Thermal management has become a crucial problem for high-power-density equipment and devices.Phase change materials(PCMs)have great prospects in thermal management applications because of their large capacity of heat ...Thermal management has become a crucial problem for high-power-density equipment and devices.Phase change materials(PCMs)have great prospects in thermal management applications because of their large capacity of heat storage and isothermal behavior during phase transition.However,low intrinsic thermal conductivity,ease of leakage,and lack of flexibility severely limit their applications.Solving one of these problems often comes at the expense of other performance of the PCMs.In this work,we report core–sheath structured phase change nanocomposites(PCNs)with an aligned and interconnected boron nitride nanosheet network by combining coaxial electrospinning,electrostatic spraying,and hot-pressing.The advanced PCN films exhibit an ultrahigh thermal conductivity of 28.3 W m^(-1)K^(-1)at a low BNNS loading(i.e.,32 wt%),which thereby endows the PCNs with high enthalpy(>101 J g^(-1)),outstanding ductility(>40%)and improved fire retardancy.Therefore,our core–sheath strategies successfully balance the trade-off between thermal conductivity,flexibility,and phase change enthalpy of PCMs.Further,the PCNs provide powerful cooling solutions on 5G base station chips and thermoelectric generators,displaying promising thermal management applications on high-power-density equipment and thermoelectric conversion devices.展开更多
Oily cold rolling mill (CRM) sludge is one of metallurgical industry solid wastes. The recycle of these wastes can not only protect the environment but also permit their reutilization. In this research, a new proces...Oily cold rolling mill (CRM) sludge is one of metallurgical industry solid wastes. The recycle of these wastes can not only protect the environment but also permit their reutilization. In this research, a new process of "hydrometallurgical treatment + hydrothermal synthesis" was investigated for the combined recovery of iron and organic materials from oily CRM sludge. Hydrometallurgical treatment, mainly including acid leaching, centrifugal separation, neutralization reaction, oxidizing, and preparation of hydrothermal reaction precursor, was first utilized for processing the sludge. Then, micaceous iron oxide (MIO) pigment powders were prepared through hydrothermal reaction of the obtained precursor in alkaline media. The separated organic materials can be used for fuel or chemical feedstock. The quality of the prepared MIO pigments is in accordance with the standards of MIO pigments for paints (ISO 10601-2007). This clean, effective, and economical technology offers a new way to recycle oily CRM sludge.展开更多
The ever-increasing environmental problems and energy challenges have called urgent demand for utilizing green,efficient,and sustainable energy,thus promoting the development of new technologies associated with energy...The ever-increasing environmental problems and energy challenges have called urgent demand for utilizing green,efficient,and sustainable energy,thus promoting the development of new technologies associated with energy storage and conversion systems.Amongst a wealth of energy storage devices,Li/Na/K/Zn/Mg ion batteries,metal-air batteries,and lithium-sulfur/all-solid-state batteries together with supercapacitors as advanced power sources have attracted considerable interest due to their conspicuous merits of high energy density,long cycle life,and good rate capability.展开更多
Rechargeable magnesium batteries(RMBs)have garnered significant attention in energy storage applications due to their high capacity,low cost,and high safety.However,the strong polarization effect and slow kinetic de-i...Rechargeable magnesium batteries(RMBs)have garnered significant attention in energy storage applications due to their high capacity,low cost,and high safety.However,the strong polarization effect and slow kinetic de-intercalation of Mg^(2+)in the cathode limit their commercial application.This study presents a novel interface-coupled V_(2)CT_(x)@VS_(4)heterostructure through a one-step hydrothermal process.In this architecture,V_(2)CT_(x)and VS_(4)can mutually support their structural framework,which effectively prevents the structural collapse of V_(2)CT_(x)MXene and the aggregation of VS_(4).Crucially,interfacial coupling between V_(2)CT_(x)and VS_(4)induces strong V-S bonds,substantially enhancing structural stability.Benefiting from these advantages,the heterostructure exhibits high specific capacity(226 mAh g^(-1)at 100 mA g^(-1))and excellent long-cycle stability(89% capacity retention after 1000 cycles at 500 mA g^(-1)).Furthermore,the Mg^(2+)storage mechanism in the V_(2)CT_(x)@VS_(4)composite was elucidated through a series of ex-situ characterizations.This work provides a feasible strategy for designing V_(2)CT_(x)MXene-based cathodes with high capacity and extended cyclability for RMBs.展开更多
MnO_(x)-CeO_(2)catalysts for the low-temperature selective catalytic reduction(SCR)of NO remain vulnerable to water and sulfur poisoning,limting their practical applications.Herein,we report a hydrophobic-modified MnO...MnO_(x)-CeO_(2)catalysts for the low-temperature selective catalytic reduction(SCR)of NO remain vulnerable to water and sulfur poisoning,limting their practical applications.Herein,we report a hydrophobic-modified MnO_(x)-CeO_(2)catalyst that achieves enhanced NO conversion rate and stability under harsh conditions.The catalyst was synthesized by decorating MnOx crystals with amorphous CeO_(2),followed by loading hydrophobic silica on the external surfaces.The hydrophobic silica allowed the adsorption of NH_(3)and NO and diffusion of H,suppressed the adsorption of H_(2)O,and prevented SO_(2)interaction with the Mn active sites,achieving selective molecular discrimination at the catalyst surface.At 120℃,under H_(2)O and SO_(2)exposure,the optimal hydrophobic catalyst maintains 82%NO conversion rate compared with 69%for the unmodified catalyst.The average adsorption energies of NH_(3),H_(2)O,and SO_(2)decreased by 0.05,0.43,and 0.52 eV,respectively.The NO reduction pathway follows the Eley-Rideal mechanism,NH_(3)^(*)+*→NH_(2)^(*)+H^(*)followed by NH_(2)^(*)+NO^(*)→N_(2)^(*)+H_(2)O^(*),with NH_(3)dehydrogenation being the rate determining step.Hydrophobic modification increased the activation energy for H atom transfer,leading to a minor decrease in the NO conversion rate at 120℃.This work demonstrates a viable strategy for developing robust NH_(3)-S CR catalysts capable of efficient operation in water-and sulfur-rich environments.展开更多
