期刊文献+
共找到61篇文章
< 1 2 4 >
每页显示 20 50 100
Correction:A Lightweight Approach for Skin Lesion Detection through Optimal Features Fusion
1
作者 Khadija Manzoor Fiaz Majeed +5 位作者 Ansar Siddique Talha Meraj Hafiz Tayyab Rauf Mohammed A.El-Meligy Mohamed Sharaf Abd Elatty E.Abd Elgawad 《Computers, Materials & Continua》 SCIE EI 2025年第1期1459-1459,共1页
In the article“A Lightweight Approach for Skin Lesion Detection through Optimal Features Fusion”by Khadija Manzoor,Fiaz Majeed,Ansar Siddique,Talha Meraj,Hafiz Tayyab Rauf,Mohammed A.El-Meligy,Mohamed Sharaf,Abd Ela... In the article“A Lightweight Approach for Skin Lesion Detection through Optimal Features Fusion”by Khadija Manzoor,Fiaz Majeed,Ansar Siddique,Talha Meraj,Hafiz Tayyab Rauf,Mohammed A.El-Meligy,Mohamed Sharaf,Abd Elatty E.Abd Elgawad Computers,Materials&Continua,2022,Vol.70,No.1,pp.1617–1630.DOI:10.32604/cmc.2022.018621,URL:https://www.techscience.com/cmc/v70n1/44361,there was an error regarding the affiliation for the author Hafiz Tayyab Rauf.Instead of“Centre for Smart Systems,AI and Cybersecurity,Staffordshire University,Stoke-on-Trent,UK”,the affiliation should be“Independent Researcher,Bradford,BD80HS,UK”. 展开更多
关键词 FUSION SKIN FEATURE
在线阅读 下载PDF
Effect of Ga^(3+) Doping on Crystal Structure Evolution and Microwave Dielectric Properties of SrAl_(2)O_(8) Ceramic
2
作者 YIN Changzhi CHENG Mingfei +5 位作者 LEI Weicheng CAI Yiyang SONG Xiaoqiang FU Ming LÜWenzhong LEI Wen 《无机材料学报》 北大核心 2025年第6期704-710,共7页
The feldspar-based microwave dielectric ceramic with low relative permittivity(εr)and excellent mechanical properties has attracted much attention in the fifth-generation wireless communication technology.In this wor... The feldspar-based microwave dielectric ceramic with low relative permittivity(εr)and excellent mechanical properties has attracted much attention in the fifth-generation wireless communication technology.In this work,a series of microwave dielectric ceramic SrAl_(2-x)Ga_(x)Si_(2)O_(8)(0.1≤x≤2.0)was synthesized using the traditional solid-state method.X-ray diffraction pattern indicates that Ga^(3+)can be dissolved into Al^(3+),forming a solid solution.Meanwhile,substitution of Ga^(3+)for Al^(3+)can promote the space group transition from I2/c(0.1≤x≤1.4)to P21/a(1.6≤x≤2.0)with coefficient of thermal expansion(CTE)increasing from 2.9×10^(-6)℃^(-1) to 5.2×10^(-6)℃^(-1).During this substitution,the phase transition can significantly improve the structural symmetry to enhance the dielectric properties and mechanical properties.Rietveld refinement results indicate that Ga^(3+)averagely occupied four Al^(3+)compositions to form solid solution.All ceramics have a dense microstructure and high relative density above 95%.An ultralower of 5.8 was obtained at x=1.6 composition with high quality factor(Q´f)of 50700 GHz and negative temperature coefficients of resonant frequency(tf)of approximately−35×10^(-6)℃^(-1).The densification temperature can be reduced to 940℃by adding 4%(in mass)LiF,resulting in good chemical compatibility with Ag electrode.Meanwhile,negativetf can be tuned to near-zero(+3.7×10^(-6)℃^(-1))by adding CaTiO_(3) ceramic. 展开更多
关键词 ion substitution microwave dielectric ceramic dielectric property low-temperature co-fired ceramic
在线阅读 下载PDF
3D Printing of Hierarchical Gyroid Hydroxyapatite-Akermanite Scaffolds with Improved Compressive Strength
3
作者 HUA Shuaibin PENG Chang +4 位作者 CHENG Lijin WU Jiamin ZHANG Xiaoyan WANG Xiumei SHI Yusheng 《硅酸盐学报》 北大核心 2025年第9期2706-2717,共12页
Introduction It is necessary for an ideal bioceramic scaffold to have a suitable structure.The structure can affect the mechanical properties of the scaffold(i.e.,elastic modulus and compressive strength)and the biolo... Introduction It is necessary for an ideal bioceramic scaffold to have a suitable structure.The structure can affect the mechanical properties of the scaffold(i.e.,elastic modulus and compressive strength)and the biological properties of the scaffold(i.e.,degradability and cell growth rate).Lattice structure is a kind of periodic porous structure,which has some advantages of light weight and high strength,and is widely used in the preparation of bioceramic scaffolders.For the structure of the scaffold,high porosity and large pore size are important for bone growth,bone integration and promoting good mechanical interlocking between neighboring bones and the scaffold.However,scaffolds with a high porosity often lack mechanical strength.In addition,different parts of the bone have different structural requirements.In this paper,scaffolds with a non-uniform structure or a hierarchical structure were designed,with loose and porous exterior to facilitate cell adhesion,osteogenic differentiation and vascularization as well as relatively dense interior to provide sufficient mechanical support for bone repair.Methods In this work,composite ceramics scaffolds with 10%akermanite content were prepared by DLP technology.The scaffold had a high porosity outside to promote the growth of bone tissue,and a low porosity inside to withstand external forces.The compressive strength,fracture form,in-vitro degradation performance and bioactivity of graded bioceramic scaffolds were investigated.The models of scaffolds were imported into the DLP printer with a 405 nm light.The samples were printed with the intensity of 8 mJ/cm^(2)and a layer thickness of 50μm.Finally,the ceramic samples were sintered at 1100℃.The degradability of the hierarchical gyroid bioceramic scaffolds was evaluated through immersion in Tris-HCl solution and SBF solution at a ratio of 200 mL/g.The bioactivity of bioceramic was obtained via immersing them in SBF solution for two weeks.The concentrations of calcium,phosphate,silicon,and magnesium ions in the soaking solution were determined by an inductively coupled plasma optical emission spectrometer.Results and discussion In this work,a hierarchical Gyroid structure HA-AK10 scaffold(sintered at 1100℃)with a radial internal porosity of 50%and an external porosity of 70%is prepared,and the influence of structural form on the compressive strength and degradation performance of the scaffold is investigated.The biological activity of the bioceramics in vitro is also verified.The mechanical simulation results show that the stress distribution corresponds to the porosity distribution of the structure,and the low porosity is larger and the overall stress concentration phenomenon does not appear.After soaking in SBF solution,Si—OH is firstly formed on the surface of bioceramics,and then silicon gel layer is produced due to the presence of calcium and silicon ions.The silicon gel layer is dissociated into negatively charged groups under alkaline environment secondary adsorption of calcium ions and phosphate ions,forming amorphous calcium phosphate,and finally amorphous calcium phosphate crystals and adsorption of carbonate ions,forming carbonate hydroxyapatite.This indicates that the composite bioceramics have a good biological activity in-vitro and can provide a good environment for the growth of bone cells.A hierarchical Gyroid ceramic scaffold with a bone geometry is prepared via applying the hierarchical structure to the bone contour scaffold.The maximum load capacity of the hierarchical Gyroid ceramic scaffold is 8 times that of the uniform structure.Conclusions The hierarchical structure scaffold designed had good overall compressive performance,good degradation performance,and still maintained a good mechanical stability during degradation.In addition,in-vitro biological experimental results showed that the surface graded composite scaffold could have a good in-vitro biological activity and provide a good environment for bone cells.Compared to the heterosexual structure,the graded scaffold had greater mechanical properties. 展开更多
关键词 bioceramic scaffolds hierarchical gyroid structure compressive strength bioactivity digital light processing
原文传递
Analysis of defects in clean fabrication process of friction stir welding 被引量:5
4
作者 Noor Zaman KHAN Zahid A.KHAN +2 位作者 Arshad Noor SIDDIQUEE Abdulrahman M.AL-AHMARI Mustufa H.ABIDI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2017年第7期1507-1516,共10页
Striving for cleaner production is a sought-after manufacturing philosophy.Friction stir welding(FSW)is a joiningtechnique with par excellence and far less invasive to the environment than even best conventional weldi... Striving for cleaner production is a sought-after manufacturing philosophy.Friction stir welding(FSW)is a joiningtechnique with par excellence and far less invasive to the environment than even best conventional welding processes.It is energyefficient and free from consumables,affluent and radiations.It is,thus,accepted as a clean welding process that can produceacceptable quality joints.It suffers from some major challenges of defects of its own kind that subject the process open toimprovements so as to prove itself a reliable production process.This study presents a holistic characterization of defects commonlyfound in FSW joints.The finding of the present study reveals that most defects are caused by inadequate heat generation,impropermaterial movement around the pin and inadequate material consolidation behind the pin.The amount of heat generation andmaterial stirring depends on several FSW parameters which may lead to the defect formation,if not selected properly.The resultsreported in this work are derived from sound literature support and experimentation.Prescriptions are made in the form ofcharacteristics of defects such as likelihood of their location,main responsible parameters along with the recommendations forminimizing them. 展开更多
关键词 clean welding process friction stir welding DEFECT process parameter
在线阅读 下载PDF
Deep Neural Networks Based Approach for Battery Life Prediction 被引量:3
5
作者 Sweta Bhattacharya Praveen Kumar Reddy Maddikunta +4 位作者 Iyapparaja Meenakshisundaram Thippa Reddy Gadekallu Sparsh Sharma Mohammed Alkahtani Mustufa Haider Abidi 《Computers, Materials & Continua》 SCIE EI 2021年第11期2599-2615,共17页
The Internet of Things(IoT)and related applications have witnessed enormous growth since its inception.The diversity of connecting devices and relevant applications have enabled the use of IoT devices in every domain.... The Internet of Things(IoT)and related applications have witnessed enormous growth since its inception.The diversity of connecting devices and relevant applications have enabled the use of IoT devices in every domain.Although the applicability of these applications are predominant,battery life remains to be a major challenge for IoT devices,wherein unreliability and shortened life would make an IoT application completely useless.In this work,an optimized deep neural networks based model is used to predict the battery life of the IoT systems.The present study uses the Chicago Park Beach dataset collected from the publicly available data repository for the experimentation of the proposed methodology.The dataset is pre-processed using the attribute mean technique eliminating the missing values and then One-Hot encoding technique is implemented to convert it to numerical format.This processed data is normalized using the Standard Scaler technique.Moth Flame Optimization(MFO)Algorithm is then implemented for selecting the optimal features in the dataset.These optimal features are finally fed into the DNN model and the results generated are evaluated against the stateof-the-art models,which justify the superiority of the proposed MFO-DNN model. 展开更多
关键词 Battery life prediction moth flame optimization one-hot encoding standard scaler
在线阅读 下载PDF
A short overview of the lead iodide residue impact and regulation strategies in perovskite solar cells 被引量:2
6
作者 Eng Liang Lim Zhanhua Wei 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期504-510,I0012,共8页
Lead iodide(PbI2) is a vital raw material for preparing perovskite solar cells(PSCs),and it not only takes part in forming the light absorption layer but also remains in the grain boundary as a passivator.In other wor... Lead iodide(PbI2) is a vital raw material for preparing perovskite solar cells(PSCs),and it not only takes part in forming the light absorption layer but also remains in the grain boundary as a passivator.In other words,the PbI2 content in the precursor and as formed film will affect the efficiency and stability of the PSCs.With moderate residual PbI2,it passivates the bulk/surface defects of perovskite,reduces the interfacial recombination,promotes the perovskite stability,minimizes the device hysteresis,and so on.Deficient PbI2 residue will reduce the interfacial passivation effect and device performance.In addition to facilitating the non-radiative recombination,over PbI2 residue can also lead to electronic insulation in the grain boundary and deteriorate the device performance.However,the impact and regulation of PbI2 residue on the device performance and stability is still not fully understood.Herein,a comprehensive and detailed review is presented by discussing the PbI2 residue impact and its regulation strategies(i.e., elimination,facilitation and conversion of the residue PbI2) to manipulate the PbI2 content,distribution and forms.Finally,we also show future outlooks in this field,with an aim to help further the progression of high-efficiency and stable PSCs. 展开更多
关键词 Lead iodide RESIDUE REGULATION Perovskite solar cells Efficiency Stability
在线阅读 下载PDF
Improving the corrosion properties of magnesium AZ31 alloy GTA weld metal using microarc oxidation process 被引量:2
7
作者 M.Siva Prasad M.Ashfaq +3 位作者 N.Kishore Babu A.Sreekanth K.Sivaprasad V.Muthupandi 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2017年第5期566-573,共8页
In this work, the morphology, phase composition, and corrosion properties of microarc oxidized (MAO) gas tungsten arc (GTA) weldments of AZ31 alloy were investigated. Autogenous gas tungsten arc welds were made as ful... In this work, the morphology, phase composition, and corrosion properties of microarc oxidized (MAO) gas tungsten arc (GTA) weldments of AZ31 alloy were investigated. Autogenous gas tungsten arc welds were made as full penetration bead-on-plate welding under the alternating-current mode. A uniform oxide layer was developed on the surface of the specimens with MAO treatment in silicate-based alkaline electrolytes for different oxidation times. The corrosion behavior of the samples was evaluated by potentiodynamic polarization and electrochemical impedance spectroscopy. The oxide film improved the corrosion resistance substantially compared to the uncoated specimens. The sample coated for 10 min exhibited better corrosion properties. The corrosion resistance of the coatings was concluded to strongly depend on the morphology, whereas the phase composition and thickness were concluded to only slightly affect the corrosion resistance. 展开更多
关键词 magnesium alloys WELDMENTS microarc oxidation corrosion resistance
在线阅读 下载PDF
A novel intelligent adaptive control of laser-based ground thermal test 被引量:1
8
作者 Gan Zhengtao Yu Gang +4 位作者 Li Shaoxia He Xiuli Chen Ru Zheng Caiyun Ning Weijian 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2016年第4期1018-1026,共9页
Laser heating technology is a type of potential and attractive space heat flux simulation technology, which is characterized by high heating rate, controlled spatial intensity distribution and rapid response. However,... Laser heating technology is a type of potential and attractive space heat flux simulation technology, which is characterized by high heating rate, controlled spatial intensity distribution and rapid response. However, the controlled plant is nonlinear, time-varying and uncertainty when implementing the laser-based heat flux simulation. In this paper, a novel intelligent adaptive controller based on proportion-integration-differentiation (PID) type fuzzy logic is proposed to improve the performance of laser-based ground thermal test. The temperature range of thermal cycles is more than 200 K in many instances. In order to improve the adaptability of controller, output scaling factors are real time adjusted while the thermal test is underway. The initial values of scaling factors are optimized using a stochastic hybrid particle swarm optimization (H-PSO) algorithm. A validating system has been established in the laboratory. The performance of the proposed controller is evaluated through extensive experiments under different operating conditions (reference and load disturbance). The results show that the proposed adaptive controller performs remarkably better compared to the conventional PID (PID) controller and the conventional PID type fuzzy (F-PID) controller considering performance indicators of overshoot, settling time and steady state error for laser-based ground thermal test. It is a reliable tool for effective temperature control of laser-based ground thermal test. (C) 2016 Chinese Society of Aeronautics and Astronautics. Production and hosting by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license. 展开更多
关键词 Adaptive control Fuzzy logic Ground thermal test Laser heating Thermal control
原文传递
Ultra-high-rate Bi anode encapsulated in 3D lignin-derived carbon framework for sodium-ion hybrid capacitors 被引量:2
9
作者 Ze-Hua Lin Xue-Qing Qiu +6 位作者 Xi-Hong Zu Xiao-Shan Zhang Lei Zhong Shi-Rong Sun Shu-Hua Hao Ying-Juan Sun Wen-Li Zhang 《Rare Metals》 SCIE EI CAS CSCD 2024年第3期1037-1047,共11页
Bismuth(Bi),as an alloy-based anode material,has attracted much atte ntion in the developme nt of sodiumion hybrid capacitors(SIHCs)due to its high theoretical capacity.However,the volume expansion of the Bi-based ano... Bismuth(Bi),as an alloy-based anode material,has attracted much atte ntion in the developme nt of sodiumion hybrid capacitors(SIHCs)due to its high theoretical capacity.However,the volume expansion of the Bi-based anode during the sodiation/desodiation process results in limited rate capability.In the present work,a porous Bi-based composite was constructed by a one-step hydrothermal method,and Bi was encapsulated in ligninderived nitrogen-doped porous carbon(Bi@LNPC)after carbonization.The obtained Bi nanoparticles could effectively adapt to the strain and shorten the diffusion distance of Na^(+).In addition,porous carbon skeleton provides a rigid conductive network for electronic transportation.Therefore,the assembled sodium-ion half-cell with Bi@LNPC anode shows ultra-high-rate capability.When the current density was enhanced from 0.1 to 50 A·g^(-1),the specific capacity decreased slightly from 351.5 to 342.8 mAh·g^(-1).Even at an extremely high current density of 200 A·g^(-1),it retains 81.3%capacity retention when compared to a current density of 1 A·g^(-1).The SIHCs assembled by Bi@LNPC show a high energy density of 63 Wh·kg^(-1).This work provides an effective method for developing high-rate Bi anode materials for sodium-ion hybrid capacitors(SIHCs)and sodium-ion batteries(SIBs). 展开更多
关键词 BISMUTH LIGNIN Sodium-ion batteries Sodium-ion hybrid capacitors RATE Porous carbon
原文传递
Structural Isomers:Small Change with Big Difference in Anion Storage 被引量:1
10
作者 Huichao Dai Yuan Chen +7 位作者 Yueyue Cao Manli Fu Linnan Guan Guoqun Zhang Lei Gong Mi Tang Kun Fan Chengliang Wang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第1期222-234,共13页
Organic electrode materials are promising for batteries.However,the reported organic electrodes are often facing the challenges of low specific capacity,low voltage,poor rate capability and vague charge storage mechan... Organic electrode materials are promising for batteries.However,the reported organic electrodes are often facing the challenges of low specific capacity,low voltage,poor rate capability and vague charge storage mechanisms,etc.Isomers are good platform to investigate the charge storage mechanisms and enhance the performance of batteries,which,however,have not been focused in batteries.Herein,two isomers are reported for batteries.As a result,the isomer tetrathiafulvalene(TTF)could store two monovalent anions reversibly,deriving an average discharge voltage of 1.05 V and a specific capacity of 220 mAh g−1 at a current density of 2 C.On the other hand,the other isomer tetrathianaphthalene could only reversibly store one monovalent anion and upon further oxidation,it would undergo an irreversible solid-state molecular rearrangement to TTF.The molecular rearrangement was confirmed by electrochemical performances,X-ray diffraction patterns,nuclear magnetic resonance spectra,and 1H detected heteronuclear multiple bond correlation spectra.These results suggested the small structural change could lead to a big difference in anion storage,and we hope this work will stimulate more attention to the structural design for boosting the performance of organic batteries. 展开更多
关键词 Zinc-organic batteries ISOMERS Solid-state molecular rearrangement Anion storage P-type organic electrode materials
在线阅读 下载PDF
Efficient Semi‑Transparent Wide‑Bandgap Perovskite Solar Cells Enabled by Pure‑Chloride 2D‑Perovskite Passivation 被引量:4
11
作者 Liu Yang Yongbin Jin +14 位作者 Zheng Fang Jinyan Zhang Ziang Nan Lingfang Zheng Huihu Zhuang Qinghua Zeng Kaikai Liu Bingru Deng Huiping Feng Yujie Luo Chengbo Tian Changcai Cui Liqiang Xie Xipeng Xu Zhanhua Wei 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第8期35-48,共14页
Wide-bandgap(WBG)perovskite solar cells suffer from severe non-radiative recombination and exhibit relatively large opencircuit voltage(V_(OC))deficits,limiting their photovoltaic performance.Here,we address these iss... Wide-bandgap(WBG)perovskite solar cells suffer from severe non-radiative recombination and exhibit relatively large opencircuit voltage(V_(OC))deficits,limiting their photovoltaic performance.Here,we address these issues by in-situ forming a well-defined 2D perovskite(PMA)_(2)PbCl_(4)(phenmethylammonium is referred to as PMA)passivation layer on top of the WBG active layer.The 2D layer with highly pure dimensionality and halide components is realized by intentionally tailoring the side-chain substituent at the aryl ring of the post-treatment reagent.First-principle calculation and single-crystal X-ray diffraction results reveal that weak intermolecular interactions between bulky PMA cations and relatively low cation-halide hydrogen bonding strength are crucial in forming the well-defined 2D phase.The(PMA)_(2)PbCl_(4)forms improved type-I energy level alignment with the WBG perovskite,reducing the electron recombination at the perovskite/hole-transport-layer interface.Applying this strategy in fabricating semi-transparent WBG perovskite solar cells(indium tin oxide as the back electrode),the V_(OC)deficits can be reduced to 0.49 V,comparable with the reported state-of-the-art WBG perovskite solar cells using metal electrodes.Consequently,we obtain hysteresis-free 18.60%-efficient WBG perovskite solar cells with a high V_(OC)of 1.23 V. 展开更多
关键词 Wide-bandgap perovskite solar cells Transparent back electrodes Defect passivation Bulky cations
在线阅读 下载PDF
Classification and Categorization of COVID-19 Outbreak in Pakistan 被引量:1
12
作者 Amber Ayoub Kainaat Mahboob +4 位作者 Abdul Rehman Javed Muhammad Rizwan Thippa Reddy Gadekallu Mustufa Haider Abidi Mohammed Alkahtani 《Computers, Materials & Continua》 SCIE EI 2021年第10期1253-1269,共17页
Coronavirus is a potentially fatal disease that normally occurs in mammals and birds.Generally,in humans,the virus spreads through aerial droplets of any type of fluid secreted from the body of an infected person.Coro... Coronavirus is a potentially fatal disease that normally occurs in mammals and birds.Generally,in humans,the virus spreads through aerial droplets of any type of fluid secreted from the body of an infected person.Coronavirus is a family of viruses that is more lethal than other unpremeditated viruses.In December 2019,a new variant,i.e.,a novel coronavirus(COVID-19)developed in Wuhan province,China.Since January 23,2020,the number of infected individuals has increased rapidly,affecting the health and economies of many countries,including Pakistan.The objective of this research is to provide a system to classify and categorize the COVID-19 outbreak in Pakistan based on the data collected every day from different regions of Pakistan.This research also compares the performance of machine learning classifiers(i.e.,Decision Tree(DT),Naive Bayes(NB),Support Vector Machine,and Logistic Regression)on the COVID-19 dataset collected in Pakistan.According to the experimental results,DT and NB classifiers outperformed the other classifiers.In addition,the classified data is categorized by implementing a Bayesian Regularization Artificial Neural Network(BRANN)classifier.The results demonstrate that the BRANN classifier outperforms state-of-the-art classifiers. 展开更多
关键词 COVID-19 PANDEMIC neural network BRANN machine learning
在线阅读 下载PDF
Formability of Materials with Small Tools in Incremental Forming 被引量:1
13
作者 Hongyu Wei G.Hussain +3 位作者 X.Shi B.B.L Isidore Mohammed Alkahtani Mustufa Haider Abidi 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2020年第4期150-158,共9页
Single point incremental forming(SPIF)is an innovative sheet forming process with a high economic pay-off.The formability in this process can be maximized by executing forming with a tool of specific small radius,rega... Single point incremental forming(SPIF)is an innovative sheet forming process with a high economic pay-off.The formability in this process can be maximized by executing forming with a tool of specific small radius,regarded as threshold critical radius.Its value has been reported as 2.2 mm for 1 mm thick sheet materials.However,with a change in the forming conditions specifically in the sheet thickness and step size,the critical radius is likely to alter due to a change in the bending condition.The main aim of the present study is to undertake this point into account and develop a relatively generic condition.The study is composed of experimental and numerical investigations.The maximum wall angle(θmax)without sheet fracturing is regarded as sheet formability.A number of sheet materials are formed to fracture and the trends correlating formability with normalized radius(i.e.,R/To where R is the tool-radius and To is the sheet thickness)are drawn.These trends confirm that there is a critical tool-radius(Rc)that maximizes the formability in SPIF.Furthermore,it is found that the critical radius is not fixed rather it shows dependence on the sheet thickness such that Rc=βTo,whereβvaries from 2.2 to 3.3 as the thickness increases from 1 mm to 3 mm.The critical radius,however,remains insensitive to variation in step size ranging from 0.3 mm to 0.7 mm.This is also observed that the selection of tool with R<Rc narrows down the formability window not only on the higher side but also on the lower side.The higher limit,as revealed by the experimental and FEA results,diminishes due to excessive shearing because of in-plane biaxial compression,and the lower limit reduces due to pillowing in the bottom of part.The new tool-radius condition proposed herein study would be helpful in maximizing the formability of materials in SPIF without performing experimental trials. 展开更多
关键词 Incremental forming Critical tool-radius Formability curve Finite element analysis
在线阅读 下载PDF
RSS-Based Selective Clustering Technique Using Master Node for WSN 被引量:1
14
作者 Vikram Rajpoot Vivek Tiwari +4 位作者 Akash Saxena Prashant Chaturvedi Dharmendra Singh Rajput Mohammed Alkahtani Mustufa Haider Abidi 《Computers, Materials & Continua》 SCIE EI 2021年第12期3917-3930,共14页
Wireless sensor networks(WSN)are designed to monitor the physical properties of the target area.The received signal strength(RSS)plays a significant role in reducing sensor node power consumption during data transmiss... Wireless sensor networks(WSN)are designed to monitor the physical properties of the target area.The received signal strength(RSS)plays a significant role in reducing sensor node power consumption during data transmission.Proper utilization of RSS values with clustering is required to harvest the energy of each network node to prolong the network life span.This paper introduces the RSS-based energy-efficient selective clustering technique using a master node(RESCM)to improve energy utilization using a master node.The master node positioned at the center of the network area and base station(BS)is placed outside the network area.During cluster head(CH)selection,the node with a high RSS value is more likely to become CH.The network is divided into segments according to the distance from the master node.All nodes near BS or master node transmit their data using direct transmission without the clustering process.The simulation results showed that the RESCM method improves the total network lifespan effectively. 展开更多
关键词 Wireless sensor network received signal strength CLUSTERING base station master node
在线阅读 下载PDF
Sputtered SnO_(2)as an interlayer for efficient semitransparent perovskite solar cells 被引量:1
15
作者 Zheng Fang Liu Yang +9 位作者 Yongbin Jin Kaikai Liu Huiping Feng Bingru Deng Lingfang Zheng Changcai Cui Chengbo Tian Liqiang Xie Xipeng Xu Zhanhua Wei 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第11期67-73,共7页
SnO_(2)is widely used as the electron transport layer(ETL)in perovskite solar cells(PSCs)due to its excellent electron mobility,low processing temperature,and low cost.And the most common way of preparing the SnO_(2)E... SnO_(2)is widely used as the electron transport layer(ETL)in perovskite solar cells(PSCs)due to its excellent electron mobility,low processing temperature,and low cost.And the most common way of preparing the SnO_(2)ETL is spincoating using the corresponding colloid solution.However,the spin-coated SnO_(2)layer is sometimes not so compact and contains pinholes,weakening the hole blocking capability.Here,a SnO_(2)thin film prepared through magnetron-sputtering was inserted between ITO and the spin-coated SnO_(2)acted as an interlayer.This strategy can combine the advantages of efficient electron extraction and hole blocking due to the high compactness of the sputtered film and the excellent electronic property of the spin-coated SnO_(2).Therefore,the recombination of photo-generated carriers at the interface is significantly reduced.As a result,the semitransparent perovskite solar cells(with a bandgap of 1.73 eV)based on this double-layered SnO_(2)demonstrate a maximum efficiency of 17.7%(stabilized at 17.04%)with negligible hysteresis.Moreover,the shelf stability of the device is also significantly improved,maintaining 95%of the initial efficiency after 800-hours of aging. 展开更多
关键词 semitransparent perovskite solar cells SPUTTERING INTERLAYER hole blocking
原文传递
Estimation of Three-Dimensional Volumetric Errors of Numerically Controlled Machine Tools by a Tracking Interferometer 被引量:4
16
作者 Soichi Ibaraki Kunitaka Takeuchi +3 位作者 Tomoaki Yano Toshiyuki Takatsuji Sonko Osawa Osamu Sato 《Journal of Mechanics Engineering and Automation》 2011年第4期313-319,共7页
This paper presents the estimation of three-dimensional volumetric errors of a machining center by using a tracking interferometer. A tracking interferometer is a laser interferometer with the mechanism to steer the l... This paper presents the estimation of three-dimensional volumetric errors of a machining center by using a tracking interferometer. A tracking interferometer is a laser interferometer with the mechanism to steer the laser direction to follow a target retroreflector. Based on the triangulation principle, the three-dimensional position of the target can be estimated from measured laser displacements. Its capability to measure three-dimensional positioning errors for arbitrary trajectories is important for the indirect measurement of the machine's kinematic model. This paper presents experimental investigation of the estimation accuracy of the multilateration-based measurement by a tracking interferometer. A tracking interferometer developed by a part of the authors is used in experiments. In the present experiment, the measured volume of target positions was 100 mm × 100 mm × 100 mm. The estimation accuracy of targets within this volume was not sufficiently high compared to the positioning error of the measured machine tool. The results of the experiment and simulation show that the estimation uncertainty is dependent on tracking interferometer locations relative to target locations. Error sensitivity analysis shows that wider distribution of tracker positions in XY improves the estimation accuracy. 展开更多
关键词 Tracking interferometer laser tracker volumetric errors multilateration machine tools estimation accuracy.
在线阅读 下载PDF
Effects of laser power density on static and dynamic mechanical properties of dissimilar stainless steel welded joints 被引量:1
17
作者 Yan-Peng Wei Mao-Hui Li +3 位作者 Gang Yu Xian-Qian Wu Chen-Guang Huang Zhu-Ping Duan 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2012年第5期1334-1339,共6页
The mechanical properties of laser welded joints under impact loadings such as explosion and car crash etc. are critical for the engineering designs. The hardness, static and dynamic mechanical properties of AISI304 a... The mechanical properties of laser welded joints under impact loadings such as explosion and car crash etc. are critical for the engineering designs. The hardness, static and dynamic mechanical properties of AISI304 and AISI316L dissimilar stainless steel welded joints by CO2 laser were experimentally studied. The dynamic strainstress curves at the strain rate around 103 s-1 were obtained by the split Hopkinson tensile bar (SHTB). The static mechanical properties of the welded joints have little changes with the laser power density and all fracture occurs at 316 L side. However, the strain rate sensitivity has a strong depen- dence on laser power density. The value of strain rate factor decreases with the increase of laser power density. The welded joint which may be applied for the impact loading can be obtained by reducing the laser power density in the case of welding quality assurance. 展开更多
关键词 Laser welding Dynamic mechanics Strain rate.Power density
在线阅读 下载PDF
Phase Regulation and Defect Passivation Enabled by Phosphoryl Chloride Molecules for Efficient Quasi‑2D Perovskite Light‑Emitting Diodes 被引量:2
18
作者 Mingliang Li Yaping Zhao +10 位作者 Jia Guo Xiangqian Qin Qin Zhang Chengbo Tian Peng Xu Yuqing Li Wanjia Tian Xiaojia Zheng Guichuan Xing Wen‑Hua Zhang Zhanhua Wei 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第8期181-191,共11页
Quasi-2D perovskites have attracted tremendous interest for application as lightemission layers in light-emitting diodes(LEDs).However,the heterogeneous n phase and non-uniform distribution still severely limit the fu... Quasi-2D perovskites have attracted tremendous interest for application as lightemission layers in light-emitting diodes(LEDs).However,the heterogeneous n phase and non-uniform distribution still severely limit the further development of quasi-2D perovskite LEDs(Pero-LEDs).Meanwhile,the increased defect density caused by the reduced dimension and grain size induces non-radiative recombination and further deteriorates the device performance.Here,we found that a series of molecules containing phosphoryl chloride functional groups have noticeable enhancement effects on the device performance of quasi-2D Pero-LEDs.Then,we studied the modification mechanism by focusing on the bis(2-oxo-3-oxazolidinyl)phosphinic chloride(BOPCl).It is concluded that the BOPCl can not only regulate the phase distribution by decreasing the crystallization rate but also remain in the grain boundaries and passivate the defects.As a result,the corresponding quasi-2D Pero-LEDs obtained a maximum external quantum efficiency(EQE_(max))of 20.82%and an average EQE(EQE_(ave))of around 20%on the optimal 50 devices,proving excellent reproducibility.Our work provides a new selection of molecular types for regulating the crystallization and passivating the defects of quasi-2D perovskite films. 展开更多
关键词 Quasi-2D perovskite Phosphoryl chloride functional group Crystallization control N phase control PASSIVATION
在线阅读 下载PDF
Kinetic Study of Resin-Curing on Carbon Fiber/Epoxy Resin Composites by Microwave Irradiation 被引量:1
19
作者 Daisuke Shimamoto Yusuke Imai, Yuji Hotta 《Open Journal of Composite Materials》 2014年第2期85-96,共12页
Microwave processing has great potential for improving composite manufacturing such as reduction of curing time, energy requirements and operational costs. In this paper, the effects of microwave irradiation for resin... Microwave processing has great potential for improving composite manufacturing such as reduction of curing time, energy requirements and operational costs. In this paper, the effects of microwave irradiation for resin-curing of carbon fiber/epoxy resin composite that was composed of discontinuous carbon fibers of 130 μm or 3 mm were investigated. The mechanical properties of carbon fiber/epoxy resin composite cured by microwave irradiation for 20 min at 120°C were similar to ones of the sample prepared by conventional oven for 180 min at 120°C. Microwavecured carbon fiber/epoxy resin composite had higher glass transition temperature than the one prepared by conventional oven. The relation between curing time and flexural modulus indicated that the curing velocity of microwave-irradiated carbon fiber/epoxy resin composite was 9 times faster than the one prepared by conventional oven. Furthermore, activation energies for resincuring reaction on microwave and conventional-cured carbon fiber/epoxy resin composite were estimated. The resin-curing reaction in carbon fiber/epoxy resin composite was promoted by microwave irradiation. 展开更多
关键词 Activation Energy Resin-Curing Microwave IRRADIATION EPOXY RESIN Carbon Fiber
在线阅读 下载PDF
Bovine sperm selection procedure prior to cryopreservation for improvement of post-thawed semen quality and fertility 被引量:1
20
作者 MariaPortia B.Nagata Junki Egashira +7 位作者 Naoto Katafuchi Kenji Endo Kazuko Ogata Kenichi Yamanaka Tadayuki Yamanouchi Hideo Matsuda Yutaka Hashiyada Kenichi Yamashita 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2020年第1期44-57,共14页
Background:The application of cryopreservation and artificial insemination technology have contributed to the advancement of animal reproduction.However,a substantial proportion of spermatozoa undergoes alterations an... Background:The application of cryopreservation and artificial insemination technology have contributed to the advancement of animal reproduction.However,a substantial proportion of spermatozoa undergoes alterations and loses their fertility during cryopreservation,rendering the frozen-thawed semen impractical for routine use.Cryopreservation is known to reduce sperm lifespan and fertility.Variation in cryosurvival of spermatozoa from different sires and even with the individual sire is common in artificial insemination(AI)centers.Our goal is to improve post-thawed semen quality by optimization of cryopreservation technique through sperm selection prior to cryopreservation process.Results:Our strategy of sperm selection based on rheotaxis and thermotaxis(SSRT)on macrosale in a rotating fluid flow demonstrated the ability to maintain the original pre-freezing structural integrity,viability and biological function related to fertilization competence.This strategy has a positive effect on the cryosurvival and fertilizing abilities of spermatozoa as supported by the improvement on pregnancy rate of Japanese Black heifers and Holstein repeat breeders.This technique protected further sublethal damage to bovine spermatozoa(higher%cryosurvival than the control)and resulted in the improvement of DNA integrity.Prefreeze selected spermatozoa demonstrated slower and controlled capacitation than unprocessed control which is thought to be related to sperm longevity and consequently to appropriate timing during in vivo fertilization.Conclusions:These results provide solid evidence that improvement of post-thawed semen quality by SSRT method is beneficial in terms of cryosurvival,longevity of post-thawed sperm,and optimization of in vivo fertilization,embryo development and calving as supported by the favorable results of field fertility study. 展开更多
关键词 CRYOPRESERVATION FERTILITY Livestock RHEOTAXIS SPERMATOZOA THERMOTAXIS
在线阅读 下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部