The rare earth elements(REEs)extraction by chemical leaching from ion-adsorption type rare earth ores(IAREO)has led to serious ecological and environmental risks.Conversely,demand for bioleaching is on the rise with t...The rare earth elements(REEs)extraction by chemical leaching from ion-adsorption type rare earth ores(IAREO)has led to serious ecological and environmental risks.Conversely,demand for bioleaching is on the rise with the advantage of being environmental-friendly.As one of the organic acids produced by biological metabolism,citric acid was used to leach REEs and explore the performance and process.The results demonstrate that citric acid exhibits higher leaching efficiency(96.00%)for REEs at a relatively low concentration of 0.01 mol/L compared with(NH_(4))_(2)SO_(4)(84.29%,0.1 mol/L)and MgSO_(4)(83.99%,0.1 mol/L).Citric acid shows a preference for leaching heavy rare earth elements,with 99%leaching efficiency in IAREO,which shows higher capacity than(NH_(4))_(2)SO_(4)and MgSO_(4)(as inorganic leaching agents).Kinetic analysis indicates that the leaching process of REEs with citric acid is controlled by both the internal diffusion kinetics and chemical reaction kinetics,which is different from inorganic leaching agents.Visual Minteq calculations confirm that RE-Citrate is the main constituent of the extract solution in the leaching process of the IAREO,thereby enhancing the leaching efficiency of REEs from the IAREO.It suggests that citric acid may be used as a promising organic leaching agent for the environmentalfriendly extraction of REEs from IAREO.展开更多
Ca^(2+)signaling plays crucial roles in plant stress responses,including defense against insects.To counteract insect feeding,different parts of a plant deploy systemic signaling to communicate and coordinate defense ...Ca^(2+)signaling plays crucial roles in plant stress responses,including defense against insects.To counteract insect feeding,different parts of a plant deploy systemic signaling to communicate and coordinate defense responses,but little is known about the underlying mechanisms.In this study,micrografting,in vivo imaging of Ca^(2+)and reactive oxygen species(ROS),quantification of jasmonic acid(JA)and defensive metabolites,and bioassay were used to study how Arabidopsis seedlings regulate systemic responses in leaves after hypocotyls are wounded.We show that wounding hypocotyls rapidly activated both Ca^(2+)and ROS signals in leaves.RBOHD,which functions to produce ROS,along with two glutamate receptors GLR3.3 and GLR3.6,but not individually RBOHD or GLR3.3 and GLR3.6,in hypocotyls regulate the dynamics of systemic Ca^(2+)signals in leaves.In line with the systemic Ca^(2+)signals,after wounding hypocotyl,RBOHD,GLR3.3,and GLR3.6 in hypocotyl also cooperatively regulate the transcriptome,hormone jasmonic acid,and defensive secondary metabolites in leaves of Arabidopsis seedlings,thus controlling the systemic resistance to insects.Unlike leaf-to-leaf systemic signaling,this study reveals the unique regulation of wounding-induced hypocotyl-to-leaf systemic signaling and sheds new light on how different plant organs use complex signaling pathways to modulate defense responses.展开更多
Cichlid fishes are a textbook example for adaptive radiations,since they diversified into several hundred highly specialized species in each of three great East African lakes.Even scale-eating,an extremely specialized...Cichlid fishes are a textbook example for adaptive radiations,since they diversified into several hundred highly specialized species in each of three great East African lakes.Even scale-eating,an extremely specialized feeding mode,evolved independently multiple times in these radiations and in Lake Tanganyika alone,six endemic scale-eating species occupy this extremely specialized ecological niche.Perissodus microlepis went a step further,by evolving bilaterally asymmetrical heads with an intra-specific polymorphism where left-and right-headed morphs predominantly scrape scales from the opposite sides of their prey.While the bilateral asymmetry of scale-eating cichlids has been known,exactly which craniofacial features explain the laterality of the heads remained unclear.Here we aimed,by utilizing micro-computed tomography(μCT),to resolve this issue of how bilateral symmetry in the skeletal structure is broken in scale-eating Perissodus.Our 3D geometric morphometrics analysis clearly separated and identified the two groups of either left-or right-headed fish.In addition,we observed consistent asymmetric volume changes in the premaxilla,maxilla,and mandible of the craniofacial structures,where left-headed fish have larger jaw elements on the right side,and vice versa.The bimodality implies that the effect sizes of environmental factors might be minor while genetics might be responsible to a larger extent for the asymmetry observed in their head morphology.High-speed video analyses of attacks by asymmetrical morphotypes revealed that they utilize their asymmetrical mouth protrusion,as well as lateralized behavior,to re-orientate the gape towards the preferred side of their prey fish to more efficiently scrape scales.展开更多
To gain a comprehensive understanding of sources and health risks of trace elements in an area of China with high population densities and low PM_(2.5)concentrations,15 trace elements(Al,K,Ca,Ti,V,Cr,Mn,Fe,Ni,Cu,Zn,As...To gain a comprehensive understanding of sources and health risks of trace elements in an area of China with high population densities and low PM_(2.5)concentrations,15 trace elements(Al,K,Ca,Ti,V,Cr,Mn,Fe,Ni,Cu,Zn,As,Sn,Ba,Pb)in PM_(2.5)were monitored from December 2020 to November 2021 in a representative city,Xiamen.The concentrations of trace elements in Xiamen displayed an obvious seasonal variation and were dominated by K,Fe,Al,Ca and Zn.Based on Positive Matrix Factorization analysis,source appointment revealed that the major sources of trace elements in Xiamen were traffic,dust,biomass and firework combustion,industrial manufacture and shipping emission.According to health risk assessment combined with the source appointment results,it indicated that the average noncarcinogenic risk was below the threshold and cancer risk of four hazardous metals(Cr,Ni,As,Pb)exceeded the threshold(10^(-6)).Traffic-related source had almost half amount of contribution to the health risk induced by PM_(2.5)-bound trace elements.During the dust transport period or Spring Festival period,the health risks exceeded an acceptable threshold even an order of magnitude higher,suggesting that the serious health risks still existed in low PM_(2.5)environment at certain times.Health risk assessment reminded that the health risk reduction in PM_(2.5)at southeastern China should prioritize traffic-related hazardous trace elements and highlighted the importance of controlling vehicles emissions in the future.展开更多