To develop a suitable production process for fiber reinforced investment casting shell mold,three methods were studied:the traditional method(M_(1)),the method of adding fiber into silica sol with mechanical stirring ...To develop a suitable production process for fiber reinforced investment casting shell mold,three methods were studied:the traditional method(M_(1)),the method of adding fiber into silica sol with mechanical stirring and ultrasonic agitation(M_(2)),and the method of adding fiber into slurry with mechanical stirring and ultrasonic agitation for durations of 3,15,30,and 45 min(M_(3)).The bending strength,high-temperature self-load deformation,and thermal conductivity of the shell molds were investigated.The results reveal that the enhancement of fiber dispersion through ultrasonic agitation improves the comprehensive performance of the shell molds.The maximum green bending strength of the shell mold by M_(2) reaches 3.29 MPa,which is 29% higher than that of the shell mold prepared by M_(1).Moreover,the high-temperature self-load deformation of the shell mold is reduced from 0.62% to 0.44%.In addition,simultaneous ultrasonic agitation and mechanical stirring effectively shorten the slurry preparation time while maintaining comparable levels of fiber dispersion.With the process M_(3)-45 min,the fillers are uniformly dispersed in the slurry,and the fired bending strength and the high-temperature self-load deformation reach 6.25 MPa and 0.41%,respectively.Therefore,the proposed ultrasonic agitation route is promising for the fabrication of fiber-reinforced shell molds with excellent fibers dispersion.展开更多
This study utilizes wet/dry cyclic corrosion testing combined with corrosion big data technology to investigate the mechanism by which chloride ions(Cl^(-))influence the corrosion behavior of 650 MPa high-strength low...This study utilizes wet/dry cyclic corrosion testing combined with corrosion big data technology to investigate the mechanism by which chloride ions(Cl^(-))influence the corrosion behavior of 650 MPa high-strength low-alloy(HSLA)steel in industrially polluted environments.The corrosion process of 650 MPa HSLA steel occurred in two distinct stages:an initial corrosion stage and a stable corrosion stage.During the initial phase,the weight loss rate increased rapidly owing to the instability of the rust layer.Notably,this study demonstrated that 650 MPa HSLA steel exhibited superior corrosion resistance in Cl-containing environments.The formation of a corrosion-product film eventually reduced the weight-loss rate.However,the intrusion of Cl^(-)at increasing concentrations gradually destabilized theα/γ^(*)phases of the rust layer,leading to a looser structure and lower polarization resistance(R_(p)).The application of corrosion big data technology in this study facilitated the validation and analysis of the experimental results,offering new insights into the corrosion mechanisms of HSLA steel in chloride-rich environments.展开更多
Machine learning-assisted methods for rapid and accurate prediction of temperature field,mushy zone,and grain size were proposed for the heating−cooling combined mold(HCCM)horizontal continuous casting of C70250 alloy...Machine learning-assisted methods for rapid and accurate prediction of temperature field,mushy zone,and grain size were proposed for the heating−cooling combined mold(HCCM)horizontal continuous casting of C70250 alloy plates.First,finite element simulations of casting processes were carried out with various parameters to build a dataset.Subsequently,different machine learning algorithms were employed to achieve high precision in predicting temperature fields,mushy zone locations,mushy zone inclination angle,and billet grain size.Finally,the process parameters were quickly optimized using a strategy consisting of random generation,prediction,and screening,allowing the mushy zone to be controlled to the desired target.The optimized parameters are 1234℃for heating mold temperature,47 mm/min for casting speed,and 10 L/min for cooling water flow rate.The optimized mushy zone is located in the middle of the second heat insulation section and has an inclination angle of roughly 7°.展开更多
Flexible electronics face critical challenges in achieving monolithic three-dimensional(3D)integration,including material compatibility,structural stability,and scalable fabrication methods.Inspired by the tactile sen...Flexible electronics face critical challenges in achieving monolithic three-dimensional(3D)integration,including material compatibility,structural stability,and scalable fabrication methods.Inspired by the tactile sensing mechanism of the human skin,we have developed a flexible monolithic 3D-integrated tactile sensing system based on a holey MXene paste,where each vertical one-body unit simultaneously functions as a microsupercapacitor and pressure sensor.The in-plane mesopores of MXene significantly improve ion accessibility,mitigate the self-stacking of nanosheets,and allow the holey MXene to multifunctionally act as a sensing material,an active electrode,and a conductive interconnect,thus drastically reducing the interface mismatch and enhancing the mechanical robustness.Furthermore,we fabricate a large-scale device using a blade-coating and stamping method,which demonstrates excellent mechanical flexibility,low-power consumption,rapid response,and stable long-term operation.As a proof-of-concept application,we integrate our sensing array into a smart access control system,leveraging deep learning to accurately identify users based on their unique pressing behaviors.This study provides a promising approach for designing highly integrated,intelligent,and flexible electronic systems for advanced human-computer interactions and personalized electronics.展开更多
Halide perovskites have emerged as promising materials for X-ray detection with exceptional properties and reasonable costs.Among them,heterostructures between 3D perovskites and low-dimensional perovskites attract in...Halide perovskites have emerged as promising materials for X-ray detection with exceptional properties and reasonable costs.Among them,heterostructures between 3D perovskites and low-dimensional perovskites attract intensive studies of their advantages due to low-level ion migration and decent stability.However,there is still a lack of methods to precisely construct heterostructures and a fundamental understanding of their structure-dependent optoelectronic properties.Herein,a gas-phase method was developed to grow 2D perovskites directly on 3D perovskites with nanoscale accuracy.In addition,the larger steric hindrance of organic layers of 2D perovskites was proved to enable slower ion migration,which resulted in reduced trap states and better stability.Based on MAPbBr_(3)single crystals with the(PA)_(2)PbBr_(4)capping layer,the X-ray detector achieved a sensitivity of 22,245μC Gy_(air)^(−1)cm^(−2),a response speed of 240μs,and a dark current drift of 1.17.10^(–4)nA cm^(−1)s^(−1)V^(−1),which were among the highest reported for state-of-the-art perovskite-based X-ray detectors.This study presents a precise synthesis method to construct perovskite-based heterostructures.It also brings an in-depth understanding of the relationship between lattice structures and properties,which are beneficial for advancing high-performance and cost-effective X-ray detectors.展开更多
The advent of superficially porous particles (SPPs) for packed HPLC columns has changed the way that many practitioners have approached the problem of developing needed separations. The very high efficiency of such ...The advent of superficially porous particles (SPPs) for packed HPLC columns has changed the way that many practitioners have approached the problem of developing needed separations. The very high efficiency of such columns, combined with convenient operating conditions, modest back pressures and the ability to use conventional HPLC instruments has resulted in intense basic studies of SPP technology, and widespread applications in many sciences. This report contains an overview of the SPP technology first developed in 2006 by Advanced Materials Technology, Inc., for sub-3-11m particles, then expanded into a family of SPP products with different particle sizes, pore sizes and other physical parameters. This approach was designed so that each particle of the family could be optimized for separating a particular group of compounds, usually based on solute size.展开更多
