistical error estimation techniques validate the efficacy of the hybrid approach alongside AutoML.Experimental results show that implementing this innovative hybrid model on patient rehabilitation data leads to a notable enhance-ment in AutoML performance,with an average improvement of 0.041 in the R2 score,surpassing the effectiveness of traditional regression models. 展开更多
关键词 anomaly detection deep learning density-based clustering hybrid model IQR regression
在线阅读 下载PDF
2D Undulated Metal Hydrogen‑Bonded Organic Frameworks with Self‑Adaption Interlayered Sites for Highly Efficient C-C Coupling in the Electrocatalytic CO_(2) Reduction
13
作者 Jianning Lv Wenrui Li +6 位作者 Shuai Li Shuo Xu Zunhang Lv Zhejiaji Zhu Lu Dai Bo Wang Pengfei Li 《Nano-Micro Letters》 2025年第7期223-233,共11页
The hydrogen-bonded organic frameworks(HOFs)as a new type of porous framework materials have been widely studied in various areas.However,the lack of appropriate active sites,low intrinsic conductivity,and poor stabil... The hydrogen-bonded organic frameworks(HOFs)as a new type of porous framework materials have been widely studied in various areas.However,the lack of appropriate active sites,low intrinsic conductivity,and poor stability limited their performance in the field of electrocatalysis.Herein,we designed two 2D metal hydrogen-bonded organic frameworks(2D–M–HOF,M=Cu^(2+)or Ni^(2+))with coordination compounds based on 2,3,6,7,14,15-hexahydroxyl cyclotricatechylene and transition metal ions(Cu^(2+)and Ni^(2+)),respectively.The crystal structure of 2D–Cu–HOF is determined by continuous rotation electron diffraction,indicating an undulated 2D hydrogen-bond network with interlayeredπ-πstacking.The flexible structure of 2D–M–HOF leads to the formation of self-adaption interlayered sites,resulting in superior activity and selectivity in the electrocatalytic conversion of CO_(2) to C_(2) products,achieving a total Faradaic efficiency exceeding 80%due to the high-efficiency C–C coupling.The experimental results and density functional calculations verify that the undulated 2D–M–HOF enables the energetically favorable formation of*OCCHO intermediate.This work provides a promising strategy for designing HOF catalysts in electrocatalysis and related processes. 展开更多
关键词 Hydrogen-bonded organic frameworks Flexible structure Self-adaption interlayered sites Electrocatalytic CO_(2)reduction
在线阅读 下载PDF
Surface Engineering of Borophene as Next-Generation Materials for Energy and Environmental Applications
14
作者 Seyedeh Sadrieh Emadian Silvia Varagnolo +10 位作者 Ajay Kumar Prashant Kumar Pranay Ranjan Viktoriya Pyeshkova Naresh Vangapally Nicholas P.Power Sudhagar Pitchaimuthu Alexander Chroneos Saianand Gopalan Prashant Sonar Satheesh Krishnamurthy 《Energy & Environmental Materials》 2025年第3期208-243,共36页
This review provides an insightful and comprehensive exploration of the emerging 2D material borophene,both pristine and modified,emphasizing its unique attributes and potential for sustainable applications.Borophene... This review provides an insightful and comprehensive exploration of the emerging 2D material borophene,both pristine and modified,emphasizing its unique attributes and potential for sustainable applications.Borophene’s distinctive properties include its anisotropic crystal structures that contribute to its exceptional mechanical and electronic properties.The material exhibits superior electrical and thermal conductivity,surpassing many other 2D materials.Borophene’s unique atomic spin arrangements further diversify its potential application for magnetism.Surface and interface engineering,through doping,functionalization,and synthesis of hybridized and nanocomposite borophene-based systems,is crucial for tailoring borophene’s properties to specific applications.This review aims to address this knowledge gap through a comprehensive and critical analysis of different synthetic and functionalisation methods,to enhance surface reactivity by increasing active sites through doping and surface modifications.These approaches optimize diffusion pathways improving accessibility for catalytic reactions,and tailor the electronic density to tune the optical and electronic behavior.Key applications explored include energy systems(batteries,supercapacitors,and hydrogen storage),catalysis for hydrogen and oxygen evolution reactions,sensors,and optoelectronics for advanced photonic devices.The key to all these applications relies on strategies to introduce heteroatoms for tuning electronic and catalytic properties,employ chemical modifications to enhance stability and leverage borophene’s conductivity and reactivity for advanced photonics.Finally,the review addresses challenges and proposes solutions such as encapsulation,functionalization,and integration with composites to mitigate oxidation sensitivity and overcome scalability barriers,enabling sustainable,commercial-scale applications. 展开更多
关键词 2D materials borophene environmental and energy applications surface engineering
在线阅读 下载PDF
Non-Hermitian Physics in Mesoscopic Electron Transport Through Coupled Quantum Dots
15
作者 Yiyang Li Jincheng Lu +1 位作者 Chen Wang Jian-Hua Jiang 《Chinese Physics Letters》 2025年第4期114-124,共11页
We investigate electron mesoscopic transport in a three-terminal setup with coupled quantum dots and a magnetic flux.By mapping the original transport problem into a non-Hermitian Hamiltonian form,we study the interpl... We investigate electron mesoscopic transport in a three-terminal setup with coupled quantum dots and a magnetic flux.By mapping the original transport problem into a non-Hermitian Hamiltonian form,we study the interplay between the coherent couplings between quantum dots,the magnetic flux,and the dissipation due to the tunnel coupling with the reservoirs. 展开更多
关键词 quantum dots magnetic fluxby electron mesoscopic transport non hermitian physics magnetic fluxand coherent couplings transport problem tunnel coupling
原文传递
Progress and prospects of graphene-based materials in lithium batteries 被引量:2
16
作者 Shen Lai Tao Huang +7 位作者 Pei Liu Hong-Bin Wang Shi-Chun Yang Xin-Hua Liu Kai Yang Qian-Ling Zhang Jian-Hong Liu Jiang-Tao Hu 《Rare Metals》 SCIE EI CAS CSCD 2024年第5期1886-1905,共20页
Reasonable design and applications of graphene-based materials are supposed to be promising ways to tackle many fundamental problems emerging in lithium batteries,including suppression of electrode/electrolyte side re... Reasonable design and applications of graphene-based materials are supposed to be promising ways to tackle many fundamental problems emerging in lithium batteries,including suppression of electrode/electrolyte side reactions,stabilization of electrode architecture,and improvement of conductive component.Therefore,extensive fundamental research on this aspect has been performed so far.However,when it comes to large-scale industrial applications,the utilization of graphene-based materials progresses at a very slow pace.Namely,there presents a severe technological decoupling between academic research and industrial application,and there is an urgent need to link them.Herein,in order to address current issues of graphene-based materials used in lithium batteries,we present their latest advancements with stateof-the-art technologies.Potential applications of graphenebased materials in practical lithium batteries are highlighted and predicted to bridge the gap between the academic progress and industrial manufacture,thereby paving the way for accelerating the development of graphenebased material as well as lithium battery industry. 展开更多
关键词 Lithium batteries Graphene-based materials Academic research Industrial application Development direction
原文传递
Boric Acid-Assisted Pyrolysis for High-Loading Single-Atom Catalysts to Boost Oxygen Reduction Reaction in Zn-Air Batteries 被引量:5
17
作者 Chenxi Xu Jiexing Wu +12 位作者 Liang Chen Yi Gong Boyang Mao Jincan Zhang Jinhai Deng Mingxuan Mao Yan Shi Zhaohui Hou Mengxue Cao Huanxin Li Haihui Zhou Zhongyuan Huang Yafei Kuang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第2期102-110,共9页
The emerging of single-atom catalysts(SACs)offers a great opportunity for the development of advanced energy storage and conversion devices due to their excellent activity and durability,but the actual mass production... The emerging of single-atom catalysts(SACs)offers a great opportunity for the development of advanced energy storage and conversion devices due to their excellent activity and durability,but the actual mass production of high-loading SACs is still challenging.Herein,a facile and green boron acid(H_(3)BO_(3))-assisted pyrolysis strategy is put forward to synthesize SACs by only using chitosan,cobalt salt and H_(3)BO_(3)as precursor,and the effect of H_(3)BO_(3)is deeply investigated.The results show that molten boron oxide derived from H_(3)BO_(3)as ideal high-temperature carbonization media and blocking media play important role in the synthesis process.As a result,the acquired Co/N/B tri-doped porous carbon framework(Co-N-B-C)not only presents hierarchical porous structure,large specific surface area and abundant carbon edges but also possesses high-loading single Co atom(4.2 wt.%),thus giving rise to outstanding oxygen catalytic performance.When employed as a catalyst for air cathode in Zn-air batteries,the resultant Co-N-B-C catalyst shows remarkable power density and long-term stability.Clearly,our work gains deep insight into the role of H_(3)BO_(3)and provides a new avenue to synthesis of high-performance SACs. 展开更多
关键词 boric acid oxygen reduction reaction single-atom catalysts Zn-air batteries
在线阅读 下载PDF
Realizing rechargeable cathode-free aluminum-ion batteries via regulating solvation structure in aqueous-aprotic electrolytes 被引量:1
18
作者 Zhaohui Yang Pengyu Meng +6 位作者 Min Jiang Xinlong Zhang Tianshuo Zhao Zhigan Yao Jiao Zhang Wei Zhang Chaopeng Fu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第12期466-474,共9页