Quantum confinement is recognized to be an inherent property in low-dimensional structures.Traditionally,it is believed that the carriers trapped within the well cannot escape due to the discrete energy levels.However...Quantum confinement is recognized to be an inherent property in low-dimensional structures.Traditionally,it is believed that the carriers trapped within the well cannot escape due to the discrete energy levels.However,our previous research has revealed efficient carrier escape in low-dimensional structures,contradicting this conventional understanding.In this study,we review the energy band structure of quantum wells along the growth direction considering it as a superposition of the bulk material dispersion and quantization energy dispersion resulting from the quantum confinement across the whole Brillouin zone.By accounting for all wave vectors,we obtain a certain distribution of carrier energy at each quantized energy level,giving rise to the energy subbands.These results enable carriers to escape from the well under the influence of an electric field.Additionally,we have compiled a comprehensive summary of various energy band scenarios in quantum well structures relevant to carrier transport.Such a new interpretation holds significant value in deepening our comprehension of low-dimensional energy bands,discovering new physical phenomena,and designing novel devices with superior performance.展开更多
We described ferromagnetic film and bilayer films composed of two ferromagnetic layers coupled through antiferromagnetic interfacial interaction by classical Heisenberg model and simulated their magnetization state,ma...We described ferromagnetic film and bilayer films composed of two ferromagnetic layers coupled through antiferromagnetic interfacial interaction by classical Heisenberg model and simulated their magnetization state,magnetic permeability,and Faraday effect at zero and finite temperature by using the Landau–Lifshitz–Gilbert(LLG)equation.The results indicate that in a microwave field with positive circular polarization,the ferromagnetic film has one resonance peak while the bilayer film has two resonance peaks.However,the resonance peak disappears in ferromagnetic film,and only one resonance peak emerges in bilayer film in the negative circularly polarized microwave field.When the microwave field’s frequency exceeds the film’s resonance frequency,the Faraday rotation angle of the ferromagnetic film is the greatest,and it decreases when the thickness of the two halves of the bilayer is reduced.When the microwave field’s frequency remains constant,the Faraday rotation angle fluctuates with temperature in the same manner as spontaneous magnetization does.When a DC magnetic field is applied in the direction of the anisotropic axis of the film,the Faraday rotation angle varies with the DC magnetic field and shows a similar shape of the hysteresis loop.展开更多
Jasmonic acid (JA) is an important phytohormone that regulates plant defense responses against herbivore attack, pathogen infection and mechanical wounding. In this report, we provided biochemical and genetic eviden...Jasmonic acid (JA) is an important phytohormone that regulates plant defense responses against herbivore attack, pathogen infection and mechanical wounding. In this report, we provided biochemical and genetic evidence to show that the Arabidopsis thaliana NAC family proteins ANAC019 and ANAC055 might function as transcription activators to regulate JA-induced expression of defense genes. The role of the two NAC genes in JA signaling was examined with the anacO19 anac055 double mutant and with transgenic plants overexpressing ANACO19 or ANAC055. The anacO19 anac055 double mutant plants showed attenuated JA-induced VEGETATIVE STORAGE PROTEIN1 (VSP1) and LIPOXYGENASE2 (LOX2) expression, whereas transgenic plants overexpressing the two NAC genes showed enhanced JA-induced VSP1 and LOX2 expression. That the JA-induced expression of the two NAC genes depends on the function of COIl and AtMYC2, together with the finding that overexpression of ANACO19 partially rescued the JA-related phenotype of the atmyc2-2 mutant, has led us to a hypothesis that the two NAC proteins act downstream of AtMYC2 to regulate JA-signaled defense responses. Further evidence to substantiate this idea comes from the observation that the response of the anacO19 anac055 double mutant to a necrotrophic fungus showed high similarity to that of the atmyc2-2 mutant.展开更多
In northwestern China, there has been a change from traditional cultivation system (TC) with no mulching and flood irrigation to a more modern cultivation system (MC) using plastic film mulching with drip irrigati...In northwestern China, there has been a change from traditional cultivation system (TC) with no mulching and flood irrigation to a more modern cultivation system (MC) using plastic film mulching with drip irrigation. A field study was conducted to compare soil 'C02 concentrations and soil surface COs fluxes between TC and MC systems during a cotton growing season. CO2 concentrations in the soil profile were higher in the MC system (3107-9212μL L-1) than in the TC system (1 275-8994 μL L-1) but the rate of CO2 flux was lower in the MC system. Possible reasons for this included decreased gas diffusion and higher soil moisture due to the mulching cover in the MC system, and the consumption of soil CO2 by weathering reactions. Over the whole cotton growing season, accumulated rates of CO2 flux were 300 and 394 g C m-2 for the MC and TC systems, respectively. When agricultural practices were converted from traditional cultivation to a plastic film mulching system, soil CO2 emissions could be reduced by approximately 100 g C m-2 year-1 in agricultural lands in arid and/or semi-arid areas of northern and northwestern China.展开更多
