期刊文献+
共找到19篇文章
< 1 >
每页显示 20 50 100
A review of biodegradable biliary stents made of magnesium metals:Current progress and future trends 被引量:2
1
作者 Ling Liu Tuo En Liu Tan To Cheung 《Journal of Magnesium and Alloys》 2025年第1期30-40,共11页
Biliary system,which is responsible for transporting bile from the liver into the intestine,is commonly damaged by inflammation or tumors eventually causing liver failure or death.The implantation of biliary stents ca... Biliary system,which is responsible for transporting bile from the liver into the intestine,is commonly damaged by inflammation or tumors eventually causing liver failure or death.The implantation of biliary stents can effectively alleviate both benign and malignant biliary strictures,but the plastic and metal stents that are currently used cannot degrade and nearly has no beneficial biological effects,therefore their long-term service can result into inflammation,the formation of sludges and re-obstruction of bile duct.In recent years,magnesium(Mg)metal has been received increasing attention in the field of biomedical application due to its excellent biocompatibility,adequate mechanical properties,biodegradability and other advantages,such as anti-inflammatory and anti-tumor properties.The research on biliary stents made of magnesium metals(BSMM)has also made significant progress and a series of experiments in vitro and vivo has proved their possibility.However,there are still some problems holding back BSMM’s clinical use,including rapid corrosion rate and potential harmful reaction.In this review,we would summarize the current research of BSMM,evaluate their clinical benefits,find the choke points,and discuss the solving method. 展开更多
关键词 Biliary stents Magnesium metals DEGRADATION Biological application
暂未订购
Analysis of Coordinated Steering Performance in Multi-wheel Landing Gears
2
作者 GUI Xiwen ZHANG Ming +2 位作者 SHI Xiazheng HU Tianyang XU Yuhan 《Transactions of Nanjing University of Aeronautics and Astronautics》 2025年第5期659-678,共20页
During aircraft ground steering,the nose landing gear(NLG)tires of large transport aircraft often experience excessive lateral loads,leading to sideslip.This compromises steering safety and accelerates tire wear.To ad... During aircraft ground steering,the nose landing gear(NLG)tires of large transport aircraft often experience excessive lateral loads,leading to sideslip.This compromises steering safety and accelerates tire wear.To address this issue,the rear landing gear is typically designed to steer in coordination with the nose wheels,reducing sideslip and improving maneuverability.This study examines how structural parameters and weight distribution affect the performance of coordinated steering in landing gear design for large transport aircraft.Using the C-5 transport aircraft as a case study,we develop a multi-wheel ground steering dynamics model,incorporating the main landing gear(MLG)deflection.A ground handling dynamics model is also established to evaluate the benefits of coordinated steering for rear MLG during steering.Additionally,the study analyzes the impact of structural parameters such as stiffness and damping on the steering performance of the C-5.It further investigates the effects of weight distribution,including the center-of-gravity(CG)height,the longitudinal CG position,and the mass asymmetry.Results show that when the C-5 employs coordinated steering for rear MLG,the lateral friction coefficients of the NLG tires decrease by 22%,24%,26%,and 27%.The steering radius is reduced by 29.7%,and the NLG steering moment decreases by 19%,significantly enhancing maneuverability.Therefore,in the design of landing gear for large transport aircraft,coordinated MLG steering,along with optimal structural and CG position parameters,should be primary design objectives.These results provide theoretical guidance for the design of multi-wheel landing gear systems in large transport aircraft. 展开更多
关键词 multi-wheel landing gear coordinated steering aircraft ground steering dynamics influence law analysis
在线阅读 下载PDF
Multi-objective optimization of aircraft design for emission and cost reductions 被引量:19
3
作者 Wang Yu Yin Hailian +1 位作者 Zhang Shuai Yu Xiongqing 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2014年第1期52-58,共7页
