In this paper, I present evidence that there exists an unstructured area in the present general assumptions of classical mechanics, especially in case of rigid bodies exposed to simultaneous noncoaxial rotations. To a...In this paper, I present evidence that there exists an unstructured area in the present general assumptions of classical mechanics, especially in case of rigid bodies exposed to simultaneous noncoaxial rotations. To address this, I propose dynamics hypotheses that lead to interesting results and numerous noteworthy scientific and technological applications. I constructed a new mathematical model in rotational field dynamics, and through this model, results based on a rational interpretation of the superposition of motions caused by torques were obtained. For this purpose, I analyze velocity and acceleration fields that are generated in an object with intrinsic angular momentum, and assessed new criteria for coupling velocities. In this context, I will discuss reactions and inertial fields that cannot be explained by classical mechanics. The experiments have been analyzed and explained in a video accompanying this text. I am not aware of any concurrent study on the subject and conclusions evidenced in this paper, preventing us from making additional theoretical com- parisons or indicate to the reader other sources to compare criteria.展开更多
This paper presents the reference criteria of rotational dynamics of accelerated systems in the field of Rational Mechanics, exposing the differentiation between inertial and non-inertial dynamic systems, and describe...This paper presents the reference criteria of rotational dynamics of accelerated systems in the field of Rational Mechanics, exposing the differentiation between inertial and non-inertial dynamic systems, and describes the unique research project developed by Advanced Dynamics CB up to proposing the Theory of Dynamic Interactions. This paper aims to deliver a commentary on developments in the field of rotational dynamics. Professor Barceló proposes that in today’s physics, a change of mindset is necessary that allows us to accept the true behavior of mobile objects subject to non-coaxial speed variations. The proposed dynamic allows us understand certain effects of rotating bodies. The application of these dynamic hypotheses to other fields of physics and technology will possibly allow new and suggestive advances in research, especially to bodies and systems with rotation in astrophysics and astronautics, allowing new dynamic working hypotheses.展开更多
This paper is an extract of the prologue to the book: New Paradigm in Physics—Theory of Dynamic Interactions [1], published by Gabriel Barceló. This summary describes the elements that constitute the characteris...This paper is an extract of the prologue to the book: New Paradigm in Physics—Theory of Dynamic Interactions [1], published by Gabriel Barceló. This summary describes the elements that constitute the characteristics of the Theory of Dynamic Interactions, and certain circumstances of it. The author recalls that the Theory of Dynamic Interactions arrives at unheard of conclusions which, even with the level of dissemination reached by this theory over recent years, have not been scientifically refuted.展开更多
This text comprises a brief description and summary of THE FLIGHT OF THE BOOMERANG, in which for the first time its author, Gabriel Barceló, presented the Theory of Dynamic Interactions in a book (2006). This boo...This text comprises a brief description and summary of THE FLIGHT OF THE BOOMERANG, in which for the first time its author, Gabriel Barceló, presented the Theory of Dynamic Interactions in a book (2006). This book proposes foundations for new hypotheses in rotational dynamics, which enable us to resolve issues that until today have been unthinkable, such as the anomalies of the Pioneer probes, the essence of dark matter, or the true structure of the cosmos. The Theory of Dynamic Interactions, is a conceptual structure that studies the behavior of rigid solid bodies endowed with angular momentum.展开更多
On Volume 2, Number 7, June 2014 of this Journal of Applied Mathematics and Physics, I proposed a new interpretation of the dynamic behavior of the boomerang and, in general, of the rigid bodies exposed to simultaneou...On Volume 2, Number 7, June 2014 of this Journal of Applied Mathematics and Physics, I proposed a new interpretation of the dynamic behavior of the boomerang and, in general, of the rigid bodies exposed to simultaneous non-coaxial rotations. I proposed the boomerang as a paradigmatic example of bodies in rotation. Accordingly, I propose a new Theory of Dynamic Interactions. The aim of this paper is to present an audiovisual of the Theory of Dynamic Interactions, and the dynamic behavior of the boomerang, as an extension of the referred paper, asserting that the boomerang is a clear example of the application of this theory.展开更多
We propose a new interpretation of the dynamic behavior of the boomerang and, in general, of the rigid bodies exposed to simultaneous non-coaxial rotations. We have developed a new rotational non-inertial dynamics hyp...We propose a new interpretation of the dynamic behavior of the boomerang and, in general, of the rigid bodies exposed to simultaneous non-coaxial rotations. We have developed a new rotational non-inertial dynamics hypothesis, which can be applied to understand both the flight of the boomerang as well as celestial mechanics. The boomerang is a particularly significant, intriguing and widely known case of bodies in rotation. We have analyzed the velocity and acceleration fields generated when rigid bodies are exposed to successive torques, in order to assess new criteria for this speed coupling. In this context, reactions and inertial fields that cannot be justified by means of classical mechanics take place. Accordingly, we propose a new Theory of Dynamic Interactions. We believe that the results obtained will enable us to conceive a new perspective in dynamics, unknown to date. After carrying out ample research, we have come to the conclusion that there still exists an unstructured scientific area in non-inertial dynamics systems subject to rotational accelerations. The aim of this paper is to present information of the surprising results obtained and to attract interest in research into dynamic field systems accelerated by rotation, and the multiple and remarkable scientific applications arising thereof. We further propose the boomerang as a clear example of the application of the Theory of Dynamic Interactions.展开更多
This paper describes the theses that constitute the Theory of Dynamic In-teractions. It is the scientific legacy of its promoter, Dr. Barceló who, after more than forty years developing this research project, has...This paper describes the theses that constitute the Theory of Dynamic In-teractions. It is the scientific legacy of its promoter, Dr. Barceló who, after more than forty years developing this research project, has published his first book in the English language: New Paradigm in Physics. This book, as well as the bibliography and videos on this dynamic theory, is described in this article, which analyzes the behavior of rigid bodies subjected to accelerations by rotational movements, contributing new hypotheses of dynamic behavior.展开更多
The theory of dynamic interactions suggests a new paradigm of mechanics and initiates us into a new area of knowledge, hitherto undeveloped. In this paper, we describe the innovations that this theory brings to physic...The theory of dynamic interactions suggests a new paradigm of mechanics and initiates us into a new area of knowledge, hitherto undeveloped. In this paper, we describe the innovations that this theory brings to physics, and in particular, the ideas expressed on new book by Doctor Barceló: New paradigm in physics. It is necessary to analyse the incorporation into mechanics not only of knowledge about bodies with inertial movement, but also that of non-inertial systems. It is necessary a new structure of knowledge that can incorporate both inertial and accelerated systems. On this paper we referred to the main innovations and novel ideas proposed by Doctor Barceló on his new book, in relation to the rotational dynamics.展开更多
In this paper, we present evidence to show that the dynamics of rigid solid bodies is not a closed discipline, particularly in the field of rotational dynamics. From the observation of bodies with intrinsic rotation i...In this paper, we present evidence to show that the dynamics of rigid solid bodies is not a closed discipline, particularly in the field of rotational dynamics. From the observation of bodies with intrinsic rotation in our universe, our research group proposes new dynamic hypotheses that explain the behaviour observed when these bodies are subject to new simultaneous non-coaxial rotations. A new gyroscopic conical pendulum was designed for this purpose. Experimental tests initially conducted with this new gyroscopic conical pendulum were repeated for their recording on video, which accompanied this paper for better understanding thereof. These experimental tests positively confirm the new Theory of Dynamic Interactions, and its dynamic laws, which help us to understand the behaviour of this pendulum and, in general, that of the baryonic mass when it is subject to non-coaxial simultaneous rotations. It thus provides a better understanding of the nature and the dynamic behaviour of our universe.展开更多
Based on a new interpretation on the behavior of rigid bodies exposed to simultaneous non-coaxial rotations, we have developed a hypothesis: the Theory of Dynamics Interactions, which can be applied to understand cele...Based on a new interpretation on the behavior of rigid bodies exposed to simultaneous non-coaxial rotations, we have developed a hypothesis: the Theory of Dynamics Interactions, which can be applied to understand celestial mechanics. We have analyzed the velocity and acceleration fields generated in a rigid body with intrinsic angular momentum, when exposed to successive torques, to assess new criteria for this speeds coupling. In this context, reactions and inertial fields take place, which cannot be justified by means of classical mechanics. We believe that the results obtained after the analysis of dynamics fields systems accelerated by rotation will allow us to conceive a new perspective in celestial dynamics, astrometry, stellar dynamics and galactic astronomy, unknown up to date. After carrying out ample research, we have come to the conclusion that there still exists an unstructured scientific area under the present general assumptions and, more specifically, in the area of dynamic systems submitted to rotational accelerations. The aim of this paper is to present information of the surprising results obtained, and to attract the interest towards the investigation of this new area of knowledge in rotational non-inertial dynamics, and its multiple and remarkable scientific applications.展开更多
Even today, with the great progress that has been made in the scientific, technological and computational fields, we are still stunned by the devastating effects brought about by atmospheric phenomena. This paper aims...Even today, with the great progress that has been made in the scientific, technological and computational fields, we are still stunned by the devastating effects brought about by atmospheric phenomena. This paper aims to propose new hypotheses in the field of dynamics to enhance our understanding of the behaviour of atmospheric disturbances caused by rotating winds. I believe that the criteria of classical dynamics that are applied to vortex systems in the atmosphere should be rigorously reviewed. I propose to establish new hypotheses in the field of dynamics, in order to better interpret rotation in nature. These hypotheses have been structured into a new theory that has been tested experimentally by both ourselves and third parties, with positive results. I propose to use the Theory of Dynamic Interactions (TDI) to interpret the behaviour of systems undergoing successive rotations around different axes—which we will refer to as non-coaxial rotations. I hold that this theory applies to air masses and groups of particles in suspension that are accelerated by rotations. Accordingly, it should be used to interpret the behaviour of tornadoes, cyclones and hurricanes. I believe that this proposal could enhance our understanding of these atmospheric phenomena and improve predictions about them.展开更多
The aim of this paper is to present the laws of motion that can be derived from the Theory of Dynamic Interactions, and of its multiple and significant scientific applications. Based on a new interpretation on the beh...The aim of this paper is to present the laws of motion that can be derived from the Theory of Dynamic Interactions, and of its multiple and significant scientific applications. Based on a new interpretation on the behaviour of rigid bodies exposed to simultaneous non-coaxial rotations, we have developed a hypothesis regarding the dynamic behaviour of these bodies. From these hypotheses and following the observation of the behaviour of free bodies in space, we have developed axioms and a mathematical-physical model. Consequently, we have deduced a movement equation, coherent with the hypotheses and the observed behaviour. This dynamic model, in the case of rigid solid bodies or systems, allows putting forward a series of laws and corollaries in relation to its dynamic performance. These laws have subsequently been confirmed by experimental tests. The whole of this research constitutes a rational and conceptual structure which we have named Theory of Dynamic Interactions (TID). This logical deductive system allows predicting the behaviour of solid bodies subject to multiple accelerations by rotation. In the conclusions, we underline that coherence has been obtained between the principles and axioms, the developed physical-mathematical model, the obtained movement equation, the deduced laws and the realised experimental tests.展开更多
The importance of developing new technologies to obtain energy by means of nuclear fusion procedures is beyond question. There are several different and technically possible models for doing this, though to date none ...The importance of developing new technologies to obtain energy by means of nuclear fusion procedures is beyond question. There are several different and technically possible models for doing this, though to date none of these has been able to attain an industrial reactor with an end performance greater than unity. We still find ourselves at the initial phase, after many years, as a result of having failed as yet to come up with a commercially productive machine. Nuclear fusion research has defined a prototype reactor based on a fluid conductor, isolated materially in a physical container and confined by means of magnetic fields. In this fluid-plasma which interacts with magnetic fields, fusion reactions are caused that release energy, while at the same time a quantity of movement and angular momentum is moved or “rotated” and transported. However, turbulence is caused in these magnetic confinement fusion processes that reduces system efficiency and prevents the obtaining of sufficient net energy from the nuclear reactions. This paper aims to propose new dynamic hypotheses to enhance our understanding of the behaviour of the plasma in the reactor. In doing so, we put forward a profound revision of classical dynamics. After over thirty years studying rotational dynamics, we propose a new theory of dynamic interactions to better interpret nature in rotation. This new theory has been tested experimentally returning positive results, even by third parties. We suggest that these new dynamic hypotheses, which we hold applicable to particle systems accelerated by rotation, be used in the interpretation and design of fusion reactors. We believe that this proposal could, in addition to magnetic confinement, achieve confinement by simultaneous and compatible dynamic interaction. Accordingly, we are of the opinion that it would be possible to get better performance and results in the design of fusion reactors by way of simultaneous magnetic and dynamic interaction confinement.展开更多
We have developed a structure of dynamic knowledge for non-inertial systems, the so-called Theory of Dynamic Interactions (TDI) as a part of non-inertial dynamic knowledge, which incorporates a causal demonstration of...We have developed a structure of dynamic knowledge for non-inertial systems, the so-called Theory of Dynamic Interactions (TDI) as a part of non-inertial dynamic knowledge, which incorporates a causal demonstration of phenomena accelerated by rotation, which would complement Classical Mechanics. We believe that the TDI mathematical model that we propose is of great conceptual importance. In addition, we think that it is not only necessary to understand the dynamics of rotating bodies, but also to understand the dynamics of the cosmos, with bodies that orbit and with constantly recurring movements, which make possible systems that have been in dynamic equilibrium for centuries and are not in a process of unlimited expansion. We even believe that this new dynamic theory allows us a better understanding of our universe, and the matter from which it is made.展开更多
The Equivalence Principle put forward by Albert Einstein is currently undergoing comprehensive revision to determine its degree of accuracy. Notwithstanding, this principle refers to a very specific circumstance, as f...The Equivalence Principle put forward by Albert Einstein is currently undergoing comprehensive revision to determine its degree of accuracy. Notwithstanding, this principle refers to a very specific circumstance, as free-fall;thus in our opinion it cannot be generalised to any other movement in space. This paper refers to the dynamic hypotheses of moving rigid bodies and a particular, structured theory that would establish how such bodies behave when subject to different actions that oblige them to make successive, non-coaxial spins. With respect to bodies subject to acceleration by rotation, we understand that there are indications to identify the prior dynamic state of the moving object and that examples of a violation of the aforementioned Equivalence Principle can be deduced thereof. Based on the findings of this paper and the theory put forward herein, we suggest that an observer can identify the prior situation of absolute rest or absolute non-rotation of a body, thus leading to the conclusion that movement does not necessarily have to be a relative concept. The foregoing leads us to propose that the Equivalence Principle is fully valid for the situation put forward by Albert Einstein, but cannot be generalised to any dynamic situation.展开更多
Recent advances in dynamical climate prediction at the Institute of Atmospheric Physics, Chinese Academy of Sciences (IAP/CAS) during the last five years have been briefly described in this paper. Firstly, the second ...Recent advances in dynamical climate prediction at the Institute of Atmospheric Physics, Chinese Academy of Sciences (IAP/CAS) during the last five years have been briefly described in this paper. Firstly, the second generation of the IAP dynamical climate prediction system (IAP DCP-Ⅱ) has been described, and two sets of hindcast experiments of the summer rainfall anomalies over China for the periods of 1980-1994 with different versions of the IAP AGCM have been conducted. The comparison results show that the predictive skill of summer rainfall anomalies over China is improved with the improved IAP AGCM in which the surface albedo parameterization is modified. Furthermore, IAP DCP-II has been applied to the real-time prediction of summer rainfall anomalies over China since 1998, and the verification results show that IAP DCP-II can quite well capture the large scale patterns of the summer flood/drought situations over China during the last five years (1998-2002). Meanwhile, an investigation has demonstrated the importance of the atmospheric initial conditions on the seasonal climate prediction, along with studies on the influences from surface boundary conditions (e.g., land surface characteristics, sea surface temperature). Certain conclusions have been reached, such as, the initial atmospheric anomalies in spring may play an important role in the summer climate anomalies, and soil moisture anomalies in spring can also have a significant impact on the summer climate anomalies over East Asia. Finally, several practical techniques (e.g., ensemble technique, correction method, etc.), which lead to the increase of the prediction skill for summer rainfall anomalies over China, have also been illustrated. The paper concludes with a list of critical requirements needed for the further improvement of dynamical seasonal climate prediction.展开更多
文摘In this paper, I present evidence that there exists an unstructured area in the present general assumptions of classical mechanics, especially in case of rigid bodies exposed to simultaneous noncoaxial rotations. To address this, I propose dynamics hypotheses that lead to interesting results and numerous noteworthy scientific and technological applications. I constructed a new mathematical model in rotational field dynamics, and through this model, results based on a rational interpretation of the superposition of motions caused by torques were obtained. For this purpose, I analyze velocity and acceleration fields that are generated in an object with intrinsic angular momentum, and assessed new criteria for coupling velocities. In this context, I will discuss reactions and inertial fields that cannot be explained by classical mechanics. The experiments have been analyzed and explained in a video accompanying this text. I am not aware of any concurrent study on the subject and conclusions evidenced in this paper, preventing us from making additional theoretical com- parisons or indicate to the reader other sources to compare criteria.
文摘This paper presents the reference criteria of rotational dynamics of accelerated systems in the field of Rational Mechanics, exposing the differentiation between inertial and non-inertial dynamic systems, and describes the unique research project developed by Advanced Dynamics CB up to proposing the Theory of Dynamic Interactions. This paper aims to deliver a commentary on developments in the field of rotational dynamics. Professor Barceló proposes that in today’s physics, a change of mindset is necessary that allows us to accept the true behavior of mobile objects subject to non-coaxial speed variations. The proposed dynamic allows us understand certain effects of rotating bodies. The application of these dynamic hypotheses to other fields of physics and technology will possibly allow new and suggestive advances in research, especially to bodies and systems with rotation in astrophysics and astronautics, allowing new dynamic working hypotheses.
文摘This paper is an extract of the prologue to the book: New Paradigm in Physics—Theory of Dynamic Interactions [1], published by Gabriel Barceló. This summary describes the elements that constitute the characteristics of the Theory of Dynamic Interactions, and certain circumstances of it. The author recalls that the Theory of Dynamic Interactions arrives at unheard of conclusions which, even with the level of dissemination reached by this theory over recent years, have not been scientifically refuted.
文摘This text comprises a brief description and summary of THE FLIGHT OF THE BOOMERANG, in which for the first time its author, Gabriel Barceló, presented the Theory of Dynamic Interactions in a book (2006). This book proposes foundations for new hypotheses in rotational dynamics, which enable us to resolve issues that until today have been unthinkable, such as the anomalies of the Pioneer probes, the essence of dark matter, or the true structure of the cosmos. The Theory of Dynamic Interactions, is a conceptual structure that studies the behavior of rigid solid bodies endowed with angular momentum.
文摘On Volume 2, Number 7, June 2014 of this Journal of Applied Mathematics and Physics, I proposed a new interpretation of the dynamic behavior of the boomerang and, in general, of the rigid bodies exposed to simultaneous non-coaxial rotations. I proposed the boomerang as a paradigmatic example of bodies in rotation. Accordingly, I propose a new Theory of Dynamic Interactions. The aim of this paper is to present an audiovisual of the Theory of Dynamic Interactions, and the dynamic behavior of the boomerang, as an extension of the referred paper, asserting that the boomerang is a clear example of the application of this theory.
文摘We propose a new interpretation of the dynamic behavior of the boomerang and, in general, of the rigid bodies exposed to simultaneous non-coaxial rotations. We have developed a new rotational non-inertial dynamics hypothesis, which can be applied to understand both the flight of the boomerang as well as celestial mechanics. The boomerang is a particularly significant, intriguing and widely known case of bodies in rotation. We have analyzed the velocity and acceleration fields generated when rigid bodies are exposed to successive torques, in order to assess new criteria for this speed coupling. In this context, reactions and inertial fields that cannot be justified by means of classical mechanics take place. Accordingly, we propose a new Theory of Dynamic Interactions. We believe that the results obtained will enable us to conceive a new perspective in dynamics, unknown to date. After carrying out ample research, we have come to the conclusion that there still exists an unstructured scientific area in non-inertial dynamics systems subject to rotational accelerations. The aim of this paper is to present information of the surprising results obtained and to attract interest in research into dynamic field systems accelerated by rotation, and the multiple and remarkable scientific applications arising thereof. We further propose the boomerang as a clear example of the application of the Theory of Dynamic Interactions.
文摘This paper describes the theses that constitute the Theory of Dynamic In-teractions. It is the scientific legacy of its promoter, Dr. Barceló who, after more than forty years developing this research project, has published his first book in the English language: New Paradigm in Physics. This book, as well as the bibliography and videos on this dynamic theory, is described in this article, which analyzes the behavior of rigid bodies subjected to accelerations by rotational movements, contributing new hypotheses of dynamic behavior.
文摘The theory of dynamic interactions suggests a new paradigm of mechanics and initiates us into a new area of knowledge, hitherto undeveloped. In this paper, we describe the innovations that this theory brings to physics, and in particular, the ideas expressed on new book by Doctor Barceló: New paradigm in physics. It is necessary to analyse the incorporation into mechanics not only of knowledge about bodies with inertial movement, but also that of non-inertial systems. It is necessary a new structure of knowledge that can incorporate both inertial and accelerated systems. On this paper we referred to the main innovations and novel ideas proposed by Doctor Barceló on his new book, in relation to the rotational dynamics.
文摘In this paper, we present evidence to show that the dynamics of rigid solid bodies is not a closed discipline, particularly in the field of rotational dynamics. From the observation of bodies with intrinsic rotation in our universe, our research group proposes new dynamic hypotheses that explain the behaviour observed when these bodies are subject to new simultaneous non-coaxial rotations. A new gyroscopic conical pendulum was designed for this purpose. Experimental tests initially conducted with this new gyroscopic conical pendulum were repeated for their recording on video, which accompanied this paper for better understanding thereof. These experimental tests positively confirm the new Theory of Dynamic Interactions, and its dynamic laws, which help us to understand the behaviour of this pendulum and, in general, that of the baryonic mass when it is subject to non-coaxial simultaneous rotations. It thus provides a better understanding of the nature and the dynamic behaviour of our universe.
文摘Based on a new interpretation on the behavior of rigid bodies exposed to simultaneous non-coaxial rotations, we have developed a hypothesis: the Theory of Dynamics Interactions, which can be applied to understand celestial mechanics. We have analyzed the velocity and acceleration fields generated in a rigid body with intrinsic angular momentum, when exposed to successive torques, to assess new criteria for this speeds coupling. In this context, reactions and inertial fields take place, which cannot be justified by means of classical mechanics. We believe that the results obtained after the analysis of dynamics fields systems accelerated by rotation will allow us to conceive a new perspective in celestial dynamics, astrometry, stellar dynamics and galactic astronomy, unknown up to date. After carrying out ample research, we have come to the conclusion that there still exists an unstructured scientific area under the present general assumptions and, more specifically, in the area of dynamic systems submitted to rotational accelerations. The aim of this paper is to present information of the surprising results obtained, and to attract the interest towards the investigation of this new area of knowledge in rotational non-inertial dynamics, and its multiple and remarkable scientific applications.
文摘Even today, with the great progress that has been made in the scientific, technological and computational fields, we are still stunned by the devastating effects brought about by atmospheric phenomena. This paper aims to propose new hypotheses in the field of dynamics to enhance our understanding of the behaviour of atmospheric disturbances caused by rotating winds. I believe that the criteria of classical dynamics that are applied to vortex systems in the atmosphere should be rigorously reviewed. I propose to establish new hypotheses in the field of dynamics, in order to better interpret rotation in nature. These hypotheses have been structured into a new theory that has been tested experimentally by both ourselves and third parties, with positive results. I propose to use the Theory of Dynamic Interactions (TDI) to interpret the behaviour of systems undergoing successive rotations around different axes—which we will refer to as non-coaxial rotations. I hold that this theory applies to air masses and groups of particles in suspension that are accelerated by rotations. Accordingly, it should be used to interpret the behaviour of tornadoes, cyclones and hurricanes. I believe that this proposal could enhance our understanding of these atmospheric phenomena and improve predictions about them.
文摘The aim of this paper is to present the laws of motion that can be derived from the Theory of Dynamic Interactions, and of its multiple and significant scientific applications. Based on a new interpretation on the behaviour of rigid bodies exposed to simultaneous non-coaxial rotations, we have developed a hypothesis regarding the dynamic behaviour of these bodies. From these hypotheses and following the observation of the behaviour of free bodies in space, we have developed axioms and a mathematical-physical model. Consequently, we have deduced a movement equation, coherent with the hypotheses and the observed behaviour. This dynamic model, in the case of rigid solid bodies or systems, allows putting forward a series of laws and corollaries in relation to its dynamic performance. These laws have subsequently been confirmed by experimental tests. The whole of this research constitutes a rational and conceptual structure which we have named Theory of Dynamic Interactions (TID). This logical deductive system allows predicting the behaviour of solid bodies subject to multiple accelerations by rotation. In the conclusions, we underline that coherence has been obtained between the principles and axioms, the developed physical-mathematical model, the obtained movement equation, the deduced laws and the realised experimental tests.
文摘The importance of developing new technologies to obtain energy by means of nuclear fusion procedures is beyond question. There are several different and technically possible models for doing this, though to date none of these has been able to attain an industrial reactor with an end performance greater than unity. We still find ourselves at the initial phase, after many years, as a result of having failed as yet to come up with a commercially productive machine. Nuclear fusion research has defined a prototype reactor based on a fluid conductor, isolated materially in a physical container and confined by means of magnetic fields. In this fluid-plasma which interacts with magnetic fields, fusion reactions are caused that release energy, while at the same time a quantity of movement and angular momentum is moved or “rotated” and transported. However, turbulence is caused in these magnetic confinement fusion processes that reduces system efficiency and prevents the obtaining of sufficient net energy from the nuclear reactions. This paper aims to propose new dynamic hypotheses to enhance our understanding of the behaviour of the plasma in the reactor. In doing so, we put forward a profound revision of classical dynamics. After over thirty years studying rotational dynamics, we propose a new theory of dynamic interactions to better interpret nature in rotation. This new theory has been tested experimentally returning positive results, even by third parties. We suggest that these new dynamic hypotheses, which we hold applicable to particle systems accelerated by rotation, be used in the interpretation and design of fusion reactors. We believe that this proposal could, in addition to magnetic confinement, achieve confinement by simultaneous and compatible dynamic interaction. Accordingly, we are of the opinion that it would be possible to get better performance and results in the design of fusion reactors by way of simultaneous magnetic and dynamic interaction confinement.
文摘We have developed a structure of dynamic knowledge for non-inertial systems, the so-called Theory of Dynamic Interactions (TDI) as a part of non-inertial dynamic knowledge, which incorporates a causal demonstration of phenomena accelerated by rotation, which would complement Classical Mechanics. We believe that the TDI mathematical model that we propose is of great conceptual importance. In addition, we think that it is not only necessary to understand the dynamics of rotating bodies, but also to understand the dynamics of the cosmos, with bodies that orbit and with constantly recurring movements, which make possible systems that have been in dynamic equilibrium for centuries and are not in a process of unlimited expansion. We even believe that this new dynamic theory allows us a better understanding of our universe, and the matter from which it is made.
文摘The Equivalence Principle put forward by Albert Einstein is currently undergoing comprehensive revision to determine its degree of accuracy. Notwithstanding, this principle refers to a very specific circumstance, as free-fall;thus in our opinion it cannot be generalised to any other movement in space. This paper refers to the dynamic hypotheses of moving rigid bodies and a particular, structured theory that would establish how such bodies behave when subject to different actions that oblige them to make successive, non-coaxial spins. With respect to bodies subject to acceleration by rotation, we understand that there are indications to identify the prior dynamic state of the moving object and that examples of a violation of the aforementioned Equivalence Principle can be deduced thereof. Based on the findings of this paper and the theory put forward herein, we suggest that an observer can identify the prior situation of absolute rest or absolute non-rotation of a body, thus leading to the conclusion that movement does not necessarily have to be a relative concept. The foregoing leads us to propose that the Equivalence Principle is fully valid for the situation put forward by Albert Einstein, but cannot be generalised to any dynamic situation.
基金supported by the Key P roject of the National N atural Science Foundation of China(Grant Nos:40233027 and 40221503)the Key Project of the Chinese Academy of Sciences(KZCX2-203)the IAP/CAS Knowledge Innovation Project.
文摘Recent advances in dynamical climate prediction at the Institute of Atmospheric Physics, Chinese Academy of Sciences (IAP/CAS) during the last five years have been briefly described in this paper. Firstly, the second generation of the IAP dynamical climate prediction system (IAP DCP-Ⅱ) has been described, and two sets of hindcast experiments of the summer rainfall anomalies over China for the periods of 1980-1994 with different versions of the IAP AGCM have been conducted. The comparison results show that the predictive skill of summer rainfall anomalies over China is improved with the improved IAP AGCM in which the surface albedo parameterization is modified. Furthermore, IAP DCP-II has been applied to the real-time prediction of summer rainfall anomalies over China since 1998, and the verification results show that IAP DCP-II can quite well capture the large scale patterns of the summer flood/drought situations over China during the last five years (1998-2002). Meanwhile, an investigation has demonstrated the importance of the atmospheric initial conditions on the seasonal climate prediction, along with studies on the influences from surface boundary conditions (e.g., land surface characteristics, sea surface temperature). Certain conclusions have been reached, such as, the initial atmospheric anomalies in spring may play an important role in the summer climate anomalies, and soil moisture anomalies in spring can also have a significant impact on the summer climate anomalies over East Asia. Finally, several practical techniques (e.g., ensemble technique, correction method, etc.), which lead to the increase of the prediction skill for summer rainfall anomalies over China, have also been illustrated. The paper concludes with a list of critical requirements needed for the further improvement of dynamical seasonal climate prediction.