Soil salinization is one of the most common land degradation processes. In this study, spectral measurements of saline soil samples collected from the Yellow River Delta region of China were conducted in laboratory an...Soil salinization is one of the most common land degradation processes. In this study, spectral measurements of saline soil samples collected from the Yellow River Delta region of China were conducted in laboratory and hyperspectral data were acquired from an EO-1 Hyperion sensor to quantitatively map soil salinity in the region. A soil salinity spectral index (SSI) was constructed from continuum-removed reflectance (CR-reflectance) at 2052 and 2203 nm, to analyze the spectral absorption features of the salt-affected soils. There existed a strong correlation (r = 0.91) between the SSI and soil salt content (SSC). Then, a model for estimation of SSC with SSI was established using univariate regression and validation of the model yielded a root mean square error (RMSE) of 0.986 and an R2 of 0.873. The model was applied to a Hyperion reflectance image on a pixel-by-pixel basis and the resulting quantitative salinity map was validated successfully with RMSE = 1.921 and R2 = 0.627. These suggested that the satellite hyperspectral data had the potential for predicting SSC in a large area.展开更多
A tillage experiment, consisting of moldboard plow (MP), ridge tillage (RT), and no-tillage (NT), was performed in a randomized complete block design with four replicates to study the effect of 3-year tillage ma...A tillage experiment, consisting of moldboard plow (MP), ridge tillage (RT), and no-tillage (NT), was performed in a randomized complete block design with four replicates to study the effect of 3-year tillage management on SOC content and its distribution in surface layer (30 cm) of a clay loam soil in northeast China. NT did not lead to significant increase of SOC in topsoil (0-5 cm) compared with MP and RT; however, the SOC content in NT soil was remarkably reduced at a depth of 5-20 cm. Accordingly, short-term (3-year) NT management tended to stratify SOC concentration, but not necessarily increase its storage in the plow layer for the soil.展开更多
The purpose of this present study is to investigate the frequency and variation of sandstorm in Minqin Oasis. Using daily observational data of sandstorm and other meteorologic data from 1954 to 2000, we have illumina...The purpose of this present study is to investigate the frequency and variation of sandstorm in Minqin Oasis. Using daily observational data of sandstorm and other meteorologic data from 1954 to 2000, we have illuminated the relationship between sandstorm, meteorological parameters and human activities. The results of the analysis show that the highest frequency of sandstorms occurrence and their duration mainly focus on March, April and May, especially in April. Most of sandstorms occur from midday to nightfall, but relative few appear from midnight to forenoon, which apparently correlates to the daily variations of atmospheric thermal stability within atmospheric boundary layer. Monthly mean and annual mean duration of sandstorms coincide well with the frequencies of sandstorm occurrence.展开更多
Mountain glaciers are highly sensitive to climate change. In this paper, we systematically analyzed and discussed the responses of glaciers to climate change during 1960–2017 in western China by the methods of least ...Mountain glaciers are highly sensitive to climate change. In this paper, we systematically analyzed and discussed the responses of glaciers to climate change during 1960–2017 in western China by the methods of least squares and correlation analysis. Results show that the maximum temperature, minimum temperature, average temperature, and precipitation significantly increased in western China at the rates of 0.32°C/10 a, 0.48°C/10 a, 0.39°C/10 a, and 11.20 mm/10 a, respectively. However, the wind speed, hours of sunshine, snowfall, and snowy days displayed decreasing trends at the rates of –0.53 m/(s·10 a), 3.72 h/10 a, –2.90 mm/10 a, and –0.10 d/10 a, respectively. The annual percentage of glacier area decreased by approximately 0.42%, and the average glacier area decreased by 2.76 km^2/a. Meanwhile, glacial shrinkages were greater in the Altay Mountains, Tanggula Mountains, and Qilian Mountains than in the other mountainous regions. Glacier accumulation decreased while melt volume increased at a rate of 2.7×10~4 m^3/a. The area of melt volume was 1.3 times that of the glacier accumulation area. The glacier mass balance(GMB) decreased substantially at a rate of –14.0 mm/a, whereas the equilibrium line altitude(ELA) showed an increasing trend at a rate of 0.5 mm/a. After 1997, the mass was smaller than –500.0 mm, indicating a huge loss in glaciers. Furthermore, relationships between ELA and GMB and various climatic factors were established. Temperature and precipitation demonstrated a significantly negative correlation, whereas wind speed and snowy days had significantly positive correlations with GMB. Snowy days also exhibited a remarkably negative correlation with ELA. The strong warming trend and less snowy days were thought to be the main factors leading to glacial melting, whereas the increase in precipitation, and reductions of sunshine hours and wind speed might slow glacial melting.展开更多
Three-River Headwaters (TRH) region involved in this paper refers to the source region of the Changjiang (Yangtze) River, the Huanghe (Yellow) River and the Lancang River in China. Taking the TRH region of the Q...Three-River Headwaters (TRH) region involved in this paper refers to the source region of the Changjiang (Yangtze) River, the Huanghe (Yellow) River and the Lancang River in China. Taking the TRH region of the Qing- hai-Tibet Plateau as a case, the annual evapotranspiration (ET) model developed by Zhang et al. (2001) was applied to evaluate mean annual ET in the alpine area, and the response of annual ET to land use change was analyzed. The plant-available water coefficient (w) of Zhang's model was revised by using vegetation-temperature condition index (VTCI) before annual ET was calculated in alpine area. The future land use scenario, an input of ET model, was spa- tially simulated by using the conversion of land use and its effects at small regional extent (CLUE-S) to study the re- sponse of ET to land use change. Results show that the relative errors between the simulated ET and that calculated by using water balance equation were 3.81% and the index of agreement was 0.69. This indicates that Zhang's ET model based on revised plant-available water coefficient is a scientific and practical tool to estimate the annual ET in the al- pine area. The annual ET in 2000 in the study area was 221.2 ram, 11.6 mm more than that in 1980. Average annual ET decreased from southeast to northwest, but the change of annual ET between 1980 and 2000 increased from southeast to northwest. As a vast and sparsely populated area, the population in the TRH region was extremely unbalanced and land use change was concentrated in very small regions. Thus, land use change had little effect on total annual ET in the study area but a great impact on its spatial distribution, and the effect of land use change on ET decreased with in- creasing precipitation. ET was most sensitive to the interconversion between forest and unused land, and was least sen- sitive to the interconversion between cropland and low-covered grassland.展开更多