Grain refinement can strengthen the mechanical properties of materials according to the classical Hall-Petch relationship but does not always result in better corrosion resistance.During the past few decades,various t...Grain refinement can strengthen the mechanical properties of materials according to the classical Hall-Petch relationship but does not always result in better corrosion resistance.During the past few decades,various techniques have been dedicated to refining grain,along with relevant studies on corrosion behavior,including general corrosion,pitting corrosion,and stress corrosion cracking.However,the funda-mental consensus on how grain size influences corrosion behavior has not been reached.This paper reviews existing literature on the beneficial and detrimental effects of grain refinement on corrosion behavior.Moreover,the effects of microstructural changes(i.e.,grain boundary,dislo-cation,texture,residual stress,impurities,and second phase)resulting from grain refinement on corrosion behavior are discussed.The grain re-finement not only has an impact on the corrosion performance,but also results in microstructural changes that have a non-negligible effect on corrosion behavior or even outweigh that of grain refinement.Grain size is not the only factor affecting the corrosion behavior of metallic ma-terials;thus,the overall influence of microstructures on corrosion behavior should be understood.展开更多
A new horizontal continuous casting method with heating-cooling combined mold(HCCM)technology was explored for fabri-cating high-quality thin-wall cupronickel alloy tubes used for heat exchange pipes.The microstructur...A new horizontal continuous casting method with heating-cooling combined mold(HCCM)technology was explored for fabri-cating high-quality thin-wall cupronickel alloy tubes used for heat exchange pipes.The microstructure and mechanical properties of BFe 10 cupronickel alloy tubes fabricated by HCCM and traditional continuous casting(cooling mold casting)were comparatively investigated.The results show that the tube fabricated by HCCM has smooth internal and external surfaces without any defects,and its internal and external surface roughnesses are 0.64μm and 0.85μm,respectively.The tube could be used for subsequent cold processing without other treatments such as surface planning,milling and acid-washing.This indicates that HCCM can effectively reduce the process flow and improve the pro-duction efficiency of a BFel0 cupronickel alloy tube.The tube has columnar grains along its axial direction with a major casting texture of{012}〈621〉.Compared with cooling mold casting(6=36.5%),HCCM can improve elongation(3=46.3%)by 10%with a slight loss of strength,which indicates that HCCM remarkably improves the cold extension performance of a BFe 10 cupronickel alloy tube.展开更多
In this work,we studied the effect of Cr element on the corrosion resistance evolution of weathering steel based on corrosion big data technology.It suggested that corrosion big data technology is suitable for evaluat...In this work,we studied the effect of Cr element on the corrosion resistance evolution of weathering steel based on corrosion big data technology.It suggested that corrosion big data technology is suitable for evaluation of the effect of microalloying Cr element on the corrosion evolution behavior of weathering steel.New understandings prove that the effect of Cr on the corrosion process is dynamic rather than static,the processes is affected by both of the environmental factors and the electrochemical or chemical reactions in the rust layer.Besides,Cr element has both beneficial effect and detrimental effect on the corrosion resistance of weathering steel.The beneficial effect is that the general corrosion resistance of Cr-additional steel is better than that of Cr-free steel,while the detrimental effect is that localized corrosion is intensified as the increase of Cr content in the Cr-additional steel.展开更多
The insulation effect of the air cavity surrounding the riser in a 3D printed sand mold was studied. The influence of the air cavity on heat flux was theoretically analyzed. The results demonstrated that the heat flux...The insulation effect of the air cavity surrounding the riser in a 3D printed sand mold was studied. The influence of the air cavity on heat flux was theoretically analyzed. The results demonstrated that the heat flux of the air cavity in the 3D printed sand mold was significantly less than that of resin-bonded sand. The insulation effect of the air cavity in sand molds for a cylinder casting and a stress-frame casting were simulated using software COMSOL. The results illustrated that the air cavity could be used to insulate the riser and it was more suitable for a lower melting point metal casting. An air cavity with 10-15 mm width and 5-10 mm away from the riser can significantly prolong the solidification of the riser by over 10%. Meanwhile, the sand mold for the stressframe was made by 3D printing technology and poured with aluminum alloy A356 melt. The experiment results showed that the presence of the air cavity led to a 12.5% increase of the solidification time of its riser.展开更多
Casting aluminum(Al)alloys have been widely used in the automotive industry to improve fuel economy as well as to reduce greenhouse gas(GHG)emissions in the vehicle use phase.However,the casting Al alloys used for loa...Casting aluminum(Al)alloys have been widely used in the automotive industry to improve fuel economy as well as to reduce greenhouse gas(GHG)emissions in the vehicle use phase.However,the casting Al alloys used for load-bearing body and chassis components today are mostly made from primary Al with a low impurity Fe content typically less than 0.2 wt.%,owing to the requirements for high ductility and adequate fatigue strength.Primary Al is made directly from alumina which was refined from aluminum ore(bauxite),using an electrolytic process which consumes a lot of energy and produces GHG emissions that are much higher than those from steel making.The objective of this paper is to present a Unified Casting(UniCast)Al alloy concept as a sustainable materials solution for vehicle lightweighting.The UniCast alloy chemistry is intentionally designed to be more tolerant of Fe impurity.This chemistry can not only satisfy the requirements on castability,but also deliver mechanical properties needed for a variety of thin-walled and thick-walled automotive structural components that are produced by various casting processes.The UniCast alloy concept will contribute to the establishment of a closed-loop recycling system in the future as the shredded scrap obtained from the disposed end-of-life vehicles can be directly recycled back into UniCast alloy ingot with a more efficient sorting process.In addition,by setting the upper limit of Fe content in the UniCast alloy to a higher level,it will become possible to use a high fraction of post-consumer scraps to produce this alloy.To demonstrate the feasibility of this concept,an exemplary UniCast alloy chemistry has been elaborated in this article.Furthermore,challenges and future research opportunities related to the realization of UniCast alloy concept in the automotive industry are discussed.It is hoped that this article will be of great implication to industrial researchers and academicians for making concerted efforts to establish closed-loop recycling of Al castings for the automotive and other transportation industry segments.展开更多
A reconstruction technology of finite element meshes based on reversal engineering was applied to solve mesh penetration and separation in the finite element simulation for the divergent extrusion. The 3D numerical si...A reconstruction technology of finite element meshes based on reversal engineering was applied to solve mesh penetration and separation in the finite element simulation for the divergent extrusion. The 3D numerical simulation of the divergent extrusion process in- cluding the welding stage for complicated hollow sections was conducted. Based on the analysis of flowing behaviors, the flowing velocities of the alloy in portholes and near the welding planes were properly controlled through optimizing the expansion angle as well as porthole ar- eas and positions. After the die structure optimization, defects such as warp, wrist, and the wavelike are eliminated, which improves the sec- tion-forming quality. Meanwhile, the temperature distribution in the cross section is uniform. Especially, the temperature of the C-shape notch with a larger thickness is lower than that of other regions in the cross section, which is beneficial for balancing the alloy flowing velocity.展开更多
In the present paper, continuum fracture mechanics is used to analyze the Smart-Cut process, a recently established ion cut technology which enables highly efficient fabrication of various silicon-on-insulator (SOI)...In the present paper, continuum fracture mechanics is used to analyze the Smart-Cut process, a recently established ion cut technology which enables highly efficient fabrication of various silicon-on-insulator (SOI) wafers of high uniformity in thickness. Using integral transform and Cauchy singular integral equation methods, the mode-I and mode-II stress intensity factors, energy release rate, and crack opening displacements are derived in order to examine several important fracture mechanisms involved in the Smart-Cut process. The effects of defect interaction and stiffening wafer on defect growth are investigated. The numerical results indi- cate that a stiffener/handle wafer can effectively prevent the donor wafer from blistering and exfoliation, but it slows down the defect growth by decreasing the magnitudes of SIF's. Defect interaction also plays an important role in the splitting process of SOI wafers, but its contribution depends strongly on the size, interval and internal pressure of defects. Finally, an analytical formula is derived to estimate the implantation dose required for splitting a SOI wafer.展开更多
Sodium-ion batteries(SIBs)have been considered as an ideal choice for the next generation large-scale energy storage applications owing to the rich sodium resources and the analogous working principle to that of lithi...Sodium-ion batteries(SIBs)have been considered as an ideal choice for the next generation large-scale energy storage applications owing to the rich sodium resources and the analogous working principle to that of lithium-ion batteries(LIBs).Nevertheless,the larger size and heavier mass of Na^(+)ion than those of Li^(+)ion often lead to sluggish reaction kinetics and inferior cycling life in SIBs compared to the LIB counterparts.The pursuit of promising electrode materials that can accommodate the rapid and stable Na-ion insertion/extraction is the key to promoting the development of SIBs toward a commercial prosperity.One-dimensional(1 D)nanomaterials demonstrate great prospects in boosting the rate and cycling performances because of their large active surface areas,high endurance for deformation stress,short ions diffusion channels,and oriented electrons transfer paths.Electrospinning,as a versatile synthetic technology,features the advantages of controllable preparation,easy operation,and mass production,has been widely applied to fabricate the 1 D nanostructured electrode materials for SIBs.In this review,we comprehensively summarize the recent advances in the sodium-storage cathode and anode materials prepared by electrospinning,discuss the effects of modulating the spinning parameters on the materials’micro/nano-structures,and elucidate the structure-performance correlations of the tailored electrodes.Finally,the future directions to harvest more breakthroughs in electrospun Na-storage materials are pointed out.展开更多
Machine-learning and big data are among the latest approaches in corrosion research.The biggest challenge in corrosion research is to accurately predict how materials will degrade in a given environment.Corrosion big ...Machine-learning and big data are among the latest approaches in corrosion research.The biggest challenge in corrosion research is to accurately predict how materials will degrade in a given environment.Corrosion big data is the application of mathematical methods to huge amounts of data to find correlations and infer probabilities.It is possible to use corrosion big data method to distinguish the influence of the minimal changes of alloying elements and small differences in microstructure on corrosion resistance of low alloy steels.In this research,corrosion big data evaluation methods and machine learning were used to study the effect of Sb and Sn,as well as environmental factors on the corrosion behavior of low alloy steels.Results depict corrosion big data method can accurately identify the influence of various factors on corrosion resistance of low alloy and is an effective and promising way in corrosion research.展开更多
基金financially National Natural Science Foundation of China(51877132)Joint Funds of National Natural Science Foundation of China(U19A20105)the Program of Shanghai Academic Research Leader(No.21XD1401600)。
文摘Thermal management has become a crucial problem for high-power-density equipment and devices.Phase change materials(PCMs)have great prospects in thermal management applications because of their large capacity of heat storage and isothermal behavior during phase transition.However,low intrinsic thermal conductivity,ease of leakage,and lack of flexibility severely limit their applications.Solving one of these problems often comes at the expense of other performance of the PCMs.In this work,we report core–sheath structured phase change nanocomposites(PCNs)with an aligned and interconnected boron nitride nanosheet network by combining coaxial electrospinning,electrostatic spraying,and hot-pressing.The advanced PCN films exhibit an ultrahigh thermal conductivity of 28.3 W m^(-1)K^(-1)at a low BNNS loading(i.e.,32 wt%),which thereby endows the PCNs with high enthalpy(>101 J g^(-1)),outstanding ductility(>40%)and improved fire retardancy.Therefore,our core–sheath strategies successfully balance the trade-off between thermal conductivity,flexibility,and phase change enthalpy of PCMs.Further,the PCNs provide powerful cooling solutions on 5G base station chips and thermoelectric generators,displaying promising thermal management applications on high-power-density equipment and thermoelectric conversion devices.