Pollutant gases emitted from the civil jet are doing more and more harm to the environ- ment with the rapid development of the global commercial aviation transport. Low environmental impact has become a new requiremen... Pollutant gases emitted from the civil jet are doing more and more harm to the environ- ment with the rapid development of the global commercial aviation transport. Low environmental impact has become a new requirement for aircraft design. In this paper, estimation method for emis- sion in aircraft conceptual design stage is improved based on the International Civil Aviation Orga- nization (ICAO) aircraft engine emissions databank and the polynomial curve fitting methods. The greenhouse gas emission (CO2 equivalent) per seat per kilometer is proposed to measure the emis- sions. An approximate sensitive analysis and a multi-objective optimization of aircraft design for tradeoff between greenhouse effect and direct operating cost (DOC) are performed with five geom- etry variables of wing configuration and two flight operational parameters. The results indicate that reducing the cruise altitude and Mach number may result in a decrease of the greenhouse effect but an increase of DOC. And the two flight operational parameters have more effects on the emissions than the wing configuration. The Pareto-optimal front shows that a decrease of 29.8% in DOC is attained at the expense of an increase of 10.8% in greenhouse gases. 展开更多
关键词 Aircraft design Direct Operating Cost(DOC) EMISSION Global warming potential(GWP) Greenhouse effect
原文传递
Integrated optimization on aerodynamics-structure coupling and flight stability of a large airplane in preliminary design 被引量:3
4
作者 Xiaozhe WANG Zhiqiang WAN +1 位作者 Zhu LIU Chao YANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2018年第6期1258-1272,共15页
The preliminary phase is significant during the whole design process of a large airplane because of its enormous potential in enhancing the overall performance. However, classical sequential designs can hardly adapt t... The preliminary phase is significant during the whole design process of a large airplane because of its enormous potential in enhancing the overall performance. However, classical sequential designs can hardly adapt to modern airplanes, due to their repeated iterations, long periods, and massive computational burdens. Multidisciplinary analysis and optimization demonstrates the capability to tackle such complex design issues. In this paper, an integrated optimization method for the preliminary design of a large airplane is proposed, accounting for aerodynamics, structure, and stability. Aeroelastic responses are computed by a rapid three-dimensional flight load analysis method combining the high-order panel method and the structural elasticity correction. The flow field is determined by the viscous/inviscid iteration method, and the cruise stability is evaluated by the linear small-disturbance theory. Parametric optimization is carried out using genetic algorithm to seek the minimal weight of a simplified plate-beam wing structure in the cruise trim condition subject to aeroelastic, aerodynamic, and stability constraints, and the optimal wing geometry shape, front/rear spar positions, and structural sizes are obtained simultaneously. To reduce the computational burden of the static aeroelasticity analysis in the optimization process, the Kriging method is employed to predict aerodynamic influence coefficient matrices of different aerodynamic shapes. The multidisciplinary analyses guarantee computational accuracy and efficiency, and the integrated optimization considers the coupling effect sufficiently between different disciplines to improve the overall performance, avoiding the limitations of sequential approaches utilized currently. 展开更多
关键词 Aeroelasticity Integrated optimization Multidisciptinary analysis Large airplane Preliminary design
原文传递
HYBRID AIRFOIL DESIGN FOR FULL-SCALE ICE ACCRETION TEST 被引量:2
5
作者 郭涛 朱程香 朱春玲 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2013年第2期139-144,共6页
A hybrid airfoil inverse design method according to the target pressure distribution and the impingement efficiency is presented.The method is developed to design hybrid airfoils that simulate the droplet impingement ... A hybrid airfoil inverse design method according to the target pressure distribution and the impingement efficiency is presented.The method is developed to design hybrid airfoils that simulate the droplet impingement and ice accretion of full-scale airfoil.Flow field and droplet impingement around the full-scale airfoil are calculated to obtain pressure distribution and impingement efficiency firstly.The Navier-Strokes(N-S)solver is used in flow field calculation to improve calculation precision.The droplet impingement and ice accretion on the airfoil are performed by FENSAP-ICE.Once the target chord or original airfoil is given,the hybrid airfoil geometries can be computed.The designed hybrid airfoil consists of full-scale leading edges and redesigned aft-section.The hybrid airfoil can be tested under full-scale conditions to produce full-scale ice accretion in the exiting icing tunnels which are too small to perform ice accretion testing of full-scale airfoils.Moreover,the ice shapes formed on the full-scale and hybrid airfoils are compared at various attack angles.The results demonstrate that ice shapes between hybrid and full-scale airfoils match well and the developed method is effective. 展开更多