In this paper,we report the development of a bunch-by-bunch beam current acquisition system.Through a waveform-reconstruction algorithm,the system realizes high equivalent sampling rate with a relatively low inherent ...In this paper,we report the development of a bunch-by-bunch beam current acquisition system.Through a waveform-reconstruction algorithm,the system realizes high equivalent sampling rate with a relatively low inherent rate.Based on the EPICS environment,information communication with other systems can be achieved.Preliminary test results in commissioning the SSRF storage ring show that the system can reconstruct the beam waveform of single bunch,providing a convenient and reliable method for the top-up operation in the future.展开更多
Soil samples were collected from apple orchards 5,15,20,30,and 45 years old,and one adjacent forest soil was used as reference to investigate the free Cu2+ion activity in soil solution and the soil Cu fractionation in...Soil samples were collected from apple orchards 5,15,20,30,and 45 years old,and one adjacent forest soil was used as reference to investigate the free Cu2+ion activity in soil solution and the soil Cu fractionation in the solid phase following long-term application of copper fungicide,Bordeaux mixture,in apple orchards and to investigate the relationships among soil free Cu2+ions,Cu fractionation and soil microbial parameters.The total Cu concentration in the orchard soils varied from 21.8 to 141 mg kg-1,increasing with the orchard age,and the value for the reference soil was 12.5 mg kg-1.The free Cu2+ion concentrations in the soil solutions extracted by 0.01 mol L-1 KNO3 ranged from 3.13×10-8(reference)to 4.08×10-6 mol L-1(45 years-old orchard).The concentration of Cu complexed in the fulvic fraction increased with orchard age from 5.16 to 52.5 mg kg-1.This was also the case for other soil Cu fractions except the residual one.The residual soil Cu remained practically constant,ranging from 4.28 to 5.66 mg kg-1,suggesting that anthropogenic soil Cu mainly existed in the more labile active fractions.Regression analyses revealed that both the free Cu2+ions in the soil solution and the humic acid-complexed Cu fraction in the solid phase were strongly related with soil microbial parameters.展开更多
Due to the Tibetan Plateau’s unique high altitude and low temperature climate conditions,the region’s alpine steppe ecosystem is highly fragile and is suffering from severe degradation under the stress of increasing...Due to the Tibetan Plateau’s unique high altitude and low temperature climate conditions,the region’s alpine steppe ecosystem is highly fragile and is suffering from severe degradation under the stress of increasing population,overgrazing,and climate change.The soil stoichiometry,a crucial part of ecological stoichiometry,provides a fundamental approach for understanding ecosystem processes by examining the relative proportions and balance of the three elements.Understanding the impact of degradation on the soil stoichiometry is vital for conservation and management in the alpine steppe on the Tibetan Plateau.This study aims to examine the response of soil stoichiometry to degradation and explore the underlying biotic and abiotic mechanisms in the alpine steppe.We conducted a field survey in a sequent degraded alpine steppe with seven levels inNorthern Tibet.The plant species,aboveground biomass,and physical and chemical soil properties such as the moisture content,temperature,pH,compactness,total carbon(C),total nitrogen(N),and total phosphorus(P)were measured and recorded.The results showed that the contents of soil C/N,C/P,and N/P consistently decreased along intensifying degradation gradients.Using regression analysis and a structural equation model(SEM),we found that the C/N,C/P,and N/P ratios were positively affected by the soil compactness,soil moisture content and species richness of graminoids but negatively affected by soil pH and the proportion of aboveground biomass of forbs.The soil temperature had a negative effect on the C/N ratio but showed positive effect on the C/P and N/P ratios.The current study shows that degradation-induced changes in abiotic and biotic conditions such as soil warming and drying,which accelerated the soil organic carbon mineralization,as well as the increase in the proportion of forbs,whichwere difficult to decompose and input less organic carbon into soil,resulted in the decreases in soil C/N,C/P,and N/P contents to a great extent.Our results provide a sound basis for sustainable conservation and management of the alpine steppe.展开更多
Root growth and spatial and temporal distribution in the 0-100 cm soil profiles of three common annual halophytes Salsola subcrassa, Suaeda acuminate and Petrosimonia sibirica distributed in a saline desert in north- ...Root growth and spatial and temporal distribution in the 0-100 cm soil profiles of three common annual halophytes Salsola subcrassa, Suaeda acuminate and Petrosimonia sibirica distributed in a saline desert in north- ern Xinjiang, China were studied in 2009 and 2010. The results showed that the root systems of the three halo- phytes were of the taproot type, vertically distributed in the 90-cm soil profile, and were deepest in late July. Their taproots reached maximum depth rapidly, early in the growth period, but with rare lateral roots. They were then dug out in an orderly way, from bottom to top, exhibiting vertical development first and then horizontal development. The distribution of specific root length, which reflects the characteristics of the feeder root, was gradually increased from top to bottom, whereas root weight displayed an opposite distribution pattern. The root length distribution of the three halophytes was concentrated (62% to 76%) in the middle soil profile (20-60 cm), with less distribution in the surface (0-20 cm) and bottom (60-90 cm) soil profiles. The results indicated that the roots of the three annual halophytes grew rapidly into the deeper soil layer after germination, which ensured the plant survival and uptake of water and nutrition, and thus built up a strong tolerance to an arid, high-salt environment.展开更多