基金financially supported by the National Key Technology R&D Program of China (Nos.2012BAC02B01,2012BAC12B05,2011BAE13B07,and 2011BAC10B02)the National High-Tech Research and Development Program of China (No.2012AA063202)+2 种基金the National Natural Science Foundation of China (Nos.51174247 and 51004011)the Science and Technology Program of Guangdong Province,China (No.2010A030200003)the Ph.D. Programs Foundation of the Ministry of Education of China (No.2010000612003)
文摘Oily cold rolling mill (CRM) sludge is one of metallurgical industry solid wastes. The recycle of these wastes can not only protect the environment but also permit their reutilization. In this research, a new process of "hydrometallurgical treatment + hydrothermal synthesis" was investigated for the combined recovery of iron and organic materials from oily CRM sludge. Hydrometallurgical treatment, mainly including acid leaching, centrifugal separation, neutralization reaction, oxidizing, and preparation of hydrothermal reaction precursor, was first utilized for processing the sludge. Then, micaceous iron oxide (MIO) pigment powders were prepared through hydrothermal reaction of the obtained precursor in alkaline media. The separated organic materials can be used for fuel or chemical feedstock. The quality of the prepared MIO pigments is in accordance with the standards of MIO pigments for paints (ISO 10601-2007). This clean, effective, and economical technology offers a new way to recycle oily CRM sludge.
文摘The ever-increasing environmental problems and energy challenges have called urgent demand for utilizing green,efficient,and sustainable energy,thus promoting the development of new technologies associated with energy storage and conversion systems.Amongst a wealth of energy storage devices,Li/Na/K/Zn/Mg ion batteries,metal-air batteries,and lithium-sulfur/all-solid-state batteries together with supercapacitors as advanced power sources have attracted considerable interest due to their conspicuous merits of high energy density,long cycle life,and good rate capability.
基金Financial support from the National Natural Science Foundation of China(52302317)is gratefully acknowledged。
文摘Rechargeable magnesium batteries(RMBs)have garnered significant attention in energy storage applications due to their high capacity,low cost,and high safety.However,the strong polarization effect and slow kinetic de-intercalation of Mg^(2+)in the cathode limit their commercial application.This study presents a novel interface-coupled V_(2)CT_(x)@VS_(4)heterostructure through a one-step hydrothermal process.In this architecture,V_(2)CT_(x)and VS_(4)can mutually support their structural framework,which effectively prevents the structural collapse of V_(2)CT_(x)MXene and the aggregation of VS_(4).Crucially,interfacial coupling between V_(2)CT_(x)and VS_(4)induces strong V-S bonds,substantially enhancing structural stability.Benefiting from these advantages,the heterostructure exhibits high specific capacity(226 mAh g^(-1)at 100 mA g^(-1))and excellent long-cycle stability(89% capacity retention after 1000 cycles at 500 mA g^(-1)).Furthermore,the Mg^(2+)storage mechanism in the V_(2)CT_(x)@VS_(4)composite was elucidated through a series of ex-situ characterizations.This work provides a feasible strategy for designing V_(2)CT_(x)MXene-based cathodes with high capacity and extended cyclability for RMBs.
基金financially sponsored by the National Natural Science Foundation of China(No.52204414)the National Energy-Saving and Low-Carbon Materials Production and Application Demonstration Platform Program,China(No.TC220H06N)+1 种基金the National Key R&D Program of China(No.2021YFC1910504)the Fundamental Research Funds for the Central Universities,China(No.FRFTP-20-097A1Z)。
文摘MnO_(x)-CeO_(2)catalysts for the low-temperature selective catalytic reduction(SCR)of NO remain vulnerable to water and sulfur poisoning,limting their practical applications.Herein,we report a hydrophobic-modified MnO_(x)-CeO_(2)catalyst that achieves enhanced NO conversion rate and stability under harsh conditions.The catalyst was synthesized by decorating MnOx crystals with amorphous CeO_(2),followed by loading hydrophobic silica on the external surfaces.The hydrophobic silica allowed the adsorption of NH_(3)and NO and diffusion of H,suppressed the adsorption of H_(2)O,and prevented SO_(2)interaction with the Mn active sites,achieving selective molecular discrimination at the catalyst surface.At 120℃,under H_(2)O and SO_(2)exposure,the optimal hydrophobic catalyst maintains 82%NO conversion rate compared with 69%for the unmodified catalyst.The average adsorption energies of NH_(3),H_(2)O,and SO_(2)decreased by 0.05,0.43,and 0.52 eV,respectively.The NO reduction pathway follows the Eley-Rideal mechanism,NH_(3)^(*)+*→NH_(2)^(*)+H^(*)followed by NH_(2)^(*)+NO^(*)→N_(2)^(*)+H_(2)O^(*),with NH_(3)dehydrogenation being the rate determining step.Hydrophobic modification increased the activation energy for H atom transfer,leading to a minor decrease in the NO conversion rate at 120℃.This work demonstrates a viable strategy for developing robust NH_(3)-S CR catalysts capable of efficient operation in water-and sulfur-rich environments.
基金supported by the National Natural Science Foundation of China (Grant No. 5186504)the University Science Foundation for Young Science and Technology Talents in Inner Mongolia Autonomous Region of China (Grant No. NJYT22078)+2 种基金the Basic Scientific Research Expenses Program of Universities directly under Inner Mongolia Autonomous Region (Grant No. JY20220059)the Inner Mongolia Autonomous Region ‘Grassland Talent’ project Young Innovative Talent Training Program Level ⅠBasic Research Expenses of Universities directly under the Inner Mongolia Autonomous Region (Grant No. ZTY2023040)。
文摘To develop a suitable production process for fiber reinforced investment casting shell mold,three methods were studied:the traditional method(M_(1)),the method of adding fiber into silica sol with mechanical stirring and ultrasonic agitation(M_(2)),and the method of adding fiber into slurry with mechanical stirring and ultrasonic agitation for durations of 3,15,30,and 45 min(M_(3)).The bending strength,high-temperature self-load deformation,and thermal conductivity of the shell molds were investigated.The results reveal that the enhancement of fiber dispersion through ultrasonic agitation improves the comprehensive performance of the shell molds.The maximum green bending strength of the shell mold by M_(2) reaches 3.29 MPa,which is 29% higher than that of the shell mold prepared by M_(1).Moreover,the high-temperature self-load deformation of the shell mold is reduced from 0.62% to 0.44%.In addition,simultaneous ultrasonic agitation and mechanical stirring effectively shorten the slurry preparation time while maintaining comparable levels of fiber dispersion.With the process M_(3)-45 min,the fillers are uniformly dispersed in the slurry,and the fired bending strength and the high-temperature self-load deformation reach 6.25 MPa and 0.41%,respectively.Therefore,the proposed ultrasonic agitation route is promising for the fabrication of fiber-reinforced shell molds with excellent fibers dispersion.
基金financially supported by the National Natural Science Foundation of China(Nos.52104319 and 52374323)。
文摘This study utilizes wet/dry cyclic corrosion testing combined with corrosion big data technology to investigate the mechanism by which chloride ions(Cl^(-))influence the corrosion behavior of 650 MPa high-strength low-alloy(HSLA)steel in industrially polluted environments.The corrosion process of 650 MPa HSLA steel occurred in two distinct stages:an initial corrosion stage and a stable corrosion stage.During the initial phase,the weight loss rate increased rapidly owing to the instability of the rust layer.Notably,this study demonstrated that 650 MPa HSLA steel exhibited superior corrosion resistance in Cl-containing environments.The formation of a corrosion-product film eventually reduced the weight-loss rate.However,the intrusion of Cl^(-)at increasing concentrations gradually destabilized theα/γ^(*)phases of the rust layer,leading to a looser structure and lower polarization resistance(R_(p)).The application of corrosion big data technology in this study facilitated the validation and analysis of the experimental results,offering new insights into the corrosion mechanisms of HSLA steel in chloride-rich environments.
基金financially supported by the National Key Research and Development Program of China (No. 2023YFB3812601)the National Natural Science Foundation of China (No. 51925401)the Young Elite Scientists Sponsorship Program by CAST, China (No. 2022QNRC001)。
文摘Machine learning-assisted methods for rapid and accurate prediction of temperature field,mushy zone,and grain size were proposed for the heating−cooling combined mold(HCCM)horizontal continuous casting of C70250 alloy plates.First,finite element simulations of casting processes were carried out with various parameters to build a dataset.Subsequently,different machine learning algorithms were employed to achieve high precision in predicting temperature fields,mushy zone locations,mushy zone inclination angle,and billet grain size.Finally,the process parameters were quickly optimized using a strategy consisting of random generation,prediction,and screening,allowing the mushy zone to be controlled to the desired target.The optimized parameters are 1234℃for heating mold temperature,47 mm/min for casting speed,and 10 L/min for cooling water flow rate.The optimized mushy zone is located in the middle of the second heat insulation section and has an inclination angle of roughly 7°.
基金supported by the National Natural Science Foundation of China(52272177,12204010)the Foundation for the Introduction of High-Level Talents of Anhui University(S020118002/097)+1 种基金the University Synergy Innovation Program of Anhui Province(GXXT-2023-066)the Scientific Research Project of Anhui Provincial Higher Education Institution(2023AH040008)。
文摘Flexible electronics face critical challenges in achieving monolithic three-dimensional(3D)integration,including material compatibility,structural stability,and scalable fabrication methods.Inspired by the tactile sensing mechanism of the human skin,we have developed a flexible monolithic 3D-integrated tactile sensing system based on a holey MXene paste,where each vertical one-body unit simultaneously functions as a microsupercapacitor and pressure sensor.The in-plane mesopores of MXene significantly improve ion accessibility,mitigate the self-stacking of nanosheets,and allow the holey MXene to multifunctionally act as a sensing material,an active electrode,and a conductive interconnect,thus drastically reducing the interface mismatch and enhancing the mechanical robustness.Furthermore,we fabricate a large-scale device using a blade-coating and stamping method,which demonstrates excellent mechanical flexibility,low-power consumption,rapid response,and stable long-term operation.As a proof-of-concept application,we integrate our sensing array into a smart access control system,leveraging deep learning to accurately identify users based on their unique pressing behaviors.This study provides a promising approach for designing highly integrated,intelligent,and flexible electronic systems for advanced human-computer interactions and personalized electronics.
基金support from National Key Research and Development Program of China(2024YFE0217100)the National Natural Science Foundation of China(21905006,22261160370,and 62105075)+7 种基金the Guangdong Provincial Science and Technology Plan(2021A0505110003)the Natural Science Foundation of Hunan Province,China(2023JJ50132)Guangxi Department of Science and Technology(2020GXNSFBA159049 and AD19110030)the Shenzhen Science and Technology Program(SGDX20230116093205009,JCYJ20220818100211025 and 2022378670)the Natural Science Foundation of Top Talent of SZTU(GDRC202343)financial support of Innovation and Technology Fund(#GHP/245/22SZ)The University Grant Council of the University of Hong Kong(grant No.2302101786)General Research Fund(grant Nos.17200823 and 17310624)from the Research Grants Council.