Aqueous aluminum-ion batteries(AIBs)are promising candidates for large-scale energy storage due to the abundant resource reserve,high theoretical capacity,intrinsic safety,and low cost of Al.However,the development of... Aqueous aluminum-ion batteries(AIBs)are promising candidates for large-scale energy storage due to the abundant resource reserve,high theoretical capacity,intrinsic safety,and low cost of Al.However,the development of aqueous AIBs is constrained by the inefficient Al plating,inevitable parasitic side reactions,and the collapse of the cathode materials.Herein,we propose a novel Al^(3+)/Mn^(2+)hybrid electrolyte in a water-acetonitrile co-solvent system with a regulated solvation structure to realize cathode-free AIBs.The inclusion of acetonitrile as a co-solvent plays a crucial role in reducing the desolvation energy and suppressing side reactions.The introduction of Mn^(2+)can enable the reversible plating/stripping of Al-Mn alloy with reduced overpotentials on the anode and deposition/stripping of Al_(x)MnO_(2) on the cathodic current collector to realize cathode-free AIBs.The architected AIB delivers a high discharge capacity of 397.9 mAh g^(-1),coupled with superior rate capability and stable cycling performance.Moreover,the cathode-free AIB shows superior low-temperature performance and can operate at-20℃ for over 120 cycles.This work provides new ideas for developing high-performance and low-cost aqueous AIBs. 展开更多
关键词 Al-ion batteries Cathode-free Al-Mn alloying Solvation structure Low-temperature performance
在线阅读 下载PDF
Fast and Balanced Charge Transport Enabled by Solution-Processed Metal Oxide Layers for Efficient and Stable Inverted Perovskite Solar Cells 被引量:1
19
作者 Jing Zhang James Mcgettrick +11 位作者 Kangyu Ji Jinxin Bi Thomas Webb Xueping Liu Dongtao Liu Aobo Ren Yuren Xiang Bowei Li Vlad Stolojan Trystan Watson Samuel D.Stranks Wei Zhang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第2期240-248,共9页
Metal oxide charge transport materials are preferable for realizing long-term stable and potentially low-cost perovskite solar cells(PSCs).However,due to some technical difficulties(e.g.,intricate fabrication protocol... Metal oxide charge transport materials are preferable for realizing long-term stable and potentially low-cost perovskite solar cells(PSCs).However,due to some technical difficulties(e.g.,intricate fabrication protocols,high-temperature heating process,incompatible solvents,etc.),it is still challenging to achieve efficient and reliable all-metal-oxide-based devices.Here,we developed efficient inverted PSCs(IPSCs)based on solution-processed nickel oxide(NiO_(x))and tin oxide(SnO_(2))nanoparticles,working as hole and electron transport materials respectively,enabling a fast and balanced charge transfer for photogenerated charge carriers.Through further understanding and optimizing the perovskite/metal oxide interfaces,we have realized an outstanding power conversion efficiency(PCE)of 23.5%(the bandgap of the perovskite is 1.62 eV),which is the highest efficiency among IPSCs based on all-metal-oxide charge transport materials.Thanks to these stable metal oxides and improved interface properties,ambient stability(retaining 95%of initial PCE after 1 month),thermal stability(retaining 80%of initial PCE after 2 weeks)and light stability(retaining 90%of initial PCE after 1000 hours aging)of resultant devices are enhanced significantly.In addition,owing to the low-temperature fabrication procedures of the entire device,we have obtained a PCE of over 21%for flexible IPSCs with enhanced operational stability. 展开更多
关键词 fast and balanced charge transfer inverted perovskite solar cells long-term stability low-temperature processing metal oxides
在线阅读 下载PDF
Insight into the capacity degradation and structural evolution of single-crystal Ni-rich cathodes 被引量:1
20
作者 Xiaodong Zhang Jiao Lin +5 位作者 Ersha Fan Qingrong Huang Su Ma Renjie Chen Feng Wu Li Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期68-76,I0003,共10页
Single-crystal Ni-rich cathodes are a promising candidate for high-energy lithium-ion batteries due to their higher structural and cycling stability than polycrystalline materials.However,the phase evolution and capac... Single-crystal Ni-rich cathodes are a promising candidate for high-energy lithium-ion batteries due to their higher structural and cycling stability than polycrystalline materials.However,the phase evolution and capacity degradation of these single-crystal cathodes during continuous lithation/delithation cycling remains unclear.Understanding the mapping relationship between the macroscopic electrochemical properties and the material physicochemical properties is crucial.Here,we investigate the correlation between the physical-chemical characteristics,phase transition,and capacity decay using capacity differential curve feature identification and in-situ X-ray spectroscopic imaging.We systematically clarify the dominant mechanism of phase evolution in aging cycling.Appropriately high cut-off voltages can mitigate the slow kinetic and electrochemical properties of single-crystal cathodes.We also find that second-order differential capacity discharge characteristic curves can be used to identify the crystal structure disorder of Ni-rich cathodes.These findings constitute a step forward in elucidating the correlation between the electrochemical extrinsic properties and the physicochemical intrinsic properties and provide new perspectives for failure analysis of layered electrode materials. 展开更多
关键词 Single-crystal cathodes Capacity decay Phase transition Differential capacity analysis
在线阅读 下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部