The molten salt reactor(MSR), as one of the Generation Ⅳ advanced nuclear systems, has attracted a worldwide interest due to its excellent performances in safety, economics, sustainability, and proliferation resistan...The molten salt reactor(MSR), as one of the Generation Ⅳ advanced nuclear systems, has attracted a worldwide interest due to its excellent performances in safety, economics, sustainability, and proliferation resistance. The aim of this work is to provide and evaluate possible solutions to fissile 233 U production and further the fuel transition to thorium fuel cycle in a thermal MSR by using plutonium partitioned from light water reactors spent fuel. By using an in-house developed tool, a breeding and burning(B&B) scenario is first introduced and analyzed from the aspects of the evolution of main nuclides, net 233 U production, spectrum shift, and temperature feedback coefficient. It can be concluded that such a Th/Pu to Th/^(233)U transition can be accomplished by employing a relatively fast fuel reprocessing with a cycle time less than 60 days. At the equilibrium state, the reactor can achieve a conversion ratio of about 0.996 for the 60-day reprocessing period(RP) case and about 1.047 for the 10-day RP case.The results also show that it is difficult to accomplish such a fuel transition with limited reprocessing(RP is 180 days),and the reactor operates as a converter and burns the plutonium with the help of thorium. Meanwhile, a prebreeding and burning(PB&B) scenario is also analyzed briefly with respect to the net 233 U production and evolution of main nuclides. One can find that it is more efficient to produce 233 U under this scenario, resulting in a double time varying from about 1.96 years for the 10-day RP case to about 6.15 years for the 180-day RP case.展开更多
The two-particle momentum correlation is influenced by the nuclear force between two particles,which has been intensively studied for nucleons and nuclei,but not much for antinucleons or antinuclei.In this proceeding,...The two-particle momentum correlation is influenced by the nuclear force between two particles,which has been intensively studied for nucleons and nuclei,but not much for antinucleons or antinuclei.In this proceeding,we present our STAR measurements on momentum correlation function of antiproton-antiproton and proton-proton in Au+Au collisions at S_(NN)^(1/2)= 200 GeV at the Relativistic Heavy Ion Collider.Attractive nuclear force between two antiprotons is demonstrated,and the strong interaction parameters(the scattering length and the effective range) are determined.This measurement serves as an additional verification of CPT symmetry.The present information on the strong force in the antiproton-antiproton system provides a fundamental ingredient towards understanding the structure of more sophisticated antinuclei.展开更多
The north-trending Liupan Shan (六盘山) is an important tectonic boundary between the Tibetan Plateau and the Ordos platform. The Late Cenozoic red earth deposits of the Liupan Shan record its tectonic history and e...The north-trending Liupan Shan (六盘山) is an important tectonic boundary between the Tibetan Plateau and the Ordos platform. The Late Cenozoic red earth deposits of the Liupan Shan record its tectonic history and environmental effects. In this article we report a new Late Cenozoic red earth section from an intermontane basin in the southern part of the Liupan Shan. Lithofacies analysis, paleomagnetic and fission-track chronologies, and paleocurrent analysis have been employed to identi- fy the tectonic uplift events of the Liupan Shan. Based on the age constraints of mammal fossils, the pa- leomagnetic polarity zones of the Huating (华亭) Section can be approximately correlated with the standard polarity zones that lie between C3An.2n and C5n.ln of the Geomagnetic Polar- ity Timescale; the bottom age of this section is approximately 10 Ma. Based on this and the previous studies, we infer that a tectonic event commenced in the southern Liupan Shan in this interval between 8.3 and 8.7 Ma, accompanied by a remarkable increase in sediment accumulation rate. Field observations, fission-track dating, determinations of grain-size frequency distribu- tions and the vertebrate fossils found there suggest that the red earth deposits were reworked by water and mainly transported by fluvial-alluvial processes from the adjacent area.展开更多
基金Project supported by the Thousand Talents Program of Jiangxi Province,China(JXSQ2023201003)National Natural Science Foundation of China(42107254)+4 种基金Science and Technology Major Program of Ordos City(2022EEDSKJZDZX014-2)Technological Innovation Guidance Program of Jiangxi Province(20212BDH81029)Rare Earth Industry Fund(IAGM2020DB06)Selfdeployed Projects of Ganjiang Innovation Academy,Chinese Academy of Sciences(E055A01)the Key Research Program of the Chinese Academy of Sciences(ZDRW-CN-2021-3-3)。
文摘The rare earth elements(REEs)extraction by chemical leaching from ion-adsorption type rare earth ores(IAREO)has led to serious ecological and environmental risks.Conversely,demand for bioleaching is on the rise with the advantage of being environmental-friendly.As one of the organic acids produced by biological metabolism,citric acid was used to leach REEs and explore the performance and process.The results demonstrate that citric acid exhibits higher leaching efficiency(96.00%)for REEs at a relatively low concentration of 0.01 mol/L compared with(NH_(4))_(2)SO_(4)(84.29%,0.1 mol/L)and MgSO_(4)(83.99%,0.1 mol/L).Citric acid shows a preference for leaching heavy rare earth elements,with 99%leaching efficiency in IAREO,which shows higher capacity than(NH_(4))_(2)SO_(4)and MgSO_(4)(as inorganic leaching agents).Kinetic analysis indicates that the leaching process of REEs with citric acid is controlled by both the internal diffusion kinetics and chemical reaction kinetics,which is different from inorganic leaching agents.Visual Minteq calculations confirm that RE-Citrate is the main constituent of the extract solution in the leaching process of the IAREO,thereby enhancing the leaching efficiency of REEs from the IAREO.It suggests that citric acid may be used as a promising organic leaching agent for the environmentalfriendly extraction of REEs from IAREO.
