China Standardization:As one of the founders for CESIP,what's your original intention of building such an information platform?Chen Gang:Originally,we intended to"build a platform to serve enterprises and fac...China Standardization:As one of the founders for CESIP,what's your original intention of building such an information platform?Chen Gang:Originally,we intended to"build a platform to serve enterprises and facilitate trade".Regarding the China-Europe trade,we get to know that most enterprises,especially SMEs,have limited accesses to technical regulations and standards information of both sides,which may be primarily attributed to the absence of favorable channel for such information.Therefore,we start to build up the bilingual standards information platform based on modern information techonology.展开更多
The third International Standardization Youth Star Competition is held in Qingdao.We are very pleased to see that 236 teams from renowned domestic universities are actively participating in the competition.ISO has als...The third International Standardization Youth Star Competition is held in Qingdao.We are very pleased to see that 236 teams from renowned domestic universities are actively participating in the competition.ISO has also sent a representative to Qingdao,demonstrating its high level of attention and support for the competition.展开更多
This study presents a comprehensive analysis of 132 tornadic events in northeastern China from 2004 to 2023,utilizing radar and ERA5 reanalysis data to investigate the climatology,environmental drivers,and synoptic li...This study presents a comprehensive analysis of 132 tornadic events in northeastern China from 2004 to 2023,utilizing radar and ERA5 reanalysis data to investigate the climatology,environmental drivers,and synoptic linkages with Northeast China cold vortices(NCCVs)of tornadic storms under different convective modes.Results reveal that discrete storms account for 70%of events,with clustered cells(CC)being the most frequent mode,while significant tornadoes(EF2+)are primarily associated with isolated cells(IC)and broken lines(BL).The storm mode distribution in northeastern China resembles that of the central United States but with a higher proportion of CC and lower IC.In contrast,southern China exhibits a higher frequency of quasi-linear(QL)modes(>50%),similar to European patterns.Although no single parameter clearly differentiates between all tornado modes,distinct morphological characteristics emerge through specific parameter combinations:NL modes are characterized by high 0-1 km storm-relative helicity(SRH1)and humidity but low 0-6 km shear(SR6),whereas IC modes display contrasting features with low SRH1 and high CAPE.Notably,83%of tornadoes are associated with NCCVs,preferentially forming in southeastern/southwestern quadrants.Strong tornadoes favor southeastern quadrants,while NCCV intensity correlates with tornadic distance from vortex centers.Three characteristic synoptic configurations emerge:(T1)strong deep vortices with vertically aligned cold troughs,generating southeast-dominant tornado clusters characterized by a high proportion of BL and QL modes;(T2)weaker vortices featuring sub-synoptic troughs,with southern-distributed events dominated by a predominance of the CC mode;(T3)transverse-trough systems exhibiting CAPE-SRH decoupling and reduced tornadic activity.This study enhances our understanding of tornadoes in northeastern China,informing future research on formation mechanisms,prediction methods,and disaster prevention strategies.展开更多
Dendritic spines are small protrusions along dendrites that contain most of the excitatory synapses in principal neurons,playing a crucial role in neuronal function by creating a compartmentalized environment for sign...Dendritic spines are small protrusions along dendrites that contain most of the excitatory synapses in principal neurons,playing a crucial role in neuronal function by creating a compartmentalized environment for signal transduction.The plasticity of spine morphologies provides a tunable handle to regulate calcium signal dynamics,allowing rapid regulation of protein expression necessary to establish and maintain synapses(Cornejo et al.,2022).If excitatory inputs were to be located primarily on dendritic shafts,dendrites would frequently short-circuit,preventing voltage signals from propagating(Cornejo et al.,2022).It is thus not surprising that the structural plasticity of dendritic spines is closely linked to synaptic plasticity and memory formation(Berry and Nedivi,2017).While comprehensive in vitro studies have been conducted,in vivo studies that directly tackle the mechanism of dendritic transport and translation in regulating spine plasticity spatiotemporally are limited.展开更多
Chemical exchange saturation transfer magnetic resonance imaging is an advanced imaging technique that enables the detection of compounds at low concentrations with high sensitivity and spatial resolution and has been...Chemical exchange saturation transfer magnetic resonance imaging is an advanced imaging technique that enables the detection of compounds at low concentrations with high sensitivity and spatial resolution and has been extensively studied for diagnosing malignancy and stroke.In recent years,the emerging exploration of chemical exchange saturation transfer magnetic resonance imaging for detecting pathological changes in neurodegenerative diseases has opened up new possibilities for early detection and repetitive scans without ionizing radiation.This review serves as an overview of chemical exchange saturation transfer magnetic resonance imaging with detailed information on contrast mechanisms and processing methods and summarizes recent developments in both clinical and preclinical studies of chemical exchange saturation transfer magnetic resonance imaging for Alzheimer’s disease,Parkinson’s disease,multiple sclerosis,and Huntington’s disease.A comprehensive literature search was conducted using databases such as PubMed and Google Scholar,focusing on peer-reviewed articles from the past 15 years relevant to clinical and preclinical applications.The findings suggest that chemical exchange saturation transfer magnetic resonance imaging has the potential to detect molecular changes and altered metabolism,which may aid in early diagnosis and assessment of the severity of neurodegenerative diseases.Although promising results have been observed in selected clinical and preclinical trials,further validations are needed to evaluate their clinical value.When combined with other imaging modalities and advanced analytical methods,chemical exchange saturation transfer magnetic resonance imaging shows potential as an in vivo biomarker,enhancing the understanding of neuropathological mechanisms in neurodegenerative diseases.展开更多
Background:Panacis Quinquefolii Radix(PQR)is known for its ability to nourish“Qi”(it serves as the driving force for the functional activities of the body’s organs and meridians,promoting and regulating various phy...Background:Panacis Quinquefolii Radix(PQR)is known for its ability to nourish“Qi”(it serves as the driving force for the functional activities of the body’s organs and meridians,promoting and regulating various physiological functions)and“Yin”(it represents the material foundation of the human body.It plays a role in nourishing,moistening,and cooling the body).Notoginseng Radix et Rhizoma(NRR)is recognized for its properties of resolving blood stasis(it refers to a pathological condition characterized by impaired or stagnant blood circulation within the body).Changes in the compatibility ratio of these herbs often lead to variations in their chemical composition and efficacy.However,the specific alterations in chemical composition and efficacy resulting from compatibility adjustments remain unclear.We aimed to compare the material basis and their effects of different compatibility ratios of PQR and NRR on“Qi”deficiency and blood stasis syndrome(QBS).Methods:This study employed UPLC-Q/TOF-MS to identify effective compounds in the compatibility of PQR and NRR and utilized UPLC-TQ-MS/MS to analyze the dissolution of 16 saponins in PQR and NRR at 9 different ratios.A rat model of QBS was established,and the efficacy of PQR and NRR in treating this syndrome was assessed using hemorheology and coagulation analyses.Results:The study results show that PQR and NRR exhibit significant efficacy,effectively reducing blood viscosity induced by platelet aggregation and lowering inflammatory markers such as IL-6,IL-10,TXB2 and ET associated with vascular injury.Moreover,this combination regulates ATP and ADP levels,enhances energy metabolism,and promotes overall health.A total of 104 compounds in the compatibility of PQR and NRR were identified.The ratios of 1:2 and 1:3 showed the highest total saponin content,but the ratio of 1:1 demonstrated a superior pharmacological effect for the treatment of QBS.Conclusion:In summary,the compatibility of PQR and NRR not only shows the complex interactions between traditional Chinese medicinal materials,but also provides a new idea and method for the treatment of QBS.展开更多
Mitochondrial dysfunction and oxidative stress are widely regarded as primary drivers of aging and are associated with several neurodegenerative diseases.The degeneration of motor neurons during aging is a critical pa...Mitochondrial dysfunction and oxidative stress are widely regarded as primary drivers of aging and are associated with several neurodegenerative diseases.The degeneration of motor neurons during aging is a critical pathological factor contributing to the progression of sarcopenia.However,the morphological and functional changes in mitochondria and their interplay in the degeneration of the neuromuscular junction during aging remain poorly understood.A defined systematic search of the Pub Med,Web of Science and Embase databases(last accessed on October 30,2024)was conducted with search terms including'mitochondria','aging'and'NMJ'.Clinical and preclinical studies of mitochondrial dysfunction and neuromuscular junction degeneration during aging.Twentyseven studies were included in this systematic review.This systematic review provides a summary of morphological,functional and biological changes in neuromuscular junction,mitochondrial morphology,biosynthesis,respiratory chain function,and mitophagy during aging.We focus on the interactions and mechanisms underlying the relationship between mitochondria and neuromuscular junctions during aging.Aging is characterized by significant reductions in mitochondrial fusion/fission cycles,biosynthesis,and mitochondrial quality control,which may lead to neuromuscular junction dysfunction,denervation and poor physical performance.Motor nerve terminals that exhibit redox sensitivity are among the first to exhibit abnormalities,ultimately leading to an early decline in muscle strength through impaired neuromuscular junction transmission function.Parg coactivator 1 alpha is a crucial molecule that regulates mitochondrial biogenesis and modulates various pathways,including the mitochondrial respiratory chain,energy deficiency,oxidative stress,and inflammation.Mitochondrial dysfunction is correlated with neuromuscular junction denervation and acetylcholine receptor fragmentation,resulting in muscle atrophy and a decrease in strength during aging.Physical therapy,pharmacotherapy,and gene therapy can alleviate the structural degeneration and functional deterioration of neuromuscular junction by restoring mitochondrial function.Therefore,mitochondria are considered potential targets for preserving neuromuscular junction morphology and function during aging to treat sarcopenia.展开更多
Background:Acute kidney injury(AKI),characterized by rapid renal dysfunction(KDIGO 2022 criteria:48-hour doubling of serum creatinine or<0.5 mL/kg/h urine output for>6 h),affects 13.3 million people annually wit...Background:Acute kidney injury(AKI),characterized by rapid renal dysfunction(KDIGO 2022 criteria:48-hour doubling of serum creatinine or<0.5 mL/kg/h urine output for>6 h),affects 13.3 million people annually with>20%mortality.Its progression involves metabolic imbalances,toxin accumulation,and multiorgan failure,often culminating in chronic kidney disease.Current therapies(fluid resuscitation,diuretics,renal replacement therapy)remain limited.Inflammation drives AKI pathogenesis:renal insults(ischemia,toxins)trigger tubular cell release of pro-inflammatory mediators(TNF-α,IL-1β,IL-6),activating neutrophil gelatinase-associated lipocalin(NGAL)and dysregulating P38 MAPK/ERK pathways.This cascade promotes leukocyte infiltration,oxidative stress,and apoptosis,exacerbating renal damage.Ononin,a flavonoid from Astragali Radix,shows multi-target potential by suppressing pro-inflammatory cytokines,modulating signaling,and mitigating oxidative stress.Its dual anti-inflammatory/antioxidant properties position it as a promising candidate for AKI intervention.Exploring the ameliorative effect of ononin on the inflammatory response Ameliorative effect of ononin on the inflammatory response in doxorubicin-induced AKI mice.Methods:We used network pharmacology to explore ononin’s target molecules and AKI-related disease molecules,identified their intersections,and predicted potential mechanisms via enrichment analysis,followed by molecular docking verification.For in-vivo validation,50 mice were randomly divided into five groups(n=10/group):Control,Model,Ononin-L(15 mg/kg),Ononin-H(60 mg/kg),and Dexamethasone(2.6 mg/kg).An AKI model was established by intravenous tail-vein injection of Doxorubicin(15 mg/kg).Samples were collected 12 h post-induction.We calculated the renal coefficient,examined renal histopathology using hematoxylin and eosin(HE),periodic acid-Schiff(PAS),and Masson’s trichrome(MASSON)staining,and observed mitochondrial morphology by electron microscopy(EM).ELISA was used to measure NGAL,serum creatinine(Scr),and blood urea nitrogen(BUN)levels in serum.Immunofluorescence(IF)evaluated the expression of P-P38,P-ERK,NGAL,and KIM-1 in renal tissues.RT-qPCR assessed the gene expression of pro-inflammatory cytokines,MAPK pathway components,and renal injury markers in kidney tissues.Western Blot(WB)quantified P-P38,P38 MAPK,P-ERK,ERK,NGAL,and KIM-1 in renal tissues.Results:Network pharmacology analysis suggested that ononin could attenuate AKI through its anti-inflammatory properties and regulation of the MAPK signaling pathway.The Model group exhibited a significantly elevated renal coefficient(P<0.05),severe histopathological damage,and mitochondrial dysfunction compared to controls.Serum levels of NGAL,Scr,and BUN were markedly increased(P<0.05),indicating impaired renal function.Enhanced fluorescence signals of P-P38 MAPK,P-ERK,NGAL,and KIM-1 suggested activation of MAPK pathways and renal injury.Upregulation of pro-inflammatory cytokines(IL-1β,IL-6,TNF-α)and MAPK-related genes(P38 MAPK,ERK)alongside injury markers(NGAL,KIM-1)(P<0.05).Increased ratios of phosphorylated-to-total proteins(P-P38/P38,P-ERK/ERK)and elevated NGAL/KIM-1 protein levels confirmed pathway dysregulation.Treatment significantly reduced the renal coefficient(P<0.05),attenuated histological damage,and restored mitochondrial integrity.NGAL,Scr,and BUN levels were lowered,reflecting functional recovery.Diminished fluorescence intensities of P-P38,P-ERK,NGAL,and KIM-1 indicated suppression of injury pathways.Downregulation of inflammatory cytokines(IL-1β,IL-6,TNF-α),MAPK components(P38 MAPK,ERK),and injury markers(NGAL,KIM-1)(P<0.05).Reduced phosphorylation ratios(P-P38/P38,P-ERK/ERK)and decreased NGAL/KIM-1 protein expression demonstrated therapeutic efficacy.Conclusion:Ononin ameliorates inflammatory responses in AKI mice via the P38 MAPK/ERK pathway.展开更多
Alzheimer's disease is the primary cause of dementia and imposes a significant socioeconomic burden globally.Physical exercise,as an effective strategy for improving general health,has been largely reported for it...Alzheimer's disease is the primary cause of dementia and imposes a significant socioeconomic burden globally.Physical exercise,as an effective strategy for improving general health,has been largely reported for its effectiveness in slowing neurodegeneration and increasing brain functional plasticity,particularly in aging brains.However,the underlying mechanisms of exercise in cognitive aging remain largely unclear.Adiponectin,a cell-secreted protein hormone,has recently been found to regulate synaptic plasticity and mediate the antidepressant effects of physical exercise.Studies on the neuroprotective effects of adiponectin have revealed potential innovative treatments for Alzheimer's disease.Here,we reviewed the functions of adiponectin and its receptor in the brains of human and animal models of cognitive impairment.We summarized the role of adiponectin in Alzheimer's disease,focusing on its impact on energy metabolism,insulin resistance,and inflammation.We also discuss how exercise increases adiponectin secretion and its potential benefits for learning and memory.Finally,we highlight the latest research on chemical compounds that mimic exerciseenhanced secretion of adiponectin and its receptor in Alzheimer's disease.展开更多
Background:Baicalin(BC)and geniposide(GD)are effective components of natural remedies,and studies have shown that they protect against cerebral ischemic stroke(CIS).Transient receptor potential vanilloid 4(TRPV4)is a ...Background:Baicalin(BC)and geniposide(GD)are effective components of natural remedies,and studies have shown that they protect against cerebral ischemic stroke(CIS).Transient receptor potential vanilloid 4(TRPV4)is a calcium-permeable channel that plays important roles in vascular function and vasodilation.However,no studies are available on the effect of BC/GD on the TRPV4 channel and rat cerebral basilar artery(CBA).This study examined the effect of the combination of BC/GD(7:3)on cerebral vascular function after CIS.Methods:We used western blotting to determine TRPV4 protein levels and live cell fluorescence Ca 2+imaging and patch clamp to determine how BC/GD activates TRPV4 channels.Isolated vessel experiments were used to observe the dilatory effects of BC/GD on CBA under different conditions.Laser Doppler imaging was used to measure cerebral blood flow in rats.Triphenyl tetrazolium chloride and Nissl stainings were used to determine the infarct area in the rat brain and neuronal damage,respectively.Results:BC/GD significantly boosted TRPV4 protein levels in vascular smooth muscle cells(VSMCs)during oxygen-glucose deprivation and increased[Ca 2+]i in TRPV4-HEK 293 cells and VSMCs.This effect was not observed in vector-HEK 293 cells.In patch clamp experiments,BC/GD increased Ca 2+currents in TRPV4-HEK 293 cells,whereas no significant changes were observed in vector-HEK 293 cells.BC/GD dilated CBA contractions induced by U46619 and KCl,with a concentration-dependent increase of the dilatory effect.In the middle cerebral artery occlusion model,cerebral blood flow in the ischemic side significantly decreased,whereas BC/GD intervention significantly increased cerebral blood perfusion in the ischemic side,reduced the infarct area,and improved neurological function scores and neuronal damage.Conclusion:BC/GD activates the TRPV4 channel,leading to Ca ^(2+) influx,which in turn activates the intermediate conductance calcium-activated potassium channels channel to regulate vasodilation in vascular smooth muscle.展开更多
Environmental DNA(eDNA)technology has revolutionized biodiversity monitoring with its non-invasive,sensitive,and cost-efficient approach.This paper systematically reviews eDNA advancements,examining its applications i...Environmental DNA(eDNA)technology has revolutionized biodiversity monitoring with its non-invasive,sensitive,and cost-efficient approach.This paper systematically reviews eDNA advancements,examining its applications in aquatic and terrestrial ecosystems and assessing China’s standardization progress.It delineates four developmental phases from single-species detection to high-throughput sequencing,and highlights China’s contribution to the development of technical standards.While significant progress has been made,challenges persist in quantitative accuracy,methodological consistency,and large-scale implementation.Future efforts should prioritize enhanced standardization,improved quantification techniques,broader applications,and international collaboration to drive innovation in eDNA technology.展开更多
The Triple Ionosphere Photometer(TRIPM)is a scientific payload aboard the Fengyun-3E(FY-3E)satellite,which operates in a dawn−dusk orbit.It is primarily designed for nadir observations of airglow emissions at OI 135.6...The Triple Ionosphere Photometer(TRIPM)is a scientific payload aboard the Fengyun-3E(FY-3E)satellite,which operates in a dawn−dusk orbit.It is primarily designed for nadir observations of airglow emissions at OI 135.6 nm and N_(2)Lyman-Birge-Hopfield(LBH)bands.Due to the satellite’s dawn−dusk orbital characteristics,most of TRIPM’s field of view remains in a semi-illuminated condition.Therefore,compared with airglow data of the same bands acquired under purely daytime or nighttime conditions,applying TRIPM data poses greater challenges.This study presents the first attempt to use TRIPM data for retrieving solar extreme ultraviolet(EUV)flux.Our results demonstrate that by utilizing TRIPM data in regions where photoelectron excitation dominates as the primary radiation source,the solar EUV flux(denoted as Q_(EUV))can be retrieved.Comparisons with data from the SOHO/SEM instrument reveal excellent consistency,with a seasonal correlation coefficient(R)of at least 0.95.This work thus offers a new avenue for solar EUV flux acquisition and expands the application range of TRIPM data.展开更多
Global land monsoon precipitation(GLMP)is highly sensitive to changes in interhemispheric thermal contrast(ITC).Amplified interhemispheric asymmetries of GLMP due to enhanced ITC driven by high-level anthropogenic emi...Global land monsoon precipitation(GLMP)is highly sensitive to changes in interhemispheric thermal contrast(ITC).Amplified interhemispheric asymmetries of GLMP due to enhanced ITC driven by high-level anthropogenic emissions are expected to simultaneously increase the probability of regional floods and droughts,threatening ecosystems within global terrestrial monsoon regions and the freshwater supply for billions of residents in these areas.In this study,the responses of GLMP to the evolution of ITC toward the carbon neutrality goal are assessed using multimodel outputs from a new model intercomparison project(CovidMIP).The results show that the Northern Hemisphere-Southern Hemisphere(NH-SH)asymmetry of GLMP in boreal summer weakens during the 2040s,as a persistent reduction in well-mixed greenhouse gas(WMGHG)emissions leads to a downward trend in the ITC after 2040.At the same time,the reduction in WMGHG emissions dampens the Eastern Hemisphere-Western Hemisphere(EH-WH)asymmetry of GLMP by inducing La Niña-like cooling and enhancing moisture transport to Inner America.The resulting increases in land monsoon precipitation(LMP)may alleviate drought under the global warming scenario by about 19%-25%and 7%-9%in the WH and SH monsoon regions,respectively.However,a persistent reduction in aerosol emissions in Asia will dominate the increases in LMP in this region until the mid-21st century,and these increases may be approximately 23%-60%of the growth under the global warming scenario.Our results highlight the different rates of response of aerosol and WMGHG concentrations to the carbon neutrality goal,leading to various changes in LMP at global and regional scales.展开更多
High spatiotemporal resolution infrared radiances from FY-4A/AGRI(Advanced Geostationary Radiation Imager)can provide crucial information for rapidly developing severe convective weather.This study established a symme...High spatiotemporal resolution infrared radiances from FY-4A/AGRI(Advanced Geostationary Radiation Imager)can provide crucial information for rapidly developing severe convective weather.This study established a symmetric observation error model that differentiates between land and sea for FY-4A/AGRI all-sky assimilation,developed an all-sky assimilation scheme for FY-4A/AGRI based on hydrometeor control variables,and investigated the impacts of all-sky FY-4A/AGRI water vapor channels at different altitudes and rapid-update assimilation at different frequencies on the assimilation and forecasting of a severe convective weather event.Results show that simultaneous assimilation of two water vapor channels can enhance precipitation forecasts compared to single-channel assimilation,which is mainly attributable to a more accurate analysis of water vapor and hydrometeor information.Experiments with different assimilation frequencies demonstrate that the hourly assimilation frequency,compared to other frequencies,incorporates the high-frequency information from AGRI while reducing the impact of spurious oscillations caused by excessively high-frequency assimilation.This hourly assimilation frequency reduces the incoordination among thermal,dynamical,and water vapor conditions caused by excessively fast or slow assimilation frequencies,thus improving the forecast accuracy compared to other frequencies.展开更多
Drug development for Alzheimer’s disease is extremely challenging,as demonstrated by the repeated failures of amyloid-β-targeted therapeutics and the controversies surrounding the amyloid-βcascade hypothesis.More r...Drug development for Alzheimer’s disease is extremely challenging,as demonstrated by the repeated failures of amyloid-β-targeted therapeutics and the controversies surrounding the amyloid-βcascade hypothesis.More recently,advances in the development of Lecanemab,an anti-amyloid-βmonoclonal antibody,have shown positive results in reducing brain A burden and slowing cognitive decline in patients with early-stage Alzheimer’s disease in the Phase Ⅲ clinical trial(Clarity Alzheimer’s disease).Despite these promising results,side effects such as amyloid-related imaging abnormalities(ARIA)may limit its usage.ARIA can manifest as ARIA-E(cerebral edema or effusions)and ARIA-H(microhemorrhages or superficial siderosis)and is thought to be caused by increased vascular permeability due to inflammatory responses,leading to leakages of blood products and protein-rich fluid into brain parenchyma.Endothelial dysfunction is an early pathological feature of Alzheimer’s disease,and the blood-brain barrier becomes increasingly leaky as the disease progresses.In addition,APOE4,the strongest genetic risk factor for Alzheimer’s disease,is associated with higher vascular amyloid burden,increased ARIA incidence,and accelerated blood-brain barrier disruptions.These interconnected vascular abnormalities highlight the importance of vascular contributions to the pathophysiology of Alzheimer’s disease.Here,we will closely examine recent research evaluating the heterogeneity of brain endothelial cells in the microvasculature of different brain regions and their relationships with Alzheimer’s disease progression.展开更多
In the competitive retail industry of the digital era,data-driven insights into gender-specific customer behavior are essential.They support the optimization of store performance,layout design,product placement,and ta...In the competitive retail industry of the digital era,data-driven insights into gender-specific customer behavior are essential.They support the optimization of store performance,layout design,product placement,and targeted marketing.However,existing computer vision solutions often rely on facial recognition to gather such insights,raising significant privacy and ethical concerns.To address these issues,this paper presents a privacypreserving customer analytics system through two key strategies.First,we deploy a deep learning framework using YOLOv9s,trained on the RCA-TVGender dataset.Cameras are positioned perpendicular to observation areas to reduce facial visibility while maintaining accurate gender classification.Second,we apply AES-128 encryption to customer position data,ensuring secure access and regulatory compliance.Our system achieved overall performance,with 81.5%mAP@50,77.7%precision,and 75.7%recall.Moreover,a 90-min observational study confirmed the system’s ability to generate privacy-protected heatmaps revealing distinct behavioral patterns between male and female customers.For instance,women spent more time in certain areas and showed interest in different products.These results confirm the system’s effectiveness in enabling personalized layout and marketing strategies without compromising privacy.展开更多
Annual haze in Northern Thailand has become increasingly severe,impacting health and the environment.How-ever,the sources of the haze remain poorly quantified due to limited observational data on aerosol molecular tra...Annual haze in Northern Thailand has become increasingly severe,impacting health and the environment.How-ever,the sources of the haze remain poorly quantified due to limited observational data on aerosol molecular tracers.This study comprehensively investigates chemical composition of PM_(2.5),including both inorganic and organic compounds throughout haze and post-haze periods in 2019 at a rural site of Northern Thailand.Average PM_(2.5) concentrations during haze and post-haze period were 87±36 and 21±11μg/m^(3),respectively.Organic matter was the dominant contributor in PM_(2.5) mass,followed by water soluble inorganic ions and mineral dust.Molecular markers,including levoglucosan,dehydroabietic acid,and 4-nitrocatechol,and ions(Cl^(-),and K^(+)),were used to characterize low haze(PM_(2.5)<100μg/m^(3))and episodic haze(PM_(2.5)>100μg/m^(3)).Low haze is associated with local aerosols from agricultural waste burning,while episodic haze is linked to aged aerosols from mixed agricultural waste,softwood,and hardwood burning.Source apportionment incorporating these molecular markers in receptor modelling(Positive matrix factorization),identified three distinct biomass burning sources:mixed,local,and aged biomass burnings,contributing 31,19 and 13%of PM_(2.5) during haze period.During post-haze period,contributions shifted,with local biomass burning(32%)comparable to secondary sulfate(34%)and mixed dust and traffic sources(26%).These findings demonstrate that both regional and local sources con-tribute to severe haze,highlighting the need for integrated policies for cross-border cooperation as well as stricter regulations to reduce biomass burning in Northern Thailand and Southeast Asia.展开更多
Based on reanalysis data from 1979 to 2021,this study explores the spatial distribution of the Southern Indian Ocean Dipole(SIOD)and its individual and synergistic effects with the El Niño-Southern Oscillation(EN...Based on reanalysis data from 1979 to 2021,this study explores the spatial distribution of the Southern Indian Ocean Dipole(SIOD)and its individual and synergistic effects with the El Niño-Southern Oscillation(ENSO)on summer precipitation in China.The inverse phase spatial distribution of sea surface temperature anomalies(SSTAs)in the southwest and northeast of the southern Indian Ocean is defined as the SIOD.Positive SIOD events(positive SSTAs in the southwest,negative SSTAs in the northeast)are associated with La Niña events(Central Pacific(CP)type),while negative SIOD events(negative SSTAs in the southwest,positive SSTAs in the northeast)are associated with El Niño events(Eastern Pacific(EP)type).Both SIOD and ENSO have certain impacts on summer precipitation in China.Precipitation in the Yangtze River basin decreases,while precipitation in southern China increases during pure positive SIOD(P_PSIOD)events.During pure negative SIOD(P_NSIOD)events,the changes in precipitation are exactly the opposite of those during P_PSIOD events,which may be due to differences in the cross-equatorial flow in the southern Indian Ocean,particularly in low-level Australian cross-equatorial flow.When positive SIOD and CP-type La Niña events occur simultaneously(PSIOD+La_Niña),precipitation increases in the Yangtze-Huaihe River basin,while it decreases in northern China.When negative SIOD and EP-type El Niño events occur simultaneously(NSIOD+El_Niño),precipitation in the Yangtze-Huaihe River basin is significantly lower than during P_NSIOD events.This is caused by differences in water vapor originating from the Pacific Ocean during different events.展开更多
Spinal cord injury is a severe neurological disorder;however,current treatment methods often fail to restore nerve function effectively.Spinal cord stimulation via electrical signals is a promising therapeutic modalit...Spinal cord injury is a severe neurological disorder;however,current treatment methods often fail to restore nerve function effectively.Spinal cord stimulation via electrical signals is a promising therapeutic modality for spinal cord injury.Based on similar principles,this review aims to explore the potential of optical and acoustic neuromodulation techniques,emphasizing their benefits in the context of spinal cord injury.Photoacoustic imaging,renowned for its noninvasive nature,high-resolution capabilities,and cost-effectiveness,is well recognized for its role in early diagnosis,dynamic monitoring,and surgical guidance in stem cell therapies for spinal cord injury.Moreover,photoacoustodynamic therapy offers multiple pathways for tissue regeneration.Optogenetics and sonogenetics use genetic engineering to achieve precise neuronal activation,while photoacoustoelectric therapy leverages photovoltaic materials for electrical modulation of the nervous system,introducing an innovative paradigm for nerve system disorder management.Collectively,these advancements represent a transformative shift in the diagnosis and treatment of spinal cord injury,with the potential to significantly enhance nerve function remodeling and improve patient outcomes.展开更多
文摘China Standardization:As one of the founders for CESIP,what's your original intention of building such an information platform?Chen Gang:Originally,we intended to"build a platform to serve enterprises and facilitate trade".Regarding the China-Europe trade,we get to know that most enterprises,especially SMEs,have limited accesses to technical regulations and standards information of both sides,which may be primarily attributed to the absence of favorable channel for such information.Therefore,we start to build up the bilingual standards information platform based on modern information techonology.
文摘The third International Standardization Youth Star Competition is held in Qingdao.We are very pleased to see that 236 teams from renowned domestic universities are actively participating in the competition.ISO has also sent a representative to Qingdao,demonstrating its high level of attention and support for the competition.
基金supported by the National Natural Science Foundation of China(Grant No.42305013)Joint Research Project for Meteorological Capacity Improvement(Grant Nos.23NLTSQ002 and 24NLTSQ001)+2 种基金China Meteorological Administration Tornado Key Laboratory(Grant No.TKL202307)the China Meteorological Administration Youth Innovation Team Fund(Grant No.CMA2024QN05)a research project of the Chinese Academy of Meteorological Science(Grant No.2023Z019)。
文摘This study presents a comprehensive analysis of 132 tornadic events in northeastern China from 2004 to 2023,utilizing radar and ERA5 reanalysis data to investigate the climatology,environmental drivers,and synoptic linkages with Northeast China cold vortices(NCCVs)of tornadic storms under different convective modes.Results reveal that discrete storms account for 70%of events,with clustered cells(CC)being the most frequent mode,while significant tornadoes(EF2+)are primarily associated with isolated cells(IC)and broken lines(BL).The storm mode distribution in northeastern China resembles that of the central United States but with a higher proportion of CC and lower IC.In contrast,southern China exhibits a higher frequency of quasi-linear(QL)modes(>50%),similar to European patterns.Although no single parameter clearly differentiates between all tornado modes,distinct morphological characteristics emerge through specific parameter combinations:NL modes are characterized by high 0-1 km storm-relative helicity(SRH1)and humidity but low 0-6 km shear(SR6),whereas IC modes display contrasting features with low SRH1 and high CAPE.Notably,83%of tornadoes are associated with NCCVs,preferentially forming in southeastern/southwestern quadrants.Strong tornadoes favor southeastern quadrants,while NCCV intensity correlates with tornadic distance from vortex centers.Three characteristic synoptic configurations emerge:(T1)strong deep vortices with vertically aligned cold troughs,generating southeast-dominant tornado clusters characterized by a high proportion of BL and QL modes;(T2)weaker vortices featuring sub-synoptic troughs,with southern-distributed events dominated by a predominance of the CC mode;(T3)transverse-trough systems exhibiting CAPE-SRH decoupling and reduced tornadic activity.This study enhances our understanding of tornadoes in northeastern China,informing future research on formation mechanisms,prediction methods,and disaster prevention strategies.
基金supported by the National Natural Science Foundation of China(NSFC/RGC/JRF N_HKU735/21)Research Grant Council of Hong Kong,China(17102120,17108821,17103922,C1024-22GF,C7074-21G)+1 种基金Health and Medical Research Fund(HMRF 09200966)(to CSWL)FRQS Postdoctoral Fellowship(to AHKF).
文摘Dendritic spines are small protrusions along dendrites that contain most of the excitatory synapses in principal neurons,playing a crucial role in neuronal function by creating a compartmentalized environment for signal transduction.The plasticity of spine morphologies provides a tunable handle to regulate calcium signal dynamics,allowing rapid regulation of protein expression necessary to establish and maintain synapses(Cornejo et al.,2022).If excitatory inputs were to be located primarily on dendritic shafts,dendrites would frequently short-circuit,preventing voltage signals from propagating(Cornejo et al.,2022).It is thus not surprising that the structural plasticity of dendritic spines is closely linked to synaptic plasticity and memory formation(Berry and Nedivi,2017).While comprehensive in vitro studies have been conducted,in vivo studies that directly tackle the mechanism of dendritic transport and translation in regulating spine plasticity spatiotemporally are limited.
基金supported by The University of Hong Kong,China(109000487,109001694,204610401,and 204610519)National Natural Science Foundation of China(82402225)(to JH).
文摘Chemical exchange saturation transfer magnetic resonance imaging is an advanced imaging technique that enables the detection of compounds at low concentrations with high sensitivity and spatial resolution and has been extensively studied for diagnosing malignancy and stroke.In recent years,the emerging exploration of chemical exchange saturation transfer magnetic resonance imaging for detecting pathological changes in neurodegenerative diseases has opened up new possibilities for early detection and repetitive scans without ionizing radiation.This review serves as an overview of chemical exchange saturation transfer magnetic resonance imaging with detailed information on contrast mechanisms and processing methods and summarizes recent developments in both clinical and preclinical studies of chemical exchange saturation transfer magnetic resonance imaging for Alzheimer’s disease,Parkinson’s disease,multiple sclerosis,and Huntington’s disease.A comprehensive literature search was conducted using databases such as PubMed and Google Scholar,focusing on peer-reviewed articles from the past 15 years relevant to clinical and preclinical applications.The findings suggest that chemical exchange saturation transfer magnetic resonance imaging has the potential to detect molecular changes and altered metabolism,which may aid in early diagnosis and assessment of the severity of neurodegenerative diseases.Although promising results have been observed in selected clinical and preclinical trials,further validations are needed to evaluate their clinical value.When combined with other imaging modalities and advanced analytical methods,chemical exchange saturation transfer magnetic resonance imaging shows potential as an in vivo biomarker,enhancing the understanding of neuropathological mechanisms in neurodegenerative diseases.
基金funded by the Entrusted service project of Shaanxi Administration of Traditional Chinese Medicine(ZYJXG-L23001)2023 Sanqin Talent Special Support Program Innovation and Entrepreneurship Team Project,and Sci-Tech Innovation Talent System Construction Program of Shaanxi University of Chinese Medicine(2023).
文摘Background:Panacis Quinquefolii Radix(PQR)is known for its ability to nourish“Qi”(it serves as the driving force for the functional activities of the body’s organs and meridians,promoting and regulating various physiological functions)and“Yin”(it represents the material foundation of the human body.It plays a role in nourishing,moistening,and cooling the body).Notoginseng Radix et Rhizoma(NRR)is recognized for its properties of resolving blood stasis(it refers to a pathological condition characterized by impaired or stagnant blood circulation within the body).Changes in the compatibility ratio of these herbs often lead to variations in their chemical composition and efficacy.However,the specific alterations in chemical composition and efficacy resulting from compatibility adjustments remain unclear.We aimed to compare the material basis and their effects of different compatibility ratios of PQR and NRR on“Qi”deficiency and blood stasis syndrome(QBS).Methods:This study employed UPLC-Q/TOF-MS to identify effective compounds in the compatibility of PQR and NRR and utilized UPLC-TQ-MS/MS to analyze the dissolution of 16 saponins in PQR and NRR at 9 different ratios.A rat model of QBS was established,and the efficacy of PQR and NRR in treating this syndrome was assessed using hemorheology and coagulation analyses.Results:The study results show that PQR and NRR exhibit significant efficacy,effectively reducing blood viscosity induced by platelet aggregation and lowering inflammatory markers such as IL-6,IL-10,TXB2 and ET associated with vascular injury.Moreover,this combination regulates ATP and ADP levels,enhances energy metabolism,and promotes overall health.A total of 104 compounds in the compatibility of PQR and NRR were identified.The ratios of 1:2 and 1:3 showed the highest total saponin content,but the ratio of 1:1 demonstrated a superior pharmacological effect for the treatment of QBS.Conclusion:In summary,the compatibility of PQR and NRR not only shows the complex interactions between traditional Chinese medicinal materials,but also provides a new idea and method for the treatment of QBS.
基金supported by grants from Collaborative Research Fund(Ref:C4032-21GF)General Research Grant(Ref:14114822)+1 种基金Group Research Scheme(Ref:3110146)Area of Excellence(Ref:Ao E/M-402/20)。
文摘Mitochondrial dysfunction and oxidative stress are widely regarded as primary drivers of aging and are associated with several neurodegenerative diseases.The degeneration of motor neurons during aging is a critical pathological factor contributing to the progression of sarcopenia.However,the morphological and functional changes in mitochondria and their interplay in the degeneration of the neuromuscular junction during aging remain poorly understood.A defined systematic search of the Pub Med,Web of Science and Embase databases(last accessed on October 30,2024)was conducted with search terms including'mitochondria','aging'and'NMJ'.Clinical and preclinical studies of mitochondrial dysfunction and neuromuscular junction degeneration during aging.Twentyseven studies were included in this systematic review.This systematic review provides a summary of morphological,functional and biological changes in neuromuscular junction,mitochondrial morphology,biosynthesis,respiratory chain function,and mitophagy during aging.We focus on the interactions and mechanisms underlying the relationship between mitochondria and neuromuscular junctions during aging.Aging is characterized by significant reductions in mitochondrial fusion/fission cycles,biosynthesis,and mitochondrial quality control,which may lead to neuromuscular junction dysfunction,denervation and poor physical performance.Motor nerve terminals that exhibit redox sensitivity are among the first to exhibit abnormalities,ultimately leading to an early decline in muscle strength through impaired neuromuscular junction transmission function.Parg coactivator 1 alpha is a crucial molecule that regulates mitochondrial biogenesis and modulates various pathways,including the mitochondrial respiratory chain,energy deficiency,oxidative stress,and inflammation.Mitochondrial dysfunction is correlated with neuromuscular junction denervation and acetylcholine receptor fragmentation,resulting in muscle atrophy and a decrease in strength during aging.Physical therapy,pharmacotherapy,and gene therapy can alleviate the structural degeneration and functional deterioration of neuromuscular junction by restoring mitochondrial function.Therefore,mitochondria are considered potential targets for preserving neuromuscular junction morphology and function during aging to treat sarcopenia.
基金supported by Hebei Province Natural Science Foundation(H2023423037)The Government Funded Clinical Program of Hebei Province(No.ZF2025287)+1 种基金Special Project of Hebei Industrial Technology Institute for Traditional Chinese Medicine Preparation(No.YJY2024001)Chinese Medicine Scientific Research Program of Hebei Province(No.2025222).
文摘Background:Acute kidney injury(AKI),characterized by rapid renal dysfunction(KDIGO 2022 criteria:48-hour doubling of serum creatinine or<0.5 mL/kg/h urine output for>6 h),affects 13.3 million people annually with>20%mortality.Its progression involves metabolic imbalances,toxin accumulation,and multiorgan failure,often culminating in chronic kidney disease.Current therapies(fluid resuscitation,diuretics,renal replacement therapy)remain limited.Inflammation drives AKI pathogenesis:renal insults(ischemia,toxins)trigger tubular cell release of pro-inflammatory mediators(TNF-α,IL-1β,IL-6),activating neutrophil gelatinase-associated lipocalin(NGAL)and dysregulating P38 MAPK/ERK pathways.This cascade promotes leukocyte infiltration,oxidative stress,and apoptosis,exacerbating renal damage.Ononin,a flavonoid from Astragali Radix,shows multi-target potential by suppressing pro-inflammatory cytokines,modulating signaling,and mitigating oxidative stress.Its dual anti-inflammatory/antioxidant properties position it as a promising candidate for AKI intervention.Exploring the ameliorative effect of ononin on the inflammatory response Ameliorative effect of ononin on the inflammatory response in doxorubicin-induced AKI mice.Methods:We used network pharmacology to explore ononin’s target molecules and AKI-related disease molecules,identified their intersections,and predicted potential mechanisms via enrichment analysis,followed by molecular docking verification.For in-vivo validation,50 mice were randomly divided into five groups(n=10/group):Control,Model,Ononin-L(15 mg/kg),Ononin-H(60 mg/kg),and Dexamethasone(2.6 mg/kg).An AKI model was established by intravenous tail-vein injection of Doxorubicin(15 mg/kg).Samples were collected 12 h post-induction.We calculated the renal coefficient,examined renal histopathology using hematoxylin and eosin(HE),periodic acid-Schiff(PAS),and Masson’s trichrome(MASSON)staining,and observed mitochondrial morphology by electron microscopy(EM).ELISA was used to measure NGAL,serum creatinine(Scr),and blood urea nitrogen(BUN)levels in serum.Immunofluorescence(IF)evaluated the expression of P-P38,P-ERK,NGAL,and KIM-1 in renal tissues.RT-qPCR assessed the gene expression of pro-inflammatory cytokines,MAPK pathway components,and renal injury markers in kidney tissues.Western Blot(WB)quantified P-P38,P38 MAPK,P-ERK,ERK,NGAL,and KIM-1 in renal tissues.Results:Network pharmacology analysis suggested that ononin could attenuate AKI through its anti-inflammatory properties and regulation of the MAPK signaling pathway.The Model group exhibited a significantly elevated renal coefficient(P<0.05),severe histopathological damage,and mitochondrial dysfunction compared to controls.Serum levels of NGAL,Scr,and BUN were markedly increased(P<0.05),indicating impaired renal function.Enhanced fluorescence signals of P-P38 MAPK,P-ERK,NGAL,and KIM-1 suggested activation of MAPK pathways and renal injury.Upregulation of pro-inflammatory cytokines(IL-1β,IL-6,TNF-α)and MAPK-related genes(P38 MAPK,ERK)alongside injury markers(NGAL,KIM-1)(P<0.05).Increased ratios of phosphorylated-to-total proteins(P-P38/P38,P-ERK/ERK)and elevated NGAL/KIM-1 protein levels confirmed pathway dysregulation.Treatment significantly reduced the renal coefficient(P<0.05),attenuated histological damage,and restored mitochondrial integrity.NGAL,Scr,and BUN levels were lowered,reflecting functional recovery.Diminished fluorescence intensities of P-P38,P-ERK,NGAL,and KIM-1 indicated suppression of injury pathways.Downregulation of inflammatory cytokines(IL-1β,IL-6,TNF-α),MAPK components(P38 MAPK,ERK),and injury markers(NGAL,KIM-1)(P<0.05).Reduced phosphorylation ratios(P-P38/P38,P-ERK/ERK)and decreased NGAL/KIM-1 protein expression demonstrated therapeutic efficacy.Conclusion:Ononin ameliorates inflammatory responses in AKI mice via the P38 MAPK/ERK pathway.
基金supported by the National Natural Science Foundation of China,No.82072529(to HWHT)Key Laboratory of Guangdong Higher Education Institutes,No.2021KSYS009(to HWHT)the China Postdoctoral Science Foundation,No.2022M720907(to HHG)。
文摘Alzheimer's disease is the primary cause of dementia and imposes a significant socioeconomic burden globally.Physical exercise,as an effective strategy for improving general health,has been largely reported for its effectiveness in slowing neurodegeneration and increasing brain functional plasticity,particularly in aging brains.However,the underlying mechanisms of exercise in cognitive aging remain largely unclear.Adiponectin,a cell-secreted protein hormone,has recently been found to regulate synaptic plasticity and mediate the antidepressant effects of physical exercise.Studies on the neuroprotective effects of adiponectin have revealed potential innovative treatments for Alzheimer's disease.Here,we reviewed the functions of adiponectin and its receptor in the brains of human and animal models of cognitive impairment.We summarized the role of adiponectin in Alzheimer's disease,focusing on its impact on energy metabolism,insulin resistance,and inflammation.We also discuss how exercise increases adiponectin secretion and its potential benefits for learning and memory.Finally,we highlight the latest research on chemical compounds that mimic exerciseenhanced secretion of adiponectin and its receptor in Alzheimer's disease.
基金supported by the Chinese Medicine"Dual Chain Integration"Young and Middle-aged Scientific Research and Innovation Teams(No.2022-SLRH-YQ-006)the Key R&D Programme Projects of Xianyang Municipality(No.L2023-ZDYF-SF-014)+1 种基金the Shaanxi University of Traditional Chinese Medicine Science,Education and Research Collaborative Educational Achievement Transformation Project(No.2024KC03)the open research topic from the Key Laboratory of Neurological Diseases in Traditional Chinese Medicine,Shaanxi Province(No.KF202315).
文摘Background:Baicalin(BC)and geniposide(GD)are effective components of natural remedies,and studies have shown that they protect against cerebral ischemic stroke(CIS).Transient receptor potential vanilloid 4(TRPV4)is a calcium-permeable channel that plays important roles in vascular function and vasodilation.However,no studies are available on the effect of BC/GD on the TRPV4 channel and rat cerebral basilar artery(CBA).This study examined the effect of the combination of BC/GD(7:3)on cerebral vascular function after CIS.Methods:We used western blotting to determine TRPV4 protein levels and live cell fluorescence Ca 2+imaging and patch clamp to determine how BC/GD activates TRPV4 channels.Isolated vessel experiments were used to observe the dilatory effects of BC/GD on CBA under different conditions.Laser Doppler imaging was used to measure cerebral blood flow in rats.Triphenyl tetrazolium chloride and Nissl stainings were used to determine the infarct area in the rat brain and neuronal damage,respectively.Results:BC/GD significantly boosted TRPV4 protein levels in vascular smooth muscle cells(VSMCs)during oxygen-glucose deprivation and increased[Ca 2+]i in TRPV4-HEK 293 cells and VSMCs.This effect was not observed in vector-HEK 293 cells.In patch clamp experiments,BC/GD increased Ca 2+currents in TRPV4-HEK 293 cells,whereas no significant changes were observed in vector-HEK 293 cells.BC/GD dilated CBA contractions induced by U46619 and KCl,with a concentration-dependent increase of the dilatory effect.In the middle cerebral artery occlusion model,cerebral blood flow in the ischemic side significantly decreased,whereas BC/GD intervention significantly increased cerebral blood perfusion in the ischemic side,reduced the infarct area,and improved neurological function scores and neuronal damage.Conclusion:BC/GD activates the TRPV4 channel,leading to Ca ^(2+) influx,which in turn activates the intermediate conductance calcium-activated potassium channels channel to regulate vasodilation in vascular smooth muscle.
基金supported by the National Natural Science Foundation of China(Grant No.32160172)the Key Science-Technology Project of Inner Mongolia(2023KYPT0010)+1 种基金the Natural Science Foundation of Inner Mongolia Autonomous Region of China(Grant No.2025QN03006)the 2023 Inner Mongolia Public Institution High-Level Talent Introduction Scientific Research Support Project.
文摘Environmental DNA(eDNA)technology has revolutionized biodiversity monitoring with its non-invasive,sensitive,and cost-efficient approach.This paper systematically reviews eDNA advancements,examining its applications in aquatic and terrestrial ecosystems and assessing China’s standardization progress.It delineates four developmental phases from single-species detection to high-throughput sequencing,and highlights China’s contribution to the development of technical standards.While significant progress has been made,challenges persist in quantitative accuracy,methodological consistency,and large-scale implementation.Future efforts should prioritize enhanced standardization,improved quantification techniques,broader applications,and international collaboration to drive innovation in eDNA technology.
基金supported financially by National Natural Science Foundation of China(Grant No.42174226,42474239)National Key Research and Development Program(2022YFF0503901)China Meteorological Administration‘Ionospheric Forecast and Alerting’Youth Innovation Team(CMA2024QN09).
文摘The Triple Ionosphere Photometer(TRIPM)is a scientific payload aboard the Fengyun-3E(FY-3E)satellite,which operates in a dawn−dusk orbit.It is primarily designed for nadir observations of airglow emissions at OI 135.6 nm and N_(2)Lyman-Birge-Hopfield(LBH)bands.Due to the satellite’s dawn−dusk orbital characteristics,most of TRIPM’s field of view remains in a semi-illuminated condition.Therefore,compared with airglow data of the same bands acquired under purely daytime or nighttime conditions,applying TRIPM data poses greater challenges.This study presents the first attempt to use TRIPM data for retrieving solar extreme ultraviolet(EUV)flux.Our results demonstrate that by utilizing TRIPM data in regions where photoelectron excitation dominates as the primary radiation source,the solar EUV flux(denoted as Q_(EUV))can be retrieved.Comparisons with data from the SOHO/SEM instrument reveal excellent consistency,with a seasonal correlation coefficient(R)of at least 0.95.This work thus offers a new avenue for solar EUV flux acquisition and expands the application range of TRIPM data.
基金funded by the National Natural Science Foundation of China(Grant No.42275039)the Meteorological Joint Fund by NSF and CMA(Grant No.U2342224)+1 种基金the National Key R&D Program of China(Grant No.2022YFC3701202)the S&T Development Fund of CAMS(Grant No.2024KJ019)。
文摘Global land monsoon precipitation(GLMP)is highly sensitive to changes in interhemispheric thermal contrast(ITC).Amplified interhemispheric asymmetries of GLMP due to enhanced ITC driven by high-level anthropogenic emissions are expected to simultaneously increase the probability of regional floods and droughts,threatening ecosystems within global terrestrial monsoon regions and the freshwater supply for billions of residents in these areas.In this study,the responses of GLMP to the evolution of ITC toward the carbon neutrality goal are assessed using multimodel outputs from a new model intercomparison project(CovidMIP).The results show that the Northern Hemisphere-Southern Hemisphere(NH-SH)asymmetry of GLMP in boreal summer weakens during the 2040s,as a persistent reduction in well-mixed greenhouse gas(WMGHG)emissions leads to a downward trend in the ITC after 2040.At the same time,the reduction in WMGHG emissions dampens the Eastern Hemisphere-Western Hemisphere(EH-WH)asymmetry of GLMP by inducing La Niña-like cooling and enhancing moisture transport to Inner America.The resulting increases in land monsoon precipitation(LMP)may alleviate drought under the global warming scenario by about 19%-25%and 7%-9%in the WH and SH monsoon regions,respectively.However,a persistent reduction in aerosol emissions in Asia will dominate the increases in LMP in this region until the mid-21st century,and these increases may be approximately 23%-60%of the growth under the global warming scenario.Our results highlight the different rates of response of aerosol and WMGHG concentrations to the carbon neutrality goal,leading to various changes in LMP at global and regional scales.
基金supported by the National Key R&D Program of China(Grant No.2022YFC3080500)the National Natural Science Foundation of China(Grant Nos.U2142208,42475158,and 42105149)the High-Performance Computing Center of Nanjing University of Information Science&Technology for supporting this work。
文摘High spatiotemporal resolution infrared radiances from FY-4A/AGRI(Advanced Geostationary Radiation Imager)can provide crucial information for rapidly developing severe convective weather.This study established a symmetric observation error model that differentiates between land and sea for FY-4A/AGRI all-sky assimilation,developed an all-sky assimilation scheme for FY-4A/AGRI based on hydrometeor control variables,and investigated the impacts of all-sky FY-4A/AGRI water vapor channels at different altitudes and rapid-update assimilation at different frequencies on the assimilation and forecasting of a severe convective weather event.Results show that simultaneous assimilation of two water vapor channels can enhance precipitation forecasts compared to single-channel assimilation,which is mainly attributable to a more accurate analysis of water vapor and hydrometeor information.Experiments with different assimilation frequencies demonstrate that the hourly assimilation frequency,compared to other frequencies,incorporates the high-frequency information from AGRI while reducing the impact of spurious oscillations caused by excessively high-frequency assimilation.This hourly assimilation frequency reduces the incoordination among thermal,dynamical,and water vapor conditions caused by excessively fast or slow assimilation frequencies,thus improving the forecast accuracy compared to other frequencies.
基金supported by the National Natural Science Foundation of China,Nos.82404892(to QY),82061160374(to ZZ)the Science and Technology Development Fund,Macao Special Administrative Region,China,Nos.0023/2020/AFJ,0035/2020/AGJ+2 种基金the University of Macao Research Grant,Nos.MYRG2022-00248-ICMS,MYRG-CRG2022-00010-ICMS(to MPMH)the Natural Science Foundation of Guangdong Province,No.2024A1515012818(to ZZ)the Fundamental Research Funds for the Central Universities,No.21623114(to ZZ).
文摘Drug development for Alzheimer’s disease is extremely challenging,as demonstrated by the repeated failures of amyloid-β-targeted therapeutics and the controversies surrounding the amyloid-βcascade hypothesis.More recently,advances in the development of Lecanemab,an anti-amyloid-βmonoclonal antibody,have shown positive results in reducing brain A burden and slowing cognitive decline in patients with early-stage Alzheimer’s disease in the Phase Ⅲ clinical trial(Clarity Alzheimer’s disease).Despite these promising results,side effects such as amyloid-related imaging abnormalities(ARIA)may limit its usage.ARIA can manifest as ARIA-E(cerebral edema or effusions)and ARIA-H(microhemorrhages or superficial siderosis)and is thought to be caused by increased vascular permeability due to inflammatory responses,leading to leakages of blood products and protein-rich fluid into brain parenchyma.Endothelial dysfunction is an early pathological feature of Alzheimer’s disease,and the blood-brain barrier becomes increasingly leaky as the disease progresses.In addition,APOE4,the strongest genetic risk factor for Alzheimer’s disease,is associated with higher vascular amyloid burden,increased ARIA incidence,and accelerated blood-brain barrier disruptions.These interconnected vascular abnormalities highlight the importance of vascular contributions to the pathophysiology of Alzheimer’s disease.Here,we will closely examine recent research evaluating the heterogeneity of brain endothelial cells in the microvasculature of different brain regions and their relationships with Alzheimer’s disease progression.
文摘In the competitive retail industry of the digital era,data-driven insights into gender-specific customer behavior are essential.They support the optimization of store performance,layout design,product placement,and targeted marketing.However,existing computer vision solutions often rely on facial recognition to gather such insights,raising significant privacy and ethical concerns.To address these issues,this paper presents a privacypreserving customer analytics system through two key strategies.First,we deploy a deep learning framework using YOLOv9s,trained on the RCA-TVGender dataset.Cameras are positioned perpendicular to observation areas to reduce facial visibility while maintaining accurate gender classification.Second,we apply AES-128 encryption to customer position data,ensuring secure access and regulatory compliance.Our system achieved overall performance,with 81.5%mAP@50,77.7%precision,and 75.7%recall.Moreover,a 90-min observational study confirmed the system’s ability to generate privacy-protected heatmaps revealing distinct behavioral patterns between male and female customers.For instance,women spent more time in certain areas and showed interest in different products.These results confirm the system’s effectiveness in enabling personalized layout and marketing strategies without compromising privacy.
文摘Annual haze in Northern Thailand has become increasingly severe,impacting health and the environment.How-ever,the sources of the haze remain poorly quantified due to limited observational data on aerosol molecular tracers.This study comprehensively investigates chemical composition of PM_(2.5),including both inorganic and organic compounds throughout haze and post-haze periods in 2019 at a rural site of Northern Thailand.Average PM_(2.5) concentrations during haze and post-haze period were 87±36 and 21±11μg/m^(3),respectively.Organic matter was the dominant contributor in PM_(2.5) mass,followed by water soluble inorganic ions and mineral dust.Molecular markers,including levoglucosan,dehydroabietic acid,and 4-nitrocatechol,and ions(Cl^(-),and K^(+)),were used to characterize low haze(PM_(2.5)<100μg/m^(3))and episodic haze(PM_(2.5)>100μg/m^(3)).Low haze is associated with local aerosols from agricultural waste burning,while episodic haze is linked to aged aerosols from mixed agricultural waste,softwood,and hardwood burning.Source apportionment incorporating these molecular markers in receptor modelling(Positive matrix factorization),identified three distinct biomass burning sources:mixed,local,and aged biomass burnings,contributing 31,19 and 13%of PM_(2.5) during haze period.During post-haze period,contributions shifted,with local biomass burning(32%)comparable to secondary sulfate(34%)and mixed dust and traffic sources(26%).These findings demonstrate that both regional and local sources con-tribute to severe haze,highlighting the need for integrated policies for cross-border cooperation as well as stricter regulations to reduce biomass burning in Northern Thailand and Southeast Asia.
基金supported by the National Natural Science Foundation of China[grant numbers 41975087,U2242212,and 41975085]supported by the National Natural Science Foundation of China[grant number U2242212]。
文摘Based on reanalysis data from 1979 to 2021,this study explores the spatial distribution of the Southern Indian Ocean Dipole(SIOD)and its individual and synergistic effects with the El Niño-Southern Oscillation(ENSO)on summer precipitation in China.The inverse phase spatial distribution of sea surface temperature anomalies(SSTAs)in the southwest and northeast of the southern Indian Ocean is defined as the SIOD.Positive SIOD events(positive SSTAs in the southwest,negative SSTAs in the northeast)are associated with La Niña events(Central Pacific(CP)type),while negative SIOD events(negative SSTAs in the southwest,positive SSTAs in the northeast)are associated with El Niño events(Eastern Pacific(EP)type).Both SIOD and ENSO have certain impacts on summer precipitation in China.Precipitation in the Yangtze River basin decreases,while precipitation in southern China increases during pure positive SIOD(P_PSIOD)events.During pure negative SIOD(P_NSIOD)events,the changes in precipitation are exactly the opposite of those during P_PSIOD events,which may be due to differences in the cross-equatorial flow in the southern Indian Ocean,particularly in low-level Australian cross-equatorial flow.When positive SIOD and CP-type La Niña events occur simultaneously(PSIOD+La_Niña),precipitation increases in the Yangtze-Huaihe River basin,while it decreases in northern China.When negative SIOD and EP-type El Niño events occur simultaneously(NSIOD+El_Niño),precipitation in the Yangtze-Huaihe River basin is significantly lower than during P_NSIOD events.This is caused by differences in water vapor originating from the Pacific Ocean during different events.
基金supported by the National Key R&D Program of China,No.2023YFC2509700the Beijing Natural Science Foundation-Haidian Original Innovation Joint Fund,No.L232141the Research and Application of Clinical Characteristic Diagnosis and Treatment Program,No.Z221100007422019(all to WD)。
文摘Spinal cord injury is a severe neurological disorder;however,current treatment methods often fail to restore nerve function effectively.Spinal cord stimulation via electrical signals is a promising therapeutic modality for spinal cord injury.Based on similar principles,this review aims to explore the potential of optical and acoustic neuromodulation techniques,emphasizing their benefits in the context of spinal cord injury.Photoacoustic imaging,renowned for its noninvasive nature,high-resolution capabilities,and cost-effectiveness,is well recognized for its role in early diagnosis,dynamic monitoring,and surgical guidance in stem cell therapies for spinal cord injury.Moreover,photoacoustodynamic therapy offers multiple pathways for tissue regeneration.Optogenetics and sonogenetics use genetic engineering to achieve precise neuronal activation,while photoacoustoelectric therapy leverages photovoltaic materials for electrical modulation of the nervous system,introducing an innovative paradigm for nerve system disorder management.Collectively,these advancements represent a transformative shift in the diagnosis and treatment of spinal cord injury,with the potential to significantly enhance nerve function remodeling and improve patient outcomes.