关键词 hybrid airfoil pressure distribution droplet impingement ice accretion
在线阅读 下载PDF
Multi-scale strength analysis of bolted connections used in integral thermal protection system 被引量:12
6
作者 Heng LIANG Yuqing WANG +1 位作者 Mingbo TONG Junhua ZHANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2018年第8期1728-1740,共13页
Efficient and accurate strength analysis of bolted connections is essential in analyzing the integral thermal protection system(ITPS) of hypersonic vehicles, since the system bears severe loads and structural failur... Efficient and accurate strength analysis of bolted connections is essential in analyzing the integral thermal protection system(ITPS) of hypersonic vehicles, since the system bears severe loads and structural failures usually occur at the connections. Investigations of composite mechanical properties used in ITPS are still in progress as the architecture of the composites is complex. A new method is proposed in this paper for strength analysis of bolted connections by investigating the elastic behavior and failure strength of three-dimensional C/C orthogonal composites used in ITPS. In this method a multi-scale finite element method incorporating the global–local method is established to ensure high efficiency in macro-scale and precision in meso-scale in analysis.Simulation results reveal that predictions of material properties show reasonable accuracy compared with test results. And the multi-scale method can analyze the strength of connections efficiently and accurately. 展开更多
关键词 Bolted connection COMPOSITE Multi-scale method Strength analysis Thermal Protection System
原文传递
Training effectiveness evaluation of helicopter emergency relief based on virtual simulation 被引量:11
7
作者 Xue SUN Hu LIU +1 位作者 Guanghui WU Yaoming ZHOU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2018年第10期2000-2012,共13页
Helicopters are playing an increasingly important part in emergency relief, such as earthquake rescue, firefighting and medical transport. With the development of virtual simulation technology, virtual simulation-base... Helicopters are playing an increasingly important part in emergency relief, such as earthquake rescue, firefighting and medical transport. With the development of virtual simulation technology, virtual simulation-based training is widely used in the training of the helicopter crew especially for the dangerous and costly missions mentioned above. A complete training effectiveness evaluation method is proposed to evaluate the trainees' training effect based on virtual simulation in this paper. A key to this method is regarding the complicated process as a discrete event-activity flow system and establishing the evaluation indicator system. Then expert group and Analytical Network Process(ANP) are applied to determine the weight of indicators. When the training data are processed, there is a novel attempt to apply Fuzzy Comprehensive Evaluation(FCE) model to calculate the two categories of indicators. Eventually, an experiment and the analysis were carried out to validate the evaluation method. 展开更多
关键词 Analytical network process Emergency relief Fuzzy comprehensive evaluation HELICOPTER Training effectiveness evaluation Virtual simulation
原文传递
Team effectiveness evaluation and virtual reality scenario mapping model for helicopter emergency rescue 被引量:6
8
作者 Xue SUN Hu LIU +2 位作者 Yongliang TIAN Guanghui WU Yuan GAO 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2020年第12期3306-3317,共12页
The application of helicopter emergency rescue is becoming increasingly widespread,but the flight crew training in this area is still difficult due to high cost and risk.Nevertheless,with the development of Virtual Re... The application of helicopter emergency rescue is becoming increasingly widespread,but the flight crew training in this area is still difficult due to high cost and risk.Nevertheless,with the development of Virtual Reality(VR)technology,virtual simulation has become a significant role in crew training of helicopter rescue.During the implementation of VR-based training,how to transform complex real tasks into VR scenarios and how to evaluate the performance of crew are of great importance.To address these issues,a novel VR-based R-E-A-D(Report,Evaluate,Agree,Do)evaluation model for training is proposed,which is suitable for complex missions with multiple tasks,multiple scenarios,and multiple people.Then,a mapping method of VR scenarios is put forward,which can transform the real tasks into virtual scenarios to serve the virtual simulation training.Finally,an experiment is carried out to verify the feasibility of the evaluation method and virtual scenario mapping method. 展开更多
关键词 Helicopter emergency rescue Scenario mapping model Team effectiveness evaluation Virtual reality(VR) Virtual simulation-based training
原文传递
Numerical Simulation of Seaplane Wave Ground Effect with Crosswind 被引量:3
9
作者 LI Yanghui FU Xiaoqin +1 位作者 CHEN Jichang TONG Mingbo 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2021年第S01期1-9,共9页
Under the absolute coordinate system, the unsteady Reynolds averaged Navier-Stokes(URANS)equations and the k-ω SST turbulence model are solved using the finite volume method to simulate the aerodynamic characteristic... Under the absolute coordinate system, the unsteady Reynolds averaged Navier-Stokes(URANS)equations and the k-ω SST turbulence model are solved using the finite volume method to simulate the aerodynamic characteristics of large seaplane flying with the ground-effect above wavy surface. The velocity inlet wave-making method and the volume of fluid model are used to accurately simulate the linear regular waves and to precisely capture the free surface. This paper studies the influence of the sideslip angle on the aerodynamic characteristics of large seaplane when it is cruising above wavy water. The results show that the wave surface mainly affects the pressure distribution on the lower surface of the wing. When the sideslip angle varies from 0° to 8°,the varying of frequency of aerodynamic forces is consistent with the wave encounter frequency,and both periods are 0.6 s. With the increase of the sideslip angle,the lift coefficient and the pitching moment coefficient decrease. However,when the sideslip angle is smaller than 4°,the decrease amplitude is small,and the significant decrease occurs above 4° and during the whole process of the change of sideslip angle,the aerodynamic fluctuation amplitude is almost unchanged. As the drag coefficient increases with the increase of sideslip angle,significant increase also occurs when the value is greater than4°,and the fluctuation amplitude does not show any correlations. The rolling moment coefficient and yaw moment coefficient increase with the increase of the sideslip angle,and the fluctuation amplitudes of both increase linearly with the increase of the sideslip angle. 展开更多
关键词 two-phase flow wing-in-ground(WIG)effect volume of fluid(VOF)model velocity-inlet boundary wave maker
在线阅读 下载PDF
EVOLUTIONARY ALGORITHMS WITH PREFERENCE FOR MANUFACTURING CELLS FORMATION 被引量:2
10
作者 WANG Jianwei WEI Xiaopeng LI Rui 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2008年第1期111-115,共5页
Due to the combinatorial nature of cell formation problem and the characteristics of multi-objective and multi-constrain, a novel method of evolutionary algorithm with preference is proposed. The analytic hierarchy pr... Due to the combinatorial nature of cell formation problem and the characteristics of multi-objective and multi-constrain, a novel method of evolutionary algorithm with preference is proposed. The analytic hierarchy process (AHP) is adopted to determine scientifically the weights of the sub-objective functions. The satisfaction of constraints is considered as a new objective, the ratio of the population which doesn't satisfy all constraints is assigned as the weight of new objective. In addition, the self-adaptation of weights is applied in order to converge more easily towards the feasible domain. Therefore, both features multi-criteria and constrains are dealt with simultaneously. Finally, an example is selected from the literature to evaluate the performance of the proposed approach. The results validate the effectiveness of the proposed method in designing the manufacturing cells. 展开更多
关键词 Cell formation Genetic algorithm Cellular manufacturing PREFERENCE
在线阅读 下载PDF
Development of Composite Cellular Cores for Sandwich Panels Based on Folded Polar Quadra-Structures 被引量:2
11
作者 Valelltin Khaliulin Wang Zhijin Elena Gershtein 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2016年第5期519-528,共10页
An idea to develop a family of cellular cores for sandwich panels using a technology of prepreg folding is presented. Polar folded quadra structures are regarded as a geometric basis for these cores whose standard fra... An idea to develop a family of cellular cores for sandwich panels using a technology of prepreg folding is presented. Polar folded quadra structures are regarded as a geometric basis for these cores whose standard frag ment has lhe fourlh degree of axial symmelry. The classification of the polar strucluresaredeseribedanda method of various quadra slrueture synthesis is developed. A possibilily to provide high strength of lhe structure due m preservation of faces reinforcement pattern is presented. Arrangemen! of the plane core on a bi curvature surface is also introduced. Besides, provision of isotropyof the core in two or three directions are described. Finally, exam ples of cellular folded cores manufaclured from basalt reinforced plaslic are demonslrated. 展开更多
关键词 composite sandwich panel cellular core folded polar quadra-structure synthesis of cellular struclure quadra-struclure classification
在线阅读 下载PDF
Material Properties and Mold Folded Core Based on Ultra-violet Cured Resins 被引量:1
12
作者 Wang Zhijin Valentin Khaliulin +1 位作者 Vitality Kovalev Oskar Khamidullin 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2016年第5期529-535,共7页
Ultra-violet(UV)curing is an efficient method for composite molding.Firstly,thermophysical properties of UV cured glass-fiber reinforced plastics are conducted.Material properties are studied for various kinds of post... Ultra-violet(UV)curing is an efficient method for composite molding.Firstly,thermophysical properties of UV cured glass-fiber reinforced plastics are conducted.Material properties are studied for various kinds of postcuring modes.Then the UV curing method is suggested in manufacturing V-crimp folded core for sandwich panels.Two kinds of processing schemes for V-crimp folded core manufacturing using UV curing are presented.Finally,the effect of post-curing on the mechanical properties of folded core sandwiches is experimentally studied,and optimum modes of post-curing are determined.The experimental results show that the ultimate compressive strength of the folded sandwiches is increased by 60% after post-curing with the optimum post-curing mode. 展开更多
关键词 glass-fiber reinforced plastic composites ultra-violet(UV)curing V-crimp strength of folded core
在线阅读 下载PDF
Two-Way-Coupling Method for Rapid Aerothermoelastic Analyses of Hypersonic Wings 被引量:1
13
作者 Wan Zhiqiang Yi Nan +1 位作者 Li Guoshu Yang Chao 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2018年第1期135-145,共11页
Several types of coupling methods for resolving aerothermoelastic problems associated with hypersonic wings are summarized,and the appropriate coupling methods for engineering calculations are selected.Then,the calcul... Several types of coupling methods for resolving aerothermoelastic problems associated with hypersonic wings are summarized,and the appropriate coupling methods for engineering calculations are selected.Then,the calculation and analysis methods for the subdisciplines in this field are introduced,and the time step issue is discussed.A two-way-coupling rapid static aerothermoelastic method for analyzing hypersonic wings is proposed.This method considers thermal effects and is used to conduct an aerothermoelastic response analysis for a hypersonic wing.In addition,the aerodynamic force,heat flux,structural deformation and temperature field are obtained.The following three conclusions are drawn.First,the heating effect has a significant impact on the static aeroelastic response of hypersonic wings;therefore,thermal protection shields are essential.Second,the application of thermal protection shields reduces the differences in the calculation results between the one-and two-way-coupling methods.Third,hypersonic wings exhibit large thermal deformation under high-temperature environments,and in certain cases,the thermal deformation is even larger than the deformation caused by aerodynamic force. 展开更多
关键词 HYPERSONIC aerothermoelastic two-way-coupling aerodynamic HEATING thermal DEFORMATION
在线阅读 下载PDF
Simulation of SLD Impingement on Wind Turbine Blade Airfoil 被引量:1
14
作者 Zhu Chengxiang Zhu Chunling +1 位作者 Fu Bin ZhaoHuanyu 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2016年第1期112-120,共9页
Accurate prediction of droplet impingement on wind turbine blade is one of the most important premises of anti-icing and de-icing system design.In a super-cooled large droplets(SLD)conditions,droplet no longer maintai... Accurate prediction of droplet impingement on wind turbine blade is one of the most important premises of anti-icing and de-icing system design.In a super-cooled large droplets(SLD)conditions,droplet no longer maintains a sphere shape,and it may deform,break up,and splash when moving or impinging on the surface.Semi-empirical models of droplet dynamic behaviours are embedded into the Eulerian droplet model to improve the accuracy of the numerical simulation of droplet impingement limits and local collection efficiency.Eulerian droplet model(Model 1)for small droplets and improved Eulerian droplet model(Model 2)for large droplet are both validated by comparing to the wind tunnel experiment results.Using the proposed methods,droplet impingement limitation and local collection efficiency on the S809 airfoil are calculated in various conditions.A detailed derivation of Model 1and Model 2is presented along with a comparison of numerical trajectories,drag coefficient and collection efficiency distributions.The results show that droplet dynamic behaviours,including splashing,break-up and deforming,must be considered to accurately simulate the impingement behaviour in the SLD conditions.And with the increase of the droplet diameters,the effects of the droplet dynamic behaviors on the impingement characteristics are more obvious. 展开更多
关键词 wind turbine icing super large droplet droplet deformation SPLASH
在线阅读 下载PDF
AN EFFICIENT AND STABLE STRUCTURE PRESERVING ALGORITHM FOR COMPUTING THE EIGENVALUES OF A HAMILTONIAN MATRIX
15
作者 闫庆友 熊西文 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2002年第11期1292-1309,共18页
An efficient and stable structure preserving algorithm, which is a variant of the QR like (SR) algorithm due to Bunse-Gerstner and Mehrmann, is presented for computing the eigenvalues and stable invariant subspaces of... An efficient and stable structure preserving algorithm, which is a variant of the QR like (SR) algorithm due to Bunse-Gerstner and Mehrmann, is presented for computing the eigenvalues and stable invariant subspaces of a Hamiltonian matrix. In the algorithm two strategies are employed, one of which is called dis-unstabilization technique and the other is preprocessing technique. Together with them, a so-called ratio-reduction equation and a backtrack technique are introduced to avoid the instability and breakdown in the original algorithm. It is shown that the new algorithm can overcome the instability and breakdown at low cost. Numerical results have demonstrated that the algorithm is stable and can compute the eigenvalues to very high accuracy. 展开更多
关键词 Hamiltonian matrix QR like algorithm EIGENVALUE stability dis-unstabilization backtrack technique ratio-reduction
在线阅读 下载PDF
Trim Drag Prediction for Blended-Wing-Body UAV Configuration
16
作者 邓海强 余雄庆 +1 位作者 尹海莲 邓枫 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2015年第1期133-136,共4页
A rapid method of the trim drag prediction for the blended-wing-body unmanned aerial vehicle(UAV)configuration is proposed.The method consists of four steps.The first step is to parameterizedly model the blended-wing-... A rapid method of the trim drag prediction for the blended-wing-body unmanned aerial vehicle(UAV)configuration is proposed.The method consists of four steps.The first step is to parameterizedly model the blended-wing-body UAV configuration;the second is to analyze the aerodynamics of the geometric model;the third is to create aerodynamic surrogate model;and the final step is to predict the trim drag using the surrogate model.Hence,a tool for trim drag prediction is developed by integration of the four steps.The impacts of the allocation of control surfaces,position of gravity center and planform parameters on the trim drag are investigated by using the tool.Results show that using the control surface in outer wing for trim has an advantage of lower trim drag,and the position of gravity center has a primary impact on the trim drag.Moreover,the planform has secondary impacts on the trim drag. 展开更多
关键词 aerodynamic configuration blended-wing-body trim drag unmanned aerial vehicles(UAVs)
在线阅读 下载PDF
Dynamics Analysis of Water Ditching of Deformable Helicopter
17
作者 Sun Xuan Tong Mingbo Wang Zhengzhong 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2017年第6期720-732,共13页
To understand the effect of attitude angle on helicopter water ditching,a finite element model(FEM)of helicopter water ditching was established via the nonlinear finite element method.Based on the LS-DYNA software,the... To understand the effect of attitude angle on helicopter water ditching,a finite element model(FEM)of helicopter water ditching was established via the nonlinear finite element method.Based on the LS-DYNA software,the finite element model of the helicopter was established.Different attitude of helicopter water ditching was simulated and analysed.Three pressure measuring points were arranged in the aircraft belly area.The pressure curves were provided seperately.Finally,the effects of attitude on helicopter water ditching was discussed,particularly the stability and the overload of helicopter.Through the contours of stress,it can be figured out that the maximum pressure locates at the position of aircraft belly where stiffness is larger.Then simulation and experimental results were compared.The difference of peak acceleration along the Z direction was small.Therefore,this method is feasible and helpful for the design of helicopter water ditching. 展开更多
关键词 water ditching HELICOPTER LS-DYNA SPH method
在线阅读 下载PDF
Multi-objective optimization of a mixed-flow pump impeller using modified NSGA-II algorithm 被引量:35
18
作者 HUANG RenFang LUO XianWu +4 位作者 JI Bin WANG Peng YU An ZHAI ZhiHong ZHOU JiaJian 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2015年第12期2122-2130,共9页
In order to maintain a uniform distribution of pareto-front solutions, a modified NSGA-II algorithm coupled with a dynamic crowding distance(DCD) method is proposed for the multi-objective optimization of a mixed-flow... In order to maintain a uniform distribution of pareto-front solutions, a modified NSGA-II algorithm coupled with a dynamic crowding distance(DCD) method is proposed for the multi-objective optimization of a mixed-flow pump impeller. With the pump meridional section fixed, ten variables along the shroud and hub are selected to control the blade load by using a three-dimensional inverse design method. Hydraulic efficiency, along with impeller head, is applied as an optimization objective; and a radial basis neural network(RBNN) is adopted to approximate the objective function with 82 training samples. Local sensitivity analysis shows that decision variables have different impacts on the optimization objectives. Instead of randomly selecting one solution to implement, a technique for ordering preferences by similarity to ideal solution(TOPSIS) is introduced to select the best compromise solution(BCS) from pareto-front sets. The proposed method is applied to optimize the baseline model, i.e. a mixed- flow waterjet pump whose specific speed is 508 min?1?m3s?1?m. The performance of the waterjet pump was experimentally tested. Compared with the baseline model, the optimized impeller has a better hydraulic efficiency of 92% as well as a higher impeller head at the design operation point. Furthermore, the off-design performance is improved with a wider highefficiency operation range. After optimization, velocity gradients on the suction surface are smoother and flow separations are eliminated at the blade inlet part. Thus, the authors believe the proposed method is helpful for optimizing the mixed-flow pumps. 展开更多
关键词 mixed-flow pump waterjet pump multi-objective optimization numerical simulation modified NSGA-II
原文传递
Sticker DNA computer model ——PartⅡ: Application 被引量:6
19
作者 XU Jin LI Sanping +1 位作者 DONG Yafei WEI Xiaopeng 《Chinese Science Bulletin》 SCIE EI CAS 2004年第9期863-871,共9页
Sticker model is one of the basic models in the DNA computer models. This model is coded with sin-gle-double stranded DNA molecules. It has the following advantages that the operations require no strands extension and... Sticker model is one of the basic models in the DNA computer models. This model is coded with sin-gle-double stranded DNA molecules. It has the following advantages that the operations require no strands extension and use no enzymes; What抯 more, the materials are reusable. Therefore, it arouses attention and interest of scientists in many fields. In this paper, we extend and improve the sticker model, which will be definitely beneficial to the construction of DNA computer. This paper is the second part of our series paper, which mainly focuses on the application of sticker model. It mainly consists of the following three sections: the matrix representation of sticker model is first presented; then a brief review of the past research on graph and com-binatorial optimization, such as the minimal set covering problem, the vertex covering problem, Hamiltonian path or cycle problem, the maximal clique problem, the maximal independent problem and the Steiner spanning tree problem, is described; Finally a DNA algorithm for the graph iso-morphic problem based on the sticker model is given. 展开更多
关键词 DNA计算机模型 组合优化 k位粘连模型 矩阵表示 同构
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部