基金National Natural Science Foundation of China(U23A20199)Yunnan Revitalization Talent Support Program“Yunling Scholar”and Yunnan Fundamental Research Projects(202201AS070056)。
文摘Ca^(2+)signaling plays crucial roles in plant stress responses,including defense against insects.To counteract insect feeding,different parts of a plant deploy systemic signaling to communicate and coordinate defense responses,but little is known about the underlying mechanisms.In this study,micrografting,in vivo imaging of Ca^(2+)and reactive oxygen species(ROS),quantification of jasmonic acid(JA)and defensive metabolites,and bioassay were used to study how Arabidopsis seedlings regulate systemic responses in leaves after hypocotyls are wounded.We show that wounding hypocotyls rapidly activated both Ca^(2+)and ROS signals in leaves.RBOHD,which functions to produce ROS,along with two glutamate receptors GLR3.3 and GLR3.6,but not individually RBOHD or GLR3.3 and GLR3.6,in hypocotyls regulate the dynamics of systemic Ca^(2+)signals in leaves.In line with the systemic Ca^(2+)signals,after wounding hypocotyl,RBOHD,GLR3.3,and GLR3.6 in hypocotyl also cooperatively regulate the transcriptome,hormone jasmonic acid,and defensive secondary metabolites in leaves of Arabidopsis seedlings,thus controlling the systemic resistance to insects.Unlike leaf-to-leaf systemic signaling,this study reveals the unique regulation of wounding-induced hypocotyl-to-leaf systemic signaling and sheds new light on how different plant organs use complex signaling pathways to modulate defense responses.
基金principally supported by Deutsche Forschungsgemeinschaft grant to A.M.a Hector Fellow Academy Ph.D.fellowship and Jim Smith Endowment Fund Grant of the Ohio Cichlid Association to X.T.Deutsche Forschungsgemeinschaft grant to J.T.
文摘Cichlid fishes are a textbook example for adaptive radiations,since they diversified into several hundred highly specialized species in each of three great East African lakes.Even scale-eating,an extremely specialized feeding mode,evolved independently multiple times in these radiations and in Lake Tanganyika alone,six endemic scale-eating species occupy this extremely specialized ecological niche.Perissodus microlepis went a step further,by evolving bilaterally asymmetrical heads with an intra-specific polymorphism where left-and right-headed morphs predominantly scrape scales from the opposite sides of their prey.While the bilateral asymmetry of scale-eating cichlids has been known,exactly which craniofacial features explain the laterality of the heads remained unclear.Here we aimed,by utilizing micro-computed tomography(μCT),to resolve this issue of how bilateral symmetry in the skeletal structure is broken in scale-eating Perissodus.Our 3D geometric morphometrics analysis clearly separated and identified the two groups of either left-or right-headed fish.In addition,we observed consistent asymmetric volume changes in the premaxilla,maxilla,and mandible of the craniofacial structures,where left-headed fish have larger jaw elements on the right side,and vice versa.The bimodality implies that the effect sizes of environmental factors might be minor while genetics might be responsible to a larger extent for the asymmetry observed in their head morphology.High-speed video analyses of attacks by asymmetrical morphotypes revealed that they utilize their asymmetrical mouth protrusion,as well as lateralized behavior,to re-orientate the gape towards the preferred side of their prey fish to more efficiently scrape scales.
基金supported by the National Natural Science Foundation of China(No.U22A20578)the Science and Technology Department of Fujian Province(No.2022L3025)+3 种基金the Center for Excellence in Regional Atmospheric Environment Project(No.E0L1B20201)the Chaozhou Science and Technology Plan Project(No.2018GY03)Xiamen Atmospheric Environment Observation and Research Station of Fujian ProvinceFujian Key Laboratory of Atmospheric Ozone Pollution Prevention(Institute of Urban Environment,Chinese Academy of Sciences)。
文摘To gain a comprehensive understanding of sources and health risks of trace elements in an area of China with high population densities and low PM_(2.5)concentrations,15 trace elements(Al,K,Ca,Ti,V,Cr,Mn,Fe,Ni,Cu,Zn,As,Sn,Ba,Pb)in PM_(2.5)were monitored from December 2020 to November 2021 in a representative city,Xiamen.The concentrations of trace elements in Xiamen displayed an obvious seasonal variation and were dominated by K,Fe,Al,Ca and Zn.Based on Positive Matrix Factorization analysis,source appointment revealed that the major sources of trace elements in Xiamen were traffic,dust,biomass and firework combustion,industrial manufacture and shipping emission.According to health risk assessment combined with the source appointment results,it indicated that the average noncarcinogenic risk was below the threshold and cancer risk of four hazardous metals(Cr,Ni,As,Pb)exceeded the threshold(10^(-6)).Traffic-related source had almost half amount of contribution to the health risk induced by PM_(2.5)-bound trace elements.During the dust transport period or Spring Festival period,the health risks exceeded an acceptable threshold even an order of magnitude higher,suggesting that the serious health risks still existed in low PM_(2.5)environment at certain times.Health risk assessment reminded that the health risk reduction in PM_(2.5)at southeastern China should prioritize traffic-related hazardous trace elements and highlighted the importance of controlling vehicles emissions in the future.
基金the National Natural Science Foundation of China(Grant Nos.61991441 and 62004218)the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB01000000)Youth Innovation Promotion Association of Chinese Academy of Sciences(Grant No.2021005).