文摘Halide perovskites have emerged as promising materials for X-ray detection with exceptional properties and reasonable costs.Among them,heterostructures between 3D perovskites and low-dimensional perovskites attract intensive studies of their advantages due to low-level ion migration and decent stability.However,there is still a lack of methods to precisely construct heterostructures and a fundamental understanding of their structure-dependent optoelectronic properties.Herein,a gas-phase method was developed to grow 2D perovskites directly on 3D perovskites with nanoscale accuracy.In addition,the larger steric hindrance of organic layers of 2D perovskites was proved to enable slower ion migration,which resulted in reduced trap states and better stability.Based on MAPbBr_(3)single crystals with the(PA)_(2)PbBr_(4)capping layer,the X-ray detector achieved a sensitivity of 22,245μC Gy_(air)^(−1)cm^(−2),a response speed of 240μs,and a dark current drift of 1.17.10^(–4)nA cm^(−1)s^(−1)V^(−1),which were among the highest reported for state-of-the-art perovskite-based X-ray detectors.This study presents a precise synthesis method to construct perovskite-based heterostructures.It also brings an in-depth understanding of the relationship between lattice structures and properties,which are beneficial for advancing high-performance and cost-effective X-ray detectors.
基金the partial support of this study provided bythe NIH with SBIR Grants GM099355 and GM093747
文摘The advent of superficially porous particles (SPPs) for packed HPLC columns has changed the way that many practitioners have approached the problem of developing needed separations. The very high efficiency of such columns, combined with convenient operating conditions, modest back pressures and the ability to use conventional HPLC instruments has resulted in intense basic studies of SPP technology, and widespread applications in many sciences. This report contains an overview of the SPP technology first developed in 2006 by Advanced Materials Technology, Inc., for sub-3-11m particles, then expanded into a family of SPP products with different particle sizes, pore sizes and other physical parameters. This approach was designed so that each particle of the family could be optimized for separating a particular group of compounds, usually based on solute size.
基金This work was fianancially supported by the National Natural Science Foundation of China(No.51871024)the Fundamental Research Funds for the Central Universities(No.FRF-NP-20-07).
文摘Grain refinement can strengthen the mechanical properties of materials according to the classical Hall-Petch relationship but does not always result in better corrosion resistance.During the past few decades,various techniques have been dedicated to refining grain,along with relevant studies on corrosion behavior,including general corrosion,pitting corrosion,and stress corrosion cracking.However,the funda-mental consensus on how grain size influences corrosion behavior has not been reached.This paper reviews existing literature on the beneficial and detrimental effects of grain refinement on corrosion behavior.Moreover,the effects of microstructural changes(i.e.,grain boundary,dislo-cation,texture,residual stress,impurities,and second phase)resulting from grain refinement on corrosion behavior are discussed.The grain re-finement not only has an impact on the corrosion performance,but also results in microstructural changes that have a non-negligible effect on corrosion behavior or even outweigh that of grain refinement.Grain size is not the only factor affecting the corrosion behavior of metallic ma-terials;thus,the overall influence of microstructures on corrosion behavior should be understood.
基金supported by the National High Technology Research and Development Program of China (No.2011BAE23B00)
文摘A new horizontal continuous casting method with heating-cooling combined mold(HCCM)technology was explored for fabri-cating high-quality thin-wall cupronickel alloy tubes used for heat exchange pipes.The microstructure and mechanical properties of BFe 10 cupronickel alloy tubes fabricated by HCCM and traditional continuous casting(cooling mold casting)were comparatively investigated.The results show that the tube fabricated by HCCM has smooth internal and external surfaces without any defects,and its internal and external surface roughnesses are 0.64μm and 0.85μm,respectively.The tube could be used for subsequent cold processing without other treatments such as surface planning,milling and acid-washing.This indicates that HCCM can effectively reduce the process flow and improve the pro-duction efficiency of a BFel0 cupronickel alloy tube.The tube has columnar grains along its axial direction with a major casting texture of{012}〈621〉.Compared with cooling mold casting(6=36.5%),HCCM can improve elongation(3=46.3%)by 10%with a slight loss of strength,which indicates that HCCM remarkably improves the cold extension performance of a BFe 10 cupronickel alloy tube.
基金financially supported by the National Natural Science Foundation of China(No.52171063)the Fundamental Research Funds for the Central Universities(No.FRF-IP-19-005)。
文摘In this work,we studied the effect of Cr element on the corrosion resistance evolution of weathering steel based on corrosion big data technology.It suggested that corrosion big data technology is suitable for evaluation of the effect of microalloying Cr element on the corrosion evolution behavior of weathering steel.New understandings prove that the effect of Cr on the corrosion process is dynamic rather than static,the processes is affected by both of the environmental factors and the electrochemical or chemical reactions in the rust layer.Besides,Cr element has both beneficial effect and detrimental effect on the corrosion resistance of weathering steel.The beneficial effect is that the general corrosion resistance of Cr-additional steel is better than that of Cr-free steel,while the detrimental effect is that localized corrosion is intensified as the increase of Cr content in the Cr-additional steel.
基金funded by the National Science and Technology Major Project of the Ministry of Science and Technology of China under Project No.2016YFB1100703
文摘The insulation effect of the air cavity surrounding the riser in a 3D printed sand mold was studied. The influence of the air cavity on heat flux was theoretically analyzed. The results demonstrated that the heat flux of the air cavity in the 3D printed sand mold was significantly less than that of resin-bonded sand. The insulation effect of the air cavity in sand molds for a cylinder casting and a stress-frame casting were simulated using software COMSOL. The results illustrated that the air cavity could be used to insulate the riser and it was more suitable for a lower melting point metal casting. An air cavity with 10-15 mm width and 5-10 mm away from the riser can significantly prolong the solidification of the riser by over 10%. Meanwhile, the sand mold for the stressframe was made by 3D printing technology and poured with aluminum alloy A356 melt. The experiment results showed that the presence of the air cavity led to a 12.5% increase of the solidification time of its riser.
基金the National Natural Science Foundation of China(No.51904352)the Scientific Research Foundation of Hunan Provincial Education Department,China(No.22A0004).
文摘Casting aluminum(Al)alloys have been widely used in the automotive industry to improve fuel economy as well as to reduce greenhouse gas(GHG)emissions in the vehicle use phase.However,the casting Al alloys used for load-bearing body and chassis components today are mostly made from primary Al with a low impurity Fe content typically less than 0.2 wt.%,owing to the requirements for high ductility and adequate fatigue strength.Primary Al is made directly from alumina which was refined from aluminum ore(bauxite),using an electrolytic process which consumes a lot of energy and produces GHG emissions that are much higher than those from steel making.The objective of this paper is to present a Unified Casting(UniCast)Al alloy concept as a sustainable materials solution for vehicle lightweighting.The UniCast alloy chemistry is intentionally designed to be more tolerant of Fe impurity.This chemistry can not only satisfy the requirements on castability,but also deliver mechanical properties needed for a variety of thin-walled and thick-walled automotive structural components that are produced by various casting processes.The UniCast alloy concept will contribute to the establishment of a closed-loop recycling system in the future as the shredded scrap obtained from the disposed end-of-life vehicles can be directly recycled back into UniCast alloy ingot with a more efficient sorting process.In addition,by setting the upper limit of Fe content in the UniCast alloy to a higher level,it will become possible to use a high fraction of post-consumer scraps to produce this alloy.To demonstrate the feasibility of this concept,an exemplary UniCast alloy chemistry has been elaborated in this article.Furthermore,challenges and future research opportunities related to the realization of UniCast alloy concept in the automotive industry are discussed.It is hoped that this article will be of great implication to industrial researchers and academicians for making concerted efforts to establish closed-loop recycling of Al castings for the automotive and other transportation industry segments.
文摘A reconstruction technology of finite element meshes based on reversal engineering was applied to solve mesh penetration and separation in the finite element simulation for the divergent extrusion. The 3D numerical simulation of the divergent extrusion process in- cluding the welding stage for complicated hollow sections was conducted. Based on the analysis of flowing behaviors, the flowing velocities of the alloy in portholes and near the welding planes were properly controlled through optimizing the expansion angle as well as porthole ar- eas and positions. After the die structure optimization, defects such as warp, wrist, and the wavelike are eliminated, which improves the sec- tion-forming quality. Meanwhile, the temperature distribution in the cross section is uniform. Especially, the temperature of the C-shape notch with a larger thickness is lower than that of other regions in the cross section, which is beneficial for balancing the alloy flowing velocity.
基金the Australian Research Council (ARC),the National Natural Science Foundation of China (10525210 and 10732050) 973 Project (2004CB619303)
文摘In the present paper, continuum fracture mechanics is used to analyze the Smart-Cut process, a recently established ion cut technology which enables highly efficient fabrication of various silicon-on-insulator (SOI) wafers of high uniformity in thickness. Using integral transform and Cauchy singular integral equation methods, the mode-I and mode-II stress intensity factors, energy release rate, and crack opening displacements are derived in order to examine several important fracture mechanisms involved in the Smart-Cut process. The effects of defect interaction and stiffening wafer on defect growth are investigated. The numerical results indi- cate that a stiffener/handle wafer can effectively prevent the donor wafer from blistering and exfoliation, but it slows down the defect growth by decreasing the magnitudes of SIF's. Defect interaction also plays an important role in the splitting process of SOI wafers, but its contribution depends strongly on the size, interval and internal pressure of defects. Finally, an analytical formula is derived to estimate the implantation dose required for splitting a SOI wafer.
基金Financial support from the National Natural Science Foundation of China(21805007)Young Elite Scientists Sponsorship Program by CAST(2018QNRC001)+3 种基金Beijing Natural Science Foundation(L182019)National Key Research and Development Program of China(2018YFB0104300)Fundamental Research Funds for the Central Universities(FRF-TP-19-029A2)111 Project(B12015)。
文摘Sodium-ion batteries(SIBs)have been considered as an ideal choice for the next generation large-scale energy storage applications owing to the rich sodium resources and the analogous working principle to that of lithium-ion batteries(LIBs).Nevertheless,the larger size and heavier mass of Na^(+)ion than those of Li^(+)ion often lead to sluggish reaction kinetics and inferior cycling life in SIBs compared to the LIB counterparts.The pursuit of promising electrode materials that can accommodate the rapid and stable Na-ion insertion/extraction is the key to promoting the development of SIBs toward a commercial prosperity.One-dimensional(1 D)nanomaterials demonstrate great prospects in boosting the rate and cycling performances because of their large active surface areas,high endurance for deformation stress,short ions diffusion channels,and oriented electrons transfer paths.Electrospinning,as a versatile synthetic technology,features the advantages of controllable preparation,easy operation,and mass production,has been widely applied to fabricate the 1 D nanostructured electrode materials for SIBs.In this review,we comprehensively summarize the recent advances in the sodium-storage cathode and anode materials prepared by electrospinning,discuss the effects of modulating the spinning parameters on the materials’micro/nano-structures,and elucidate the structure-performance correlations of the tailored electrodes.Finally,the future directions to harvest more breakthroughs in electrospun Na-storage materials are pointed out.
基金financially supported by the Postdoctor Research Foundation of Shunde Graduate School of University of Science and Technology Beijing(No.2022 B H003)。
文摘Machine-learning and big data are among the latest approaches in corrosion research.The biggest challenge in corrosion research is to accurately predict how materials will degrade in a given environment.Corrosion big data is the application of mathematical methods to huge amounts of data to find correlations and infer probabilities.It is possible to use corrosion big data method to distinguish the influence of the minimal changes of alloying elements and small differences in microstructure on corrosion resistance of low alloy steels.In this research,corrosion big data evaluation methods and machine learning were used to study the effect of Sb and Sn,as well as environmental factors on the corrosion behavior of low alloy steels.Results depict corrosion big data method can accurately identify the influence of various factors on corrosion resistance of low alloy and is an effective and promising way in corrosion research.