The Chilean subduction zone is one of the most seismically active regions globally,characterized by extensive intermediatedepth seismicity in the slab.In this study,we construct a new earthquake catalog for northern C...The Chilean subduction zone is one of the most seismically active regions globally,characterized by extensive intermediatedepth seismicity in the slab.In this study,we construct a new earthquake catalog for northern Chile using seismic waveforms assembled for the period of 2014-2019,from which 320,070 P-wave and 232,907 S-wave first arrivals are obtained for 25,763 earthquakes.Grid search location method NonLinLoc is applied to determine initial earthquake locations and double-difference location method is used to improve relative event locations.The distribution of earthquakes exhibits distinct patterns to the north and south of 21°S.There are many more earthquakes deeper than~150 km to the south of 21°S,while relatively fewer to the north.The intraslab earthquakes shallower than~80 km generally reveal a distinct double seismic zone,and the gap between the two seismic planes disappears at a depth of approximately~80 km,followed by a concentration of seismicity in the depth range of~80-150 km.In the deeper slab,there exist several seismicity clusters with distinct earthquake activities down to~300 km.These characteristics shown in slab seismicity are likely caused by different mechanisms and can be helpful for understanding the subduction process.展开更多
The Chilean Pampean flat slab subduction segment is characterized by the nearly horizontal subduction of the Nazca Plate within the depth range of 100-120 km.Numerous seismic tomography studies have been conducted to ...The Chilean Pampean flat slab subduction segment is characterized by the nearly horizontal subduction of the Nazca Plate within the depth range of 100-120 km.Numerous seismic tomography studies have been conducted to investigate its velocity structure;however,they have used only seismic body wave data or surface wave data.As a result,the existing velocity models in the region may have relatively large uncertainties.In this study,we use body wave arrival times from earthquakes occurring in central Chile between 2014 and 2019,as well as Rayleigh wave phase velocity maps at periods of 5-80 s from ambient noise empirical Green’s functions in Chile.By jointly using body wave arrival times and surface wave dispersion data,we refine the VS model and improve earthquake locations in the central Chile subduction zone.Compared with previous velocity models,our velocity model better reveals an eastward-dipping high-velocity plate representing the subducting Nazca Plate,which is 40-50 km thick and is more consistent with the slab thickness estimated by receiver function imaging and thermal modeling.Overall,the intraslab seismicity distribution spatially correlates well with the slab high-velocity anomalies except along the subduction paths of the CopiapóRidge and Juan Fernández Ridge.Additionally,parallel low-velocity stripes are imaged beneath the subducting plate,which are likely associated with the accumulated melts.The joint inversion velocity model also resolves widespread low-velocity anomalies in the crust beneath the Central Volcanic Zone of the central Andes,likely representing crustal magma chambers for various volcanoes.展开更多
As underground excavations are getting deeper and field stresses increase, the behavior of intact rock blocks plays an increasingly important role in understanding and estimating the overall rock mass strength. To mod...As underground excavations are getting deeper and field stresses increase, the behavior of intact rock blocks plays an increasingly important role in understanding and estimating the overall rock mass strength. To model the brittle behavior of intact rock blocks, the stress–strain curve is usually idealized considering a linear strength mobilization approach(cohesion-weakening-friction-strengthening, CWFS),however, it is well recognized that rock presents a nonlinear behavior in terms of the confining stress.This study extends the strength mobilization in brittle failure of rock using nonlinear criteria. To determine the model parameters, a standard statistical method that uses the complete laboratory stress–strain curves of the intact rock is employed. Several hypotheses of linear and nonlinear models are statistically compared for different types of rock and confining stress levels. Results demonstrate that the best approach to model the brittle failure of rock is to consider a nonlinear strength envelope, such as the Hoek-Brown criterion assuming a residual uniaxial compressive strength different from zero and a mi parameter that increases, both with simultaneous mobilization. This model helps to recreate highconfining conditions and a more realistic transition between peak and post-peak strength. The obtained parameters are discussed and compared with literature values to verify the validity and to develop guidelines for the estimation of parameters, providing an objective mobilization criterion. Finally, the nonlinear model was applied to a finite element code and extended to a tunnel scale in the brittle rock under high-stress conditions. A reasonable fit between the simulations and the in-situ overbreak measurements was found.展开更多
In this paper, simulated and experimental results on the conical tank level control are presented. PI/PID controllers of integer order (IO) as well as of fractional order (FO) are studied and compared. The tuning ...In this paper, simulated and experimental results on the conical tank level control are presented. PI/PID controllers of integer order (IO) as well as of fractional order (FO) are studied and compared. The tuning parameters are obtained first by using root locus (RL) and Ziegler and Nichols methods, for comparison purposes. Next, particle swarm optimization (PSO) is employed to determine the optimal controllers' parameters using as fitness function the integral of the absolute value of tracking error (IAE). From the experimental results it is concluded that PI/FOPI are the controllers presenting the lowest IAE indexes, whereas PID/FOPID controllers present the lowest energy consumption by the control signal.展开更多
This paper presents the analysis of the control energy consumed in model reference adaptive control(MRAC)schemes using fractional adaptive laws, through simulation studies. The analysis is focused on the energy spent ...This paper presents the analysis of the control energy consumed in model reference adaptive control(MRAC)schemes using fractional adaptive laws, through simulation studies. The analysis is focused on the energy spent in the control signal represented by means of the integral of the squared control input(ISI). Also, the behavior of the integral of the squared control error(ISE) is included in the analysis.The orders of the adaptive laws were selected by particle swarm optimization(PSO), using an objective function including the ISI and the ISE, with different weighting factors. The results show that, when ISI index is taken into account in the optimization process to determine the orders of adaptive laws,the resulting values are fractional, indicating that control energy of the scheme might be better managed if fractional adaptive laws are used.展开更多
Direct analysis of copper-base alloys using laser ablation techniques is an increasingly common procedure in cultural heritage studies. However, main discussions remain focused on the possibility of using non-matrix m...Direct analysis of copper-base alloys using laser ablation techniques is an increasingly common procedure in cultural heritage studies. However, main discussions remain focused on the possibility of using non-matrix matched external reference materials. To evaluate the occurrence of matrix effects during in situ microanalysis of copper-base materials, using near infrared femtosecond laser ablation techniques (NIR fs-LA-ICP-MS), two bronzes, i.e., (Sn-Zn)-ternary and (Sn)-binary copper-matrix reference materials, as well as a reference synthetic glass (NIST-SRM-610) have been analyzed. The results have been compared to data obtained on a sulfide-matrix reference material. Similar values in relative sensitivity averages of 63Cu, 118Sn and 66Zn, as well as in 118Sn/63Cu and 66Zn/63Cu ratios were obtained, for all analyzed matrix types, i.e., copper-base-, silicate-, and sulfide-reference materials. Consequently, it is possible to determinate major and minor element concentrations in copper alloys, i.e., Cu, Sn and Zn, using silicate and sulfide reference materials as external calibrators, without any matrix effect and over a wide range of concentrations (from wt.% to ppm). Equally, Cu, Sn and Zn concentrations can be precisely determined in sulfides using homogeneous alloys (reference) materials as an external calibrator. Thus, it is possible to determine Cu, Sn and Zn in copper-base materials and their ore minerals, mostly sulfides, in a single analytical session, without requiring specific external calibrators for each matrix type. In contrast, immiscible elements in copper matrix, such as Pb and Fe show notable differences in their relative sensitivity values and ratios for different matrix-materials analyzed, implying that matrix-matched external calibrations remain to be applied for their trace quantification.展开更多
Double seismic zones are commonly observed in the subducting slabs in a global scale,serving as ideal examples for studying the seismogenetic mechanism of the intermediate-depth earthquakes.In this study,we relocate e...Double seismic zones are commonly observed in the subducting slabs in a global scale,serving as ideal examples for studying the seismogenetic mechanism of the intermediate-depth earthquakes.In this study,we relocate earthquakes and determine seismic velocity models using the double-difference seismic tomography method in the northern Chile subduction zone where a double seismic zone exists.The results suggest that the double seismic zone in northern Chile is located at about 50-140 km depth,with an interval of approximately 20 km between the two zones.The upper seismic zone is characterized by relatively low Vp(~7.8-8.0 km/s),low Vs(~4.4-4.5 km/s)and high Vp/Vs(~1.85)above the depth of~90 km,while the region below~90 km is distinguished by relatively high Vp(~8.2 km/s),high Vs(~4.8 km/s)and slightly high Vp/Vs(~1.75),which may be related to a series of dehydration reactions of hydrous minerals in the subducted oceanic crust.In comparison,the lower seismic zone is featured by the anomaly of low Vp/Vs(~1.7),although some local areas may consist of relatively high Vp/Vs values(~1.8),possibly due to the dehydration reaction of serpentine.Based on the Vp,Vs,Vp/Vs anomalies combined with previous petrological experiments and thermodynamic models,it can be derived that intermediate-depth earthquakes are mainly related to the dehydration of various hydrous minerals in the subducting slab.The dehydration process of hydrous minerals releases water into the subducting slab and subsequently leads to the increase of pore fluid pressure and the decrease of effective normal stress,thus causing the occurrence of brittle failure and intermediate-depth earthquakes in subduction zones.The imaging results of the northern Chile subduction zone further indicate that the existence of the double seismic zone is related to the dehydration process of different hydrous minerals.展开更多
This paper reports the effects of different culture conditions for Dunaliella salina SA32007 from Salar de Atacama (second Region, northern ofChile) over biomass, lipid production and triglycerides synthesis. A maximu...This paper reports the effects of different culture conditions for Dunaliella salina SA32007 from Salar de Atacama (second Region, northern ofChile) over biomass, lipid production and triglycerides synthesis. A maximum value of microalgae density (8.2 × 109 Cells/L) and an intrinsic growth rate (0.17 d-1), were obtained using a culture with 0.5 mol/L of NaCl and a nitrogen/phosphorous (N/P) limitation of 14/1. The triglycerides production was significantly favoured under nitrogen deficiency conditions (Mann-Whitney test;p = 0.0043). However there was a nitrogen-limiting threshold for the stimulation and accumulation of triglycerides (N/P: 14/1), lower than that limit, these compounds would not be accumulated. It was also observed that triglyceride content was not proportional to the total lipid content and the maximum number of cells. The aeration system employed stimulated the growth and synthesis of structural organic molecules. Regarding microalgae growth stage subjected to nitrogen deficiency, when the deficit was applied before the lag phase, the negative effect on the biomass and the triglycerides production decreased.展开更多
Domaining is a crucial process in geostatistics, particularly when significant spatial variations are observed within a site, as these variations can significantly affect the outcomes of spatial modeling. This study i...Domaining is a crucial process in geostatistics, particularly when significant spatial variations are observed within a site, as these variations can significantly affect the outcomes of spatial modeling. This study investigates the application of hard and fuzzy clustering algorithms for domain delineation, using geological and geochemical data from two exploration campaigns at the eastern Kahang deposit in central Iran. The dataset includes geological layers (lithology, alteration, and mineral zones), geochemical layers (Cu, Mo, Ag, and Au grades), and borehole coordinates. Six clustering algorithms—K-means, hierarchical, affinity propagation, self-organizing map (SOM), fuzzy C-means, and Gustafson-Kessel—were applied to determine the optimal number of clusters, which ranged from 3 to 4. The fuzziness and weighting parameters were found to range from 1.1 to 1.3 and 0.1 to 0.3, respectively, based on the evaluation of various hard and fuzzy cluster validity indices. Directional variograms were computed to assess spatial anisotropy, and the anisotropy ellipsoid for each domain was defined to identify the model with the highest level of anisotropic discrimination among the domains. The SOM algorithm, which incorporated both qualitative and quantitative data, produced the best model, resulting in the identification of three distinct domains. These findings underscore the effectiveness of combining clustering techniques with variogram analysis for accurate domain delineation in geostatistical modeling.展开更多
基金supported by National Natural Science Foundation of China(No.41861134009)the PIA ANID(AFB180004)the ANID(PCI PII-180003).
文摘The Chilean subduction zone is one of the most seismically active regions globally,characterized by extensive intermediatedepth seismicity in the slab.In this study,we construct a new earthquake catalog for northern Chile using seismic waveforms assembled for the period of 2014-2019,from which 320,070 P-wave and 232,907 S-wave first arrivals are obtained for 25,763 earthquakes.Grid search location method NonLinLoc is applied to determine initial earthquake locations and double-difference location method is used to improve relative event locations.The distribution of earthquakes exhibits distinct patterns to the north and south of 21°S.There are many more earthquakes deeper than~150 km to the south of 21°S,while relatively fewer to the north.The intraslab earthquakes shallower than~80 km generally reveal a distinct double seismic zone,and the gap between the two seismic planes disappears at a depth of approximately~80 km,followed by a concentration of seismicity in the depth range of~80-150 km.In the deeper slab,there exist several seismicity clusters with distinct earthquake activities down to~300 km.These characteristics shown in slab seismicity are likely caused by different mechanisms and can be helpful for understanding the subduction process.
基金funded by the National Natural Science Foundation of China under Grant 42230101the National Agency for Research and Development of Chile(ANID)by Projects AFB180004 and AFB220002the ANID Programa de Cooperación Internacional(PCI)Grant PII-180003.
文摘The Chilean Pampean flat slab subduction segment is characterized by the nearly horizontal subduction of the Nazca Plate within the depth range of 100-120 km.Numerous seismic tomography studies have been conducted to investigate its velocity structure;however,they have used only seismic body wave data or surface wave data.As a result,the existing velocity models in the region may have relatively large uncertainties.In this study,we use body wave arrival times from earthquakes occurring in central Chile between 2014 and 2019,as well as Rayleigh wave phase velocity maps at periods of 5-80 s from ambient noise empirical Green’s functions in Chile.By jointly using body wave arrival times and surface wave dispersion data,we refine the VS model and improve earthquake locations in the central Chile subduction zone.Compared with previous velocity models,our velocity model better reveals an eastward-dipping high-velocity plate representing the subducting Nazca Plate,which is 40-50 km thick and is more consistent with the slab thickness estimated by receiver function imaging and thermal modeling.Overall,the intraslab seismicity distribution spatially correlates well with the slab high-velocity anomalies except along the subduction paths of the CopiapóRidge and Juan Fernández Ridge.Additionally,parallel low-velocity stripes are imaged beneath the subducting plate,which are likely associated with the accumulated melts.The joint inversion velocity model also resolves widespread low-velocity anomalies in the crust beneath the Central Volcanic Zone of the central Andes,likely representing crustal magma chambers for various volcanoes.
基金the financial support from basal CONICYT project AFB-180004 of the Advanced Mining Technology Center (AMTC) - University of Chile。
文摘As underground excavations are getting deeper and field stresses increase, the behavior of intact rock blocks plays an increasingly important role in understanding and estimating the overall rock mass strength. To model the brittle behavior of intact rock blocks, the stress–strain curve is usually idealized considering a linear strength mobilization approach(cohesion-weakening-friction-strengthening, CWFS),however, it is well recognized that rock presents a nonlinear behavior in terms of the confining stress.This study extends the strength mobilization in brittle failure of rock using nonlinear criteria. To determine the model parameters, a standard statistical method that uses the complete laboratory stress–strain curves of the intact rock is employed. Several hypotheses of linear and nonlinear models are statistically compared for different types of rock and confining stress levels. Results demonstrate that the best approach to model the brittle failure of rock is to consider a nonlinear strength envelope, such as the Hoek-Brown criterion assuming a residual uniaxial compressive strength different from zero and a mi parameter that increases, both with simultaneous mobilization. This model helps to recreate highconfining conditions and a more realistic transition between peak and post-peak strength. The obtained parameters are discussed and compared with literature values to verify the validity and to develop guidelines for the estimation of parameters, providing an objective mobilization criterion. Finally, the nonlinear model was applied to a finite element code and extended to a tunnel scale in the brittle rock under high-stress conditions. A reasonable fit between the simulations and the in-situ overbreak measurements was found.
文摘In this paper, simulated and experimental results on the conical tank level control are presented. PI/PID controllers of integer order (IO) as well as of fractional order (FO) are studied and compared. The tuning parameters are obtained first by using root locus (RL) and Ziegler and Nichols methods, for comparison purposes. Next, particle swarm optimization (PSO) is employed to determine the optimal controllers' parameters using as fitness function the integral of the absolute value of tracking error (IAE). From the experimental results it is concluded that PI/FOPI are the controllers presenting the lowest IAE indexes, whereas PID/FOPID controllers present the lowest energy consumption by the control signal.
基金supported by CONICYT-Chile,under the Basal Financing Program(FB0809)Advanced Mining Technology Center,FONDECYT Project(1150488)+1 种基金Fractional Error Models in Adaptive Control and Applications,FONDECYT(3150007)Postdoctoral Program 2015
文摘This paper presents the analysis of the control energy consumed in model reference adaptive control(MRAC)schemes using fractional adaptive laws, through simulation studies. The analysis is focused on the energy spent in the control signal represented by means of the integral of the squared control input(ISI). Also, the behavior of the integral of the squared control error(ISE) is included in the analysis.The orders of the adaptive laws were selected by particle swarm optimization(PSO), using an objective function including the ISI and the ISE, with different weighting factors. The results show that, when ISI index is taken into account in the optimization process to determine the orders of adaptive laws,the resulting values are fractional, indicating that control energy of the scheme might be better managed if fractional adaptive laws are used.
文摘Direct analysis of copper-base alloys using laser ablation techniques is an increasingly common procedure in cultural heritage studies. However, main discussions remain focused on the possibility of using non-matrix matched external reference materials. To evaluate the occurrence of matrix effects during in situ microanalysis of copper-base materials, using near infrared femtosecond laser ablation techniques (NIR fs-LA-ICP-MS), two bronzes, i.e., (Sn-Zn)-ternary and (Sn)-binary copper-matrix reference materials, as well as a reference synthetic glass (NIST-SRM-610) have been analyzed. The results have been compared to data obtained on a sulfide-matrix reference material. Similar values in relative sensitivity averages of 63Cu, 118Sn and 66Zn, as well as in 118Sn/63Cu and 66Zn/63Cu ratios were obtained, for all analyzed matrix types, i.e., copper-base-, silicate-, and sulfide-reference materials. Consequently, it is possible to determinate major and minor element concentrations in copper alloys, i.e., Cu, Sn and Zn, using silicate and sulfide reference materials as external calibrators, without any matrix effect and over a wide range of concentrations (from wt.% to ppm). Equally, Cu, Sn and Zn concentrations can be precisely determined in sulfides using homogeneous alloys (reference) materials as an external calibrator. Thus, it is possible to determine Cu, Sn and Zn in copper-base materials and their ore minerals, mostly sulfides, in a single analytical session, without requiring specific external calibrators for each matrix type. In contrast, immiscible elements in copper matrix, such as Pb and Fe show notable differences in their relative sensitivity values and ratios for different matrix-materials analyzed, implying that matrix-matched external calibrations remain to be applied for their trace quantification.
基金We are grateful for two anonymous reviewers for their constructive comments.This research is supported by National Natural Science Foundation of China under grant(41861134009)the PIA ANID grant(AFB180004)the ANID grant(PCI PII-180003).
文摘Double seismic zones are commonly observed in the subducting slabs in a global scale,serving as ideal examples for studying the seismogenetic mechanism of the intermediate-depth earthquakes.In this study,we relocate earthquakes and determine seismic velocity models using the double-difference seismic tomography method in the northern Chile subduction zone where a double seismic zone exists.The results suggest that the double seismic zone in northern Chile is located at about 50-140 km depth,with an interval of approximately 20 km between the two zones.The upper seismic zone is characterized by relatively low Vp(~7.8-8.0 km/s),low Vs(~4.4-4.5 km/s)and high Vp/Vs(~1.85)above the depth of~90 km,while the region below~90 km is distinguished by relatively high Vp(~8.2 km/s),high Vs(~4.8 km/s)and slightly high Vp/Vs(~1.75),which may be related to a series of dehydration reactions of hydrous minerals in the subducted oceanic crust.In comparison,the lower seismic zone is featured by the anomaly of low Vp/Vs(~1.7),although some local areas may consist of relatively high Vp/Vs values(~1.8),possibly due to the dehydration reaction of serpentine.Based on the Vp,Vs,Vp/Vs anomalies combined with previous petrological experiments and thermodynamic models,it can be derived that intermediate-depth earthquakes are mainly related to the dehydration of various hydrous minerals in the subducting slab.The dehydration process of hydrous minerals releases water into the subducting slab and subsequently leads to the increase of pore fluid pressure and the decrease of effective normal stress,thus causing the occurrence of brittle failure and intermediate-depth earthquakes in subduction zones.The imaging results of the northern Chile subduction zone further indicate that the existence of the double seismic zone is related to the dehydration process of different hydrous minerals.
文摘This paper reports the effects of different culture conditions for Dunaliella salina SA32007 from Salar de Atacama (second Region, northern ofChile) over biomass, lipid production and triglycerides synthesis. A maximum value of microalgae density (8.2 × 109 Cells/L) and an intrinsic growth rate (0.17 d-1), were obtained using a culture with 0.5 mol/L of NaCl and a nitrogen/phosphorous (N/P) limitation of 14/1. The triglycerides production was significantly favoured under nitrogen deficiency conditions (Mann-Whitney test;p = 0.0043). However there was a nitrogen-limiting threshold for the stimulation and accumulation of triglycerides (N/P: 14/1), lower than that limit, these compounds would not be accumulated. It was also observed that triglyceride content was not proportional to the total lipid content and the maximum number of cells. The aeration system employed stimulated the growth and synthesis of structural organic molecules. Regarding microalgae growth stage subjected to nitrogen deficiency, when the deficit was applied before the lag phase, the negative effect on the biomass and the triglycerides production decreased.
文摘Domaining is a crucial process in geostatistics, particularly when significant spatial variations are observed within a site, as these variations can significantly affect the outcomes of spatial modeling. This study investigates the application of hard and fuzzy clustering algorithms for domain delineation, using geological and geochemical data from two exploration campaigns at the eastern Kahang deposit in central Iran. The dataset includes geological layers (lithology, alteration, and mineral zones), geochemical layers (Cu, Mo, Ag, and Au grades), and borehole coordinates. Six clustering algorithms—K-means, hierarchical, affinity propagation, self-organizing map (SOM), fuzzy C-means, and Gustafson-Kessel—were applied to determine the optimal number of clusters, which ranged from 3 to 4. The fuzziness and weighting parameters were found to range from 1.1 to 1.3 and 0.1 to 0.3, respectively, based on the evaluation of various hard and fuzzy cluster validity indices. Directional variograms were computed to assess spatial anisotropy, and the anisotropy ellipsoid for each domain was defined to identify the model with the highest level of anisotropic discrimination among the domains. The SOM algorithm, which incorporated both qualitative and quantitative data, produced the best model, resulting in the identification of three distinct domains. These findings underscore the effectiveness of combining clustering techniques with variogram analysis for accurate domain delineation in geostatistical modeling.