文摘Quantum confinement is recognized to be an inherent property in low-dimensional structures.Traditionally,it is believed that the carriers trapped within the well cannot escape due to the discrete energy levels.However,our previous research has revealed efficient carrier escape in low-dimensional structures,contradicting this conventional understanding.In this study,we review the energy band structure of quantum wells along the growth direction considering it as a superposition of the bulk material dispersion and quantization energy dispersion resulting from the quantum confinement across the whole Brillouin zone.By accounting for all wave vectors,we obtain a certain distribution of carrier energy at each quantized energy level,giving rise to the energy subbands.These results enable carriers to escape from the well under the influence of an electric field.Additionally,we have compiled a comprehensive summary of various energy band scenarios in quantum well structures relevant to carrier transport.Such a new interpretation holds significant value in deepening our comprehension of low-dimensional energy bands,discovering new physical phenomena,and designing novel devices with superior performance.
基金the Research Program of Shenyang Institute of Science and Technology(Grant No.ZD-2024-05).
文摘We described ferromagnetic film and bilayer films composed of two ferromagnetic layers coupled through antiferromagnetic interfacial interaction by classical Heisenberg model and simulated their magnetization state,magnetic permeability,and Faraday effect at zero and finite temperature by using the Landau–Lifshitz–Gilbert(LLG)equation.The results indicate that in a microwave field with positive circular polarization,the ferromagnetic film has one resonance peak while the bilayer film has two resonance peaks.However,the resonance peak disappears in ferromagnetic film,and only one resonance peak emerges in bilayer film in the negative circularly polarized microwave field.When the microwave field’s frequency exceeds the film’s resonance frequency,the Faraday rotation angle of the ferromagnetic film is the greatest,and it decreases when the thickness of the two halves of the bilayer is reduced.When the microwave field’s frequency remains constant,the Faraday rotation angle fluctuates with temperature in the same manner as spontaneous magnetization does.When a DC magnetic field is applied in the direction of the anisotropic axis of the film,the Faraday rotation angle varies with the DC magnetic field and shows a similar shape of the hysteresis loop.
基金Acknowledgments We are grateful to Dr Xinnian Dong (Duke University, Durham, NC, USA) for critical reading of the manuscript and valuable suggestions. We thank Dr Jianmin Zhou (National Institute of Biological Sciences, Beijing, China) for providing the fungus strain Botrytis cinerea, Dr Salome Prat (Institut de Biologia Molecular de Barcelona, Barcelona, Spain) for providing homozygous atmyc2-2 (T-DNA insertion line SALK_083483) seeds and Dr Daoxin Xie (Tsinghua University, Beijing, China) for providing the coil-I seeds. This work was supported by grants from The National Natural Science Foundation of China (30530440), The Ministry of Science and Technology of China (2006CB 102004, 2006AA10A 116), and The Chinese Academy of Sciences (KSCX2-YW-N-045).
文摘Jasmonic acid (JA) is an important phytohormone that regulates plant defense responses against herbivore attack, pathogen infection and mechanical wounding. In this report, we provided biochemical and genetic evidence to show that the Arabidopsis thaliana NAC family proteins ANAC019 and ANAC055 might function as transcription activators to regulate JA-induced expression of defense genes. The role of the two NAC genes in JA signaling was examined with the anacO19 anac055 double mutant and with transgenic plants overexpressing ANACO19 or ANAC055. The anacO19 anac055 double mutant plants showed attenuated JA-induced VEGETATIVE STORAGE PROTEIN1 (VSP1) and LIPOXYGENASE2 (LOX2) expression, whereas transgenic plants overexpressing the two NAC genes showed enhanced JA-induced VSP1 and LOX2 expression. That the JA-induced expression of the two NAC genes depends on the function of COIl and AtMYC2, together with the finding that overexpression of ANACO19 partially rescued the JA-related phenotype of the atmyc2-2 mutant, has led us to a hypothesis that the two NAC proteins act downstream of AtMYC2 to regulate JA-signaled defense responses. Further evidence to substantiate this idea comes from the observation that the response of the anacO19 anac055 double mutant to a necrotrophic fungus showed high similarity to that of the atmyc2-2 mutant.
基金Supported by the National Natural Science Foundation of China (No. 40971148)the Program of 100 Distinguished Young Scientists of the Chinese Academy of Sciences
文摘In northwestern China, there has been a change from traditional cultivation system (TC) with no mulching and flood irrigation to a more modern cultivation system (MC) using plastic film mulching with drip irrigation. A field study was conducted to compare soil 'C02 concentrations and soil surface COs fluxes between TC and MC systems during a cotton growing season. CO2 concentrations in the soil profile were higher in the MC system (3107-9212μL L-1) than in the TC system (1 275-8994 μL L-1) but the rate of CO2 flux was lower in the MC system. Possible reasons for this included decreased gas diffusion and higher soil moisture due to the mulching cover in the MC system, and the consumption of soil CO2 by weathering reactions. Over the whole cotton growing season, accumulated rates of CO2 flux were 300 and 394 g C m-2 for the MC and TC systems, respectively. When agricultural practices were converted from traditional cultivation to a plastic film mulching system, soil CO2 emissions could be reduced by approximately 100 g C m-2 year-1 in agricultural lands in arid and/or semi-arid areas of northern and northwestern China.
基金Supported by the Open Foundation of State Key Laboratory of Remote Sensing Science,the Institute of Remote Sensing Applications of the Chinese Academy of Sciences and Beijing Normal University (No.2009KFJJ002)the National Natural Science Foundation of China (No.30590370)
文摘Soil salinization is one of the most common land degradation processes. In this study, spectral measurements of saline soil samples collected from the Yellow River Delta region of China were conducted in laboratory and hyperspectral data were acquired from an EO-1 Hyperion sensor to quantitatively map soil salinity in the region. A soil salinity spectral index (SSI) was constructed from continuum-removed reflectance (CR-reflectance) at 2052 and 2203 nm, to analyze the spectral absorption features of the salt-affected soils. There existed a strong correlation (r = 0.91) between the SSI and soil salt content (SSC). Then, a model for estimation of SSC with SSI was established using univariate regression and validation of the model yielded a root mean square error (RMSE) of 0.986 and an R2 of 0.873. The model was applied to a Hyperion reflectance image on a pixel-by-pixel basis and the resulting quantitative salinity map was validated successfully with RMSE = 1.921 and R2 = 0.627. These suggested that the satellite hyperspectral data had the potential for predicting SSC in a large area.
基金Project supported by the National Natural Science Foundation of China (Nos.40271108 and 40471125).
文摘A tillage experiment, consisting of moldboard plow (MP), ridge tillage (RT), and no-tillage (NT), was performed in a randomized complete block design with four replicates to study the effect of 3-year tillage management on SOC content and its distribution in surface layer (30 cm) of a clay loam soil in northeast China. NT did not lead to significant increase of SOC in topsoil (0-5 cm) compared with MP and RT; however, the SOC content in NT soil was remarkably reduced at a depth of 5-20 cm. Accordingly, short-term (3-year) NT management tended to stratify SOC concentration, but not necessarily increase its storage in the plow layer for the soil.
基金The Knowledge Innovation Programof the Chinese Academy of Sciences(No. KZCX3-SW-341) and the Cold and Arid Environmental and EngineeringResearchInstitute(No.2004105)
文摘The purpose of this present study is to investigate the frequency and variation of sandstorm in Minqin Oasis. Using daily observational data of sandstorm and other meteorologic data from 1954 to 2000, we have illuminated the relationship between sandstorm, meteorological parameters and human activities. The results of the analysis show that the highest frequency of sandstorms occurrence and their duration mainly focus on March, April and May, especially in April. Most of sandstorms occur from midday to nightfall, but relative few appear from midnight to forenoon, which apparently correlates to the daily variations of atmospheric thermal stability within atmospheric boundary layer. Monthly mean and annual mean duration of sandstorms coincide well with the frequencies of sandstorm occurrence.
基金supported by the National Natural Science Foundation of China (41771048, 41571076)the National Social Science Foundation of China (15XZZ012)+2 种基金the Key Lab Project of Shaanxi Province of China (13JS010)the Baoji University of Arts and Science Project (ZK16061)the Baoji University of Arts and Science Geography Key Discipline Project
文摘Mountain glaciers are highly sensitive to climate change. In this paper, we systematically analyzed and discussed the responses of glaciers to climate change during 1960–2017 in western China by the methods of least squares and correlation analysis. Results show that the maximum temperature, minimum temperature, average temperature, and precipitation significantly increased in western China at the rates of 0.32°C/10 a, 0.48°C/10 a, 0.39°C/10 a, and 11.20 mm/10 a, respectively. However, the wind speed, hours of sunshine, snowfall, and snowy days displayed decreasing trends at the rates of –0.53 m/(s·10 a), 3.72 h/10 a, –2.90 mm/10 a, and –0.10 d/10 a, respectively. The annual percentage of glacier area decreased by approximately 0.42%, and the average glacier area decreased by 2.76 km^2/a. Meanwhile, glacial shrinkages were greater in the Altay Mountains, Tanggula Mountains, and Qilian Mountains than in the other mountainous regions. Glacier accumulation decreased while melt volume increased at a rate of 2.7×10~4 m^3/a. The area of melt volume was 1.3 times that of the glacier accumulation area. The glacier mass balance(GMB) decreased substantially at a rate of –14.0 mm/a, whereas the equilibrium line altitude(ELA) showed an increasing trend at a rate of 0.5 mm/a. After 1997, the mass was smaller than –500.0 mm, indicating a huge loss in glaciers. Furthermore, relationships between ELA and GMB and various climatic factors were established. Temperature and precipitation demonstrated a significantly negative correlation, whereas wind speed and snowy days had significantly positive correlations with GMB. Snowy days also exhibited a remarkably negative correlation with ELA. The strong warming trend and less snowy days were thought to be the main factors leading to glacial melting, whereas the increase in precipitation, and reductions of sunshine hours and wind speed might slow glacial melting.
基金Under the auspices of Supporting Program of the 'Eleventh Five-year Plan' for Science and Technology Research of China (No. 2009BAC61B02)China Postdoctoral Science Foundation Funded Project (No. 20100470561)
文摘Three-River Headwaters (TRH) region involved in this paper refers to the source region of the Changjiang (Yangtze) River, the Huanghe (Yellow) River and the Lancang River in China. Taking the TRH region of the Qing- hai-Tibet Plateau as a case, the annual evapotranspiration (ET) model developed by Zhang et al. (2001) was applied to evaluate mean annual ET in the alpine area, and the response of annual ET to land use change was analyzed. The plant-available water coefficient (w) of Zhang's model was revised by using vegetation-temperature condition index (VTCI) before annual ET was calculated in alpine area. The future land use scenario, an input of ET model, was spa- tially simulated by using the conversion of land use and its effects at small regional extent (CLUE-S) to study the re- sponse of ET to land use change. Results show that the relative errors between the simulated ET and that calculated by using water balance equation were 3.81% and the index of agreement was 0.69. This indicates that Zhang's ET model based on revised plant-available water coefficient is a scientific and practical tool to estimate the annual ET in the al- pine area. The annual ET in 2000 in the study area was 221.2 ram, 11.6 mm more than that in 1980. Average annual ET decreased from southeast to northwest, but the change of annual ET between 1980 and 2000 increased from southeast to northwest. As a vast and sparsely populated area, the population in the TRH region was extremely unbalanced and land use change was concentrated in very small regions. Thus, land use change had little effect on total annual ET in the study area but a great impact on its spatial distribution, and the effect of land use change on ET decreased with in- creasing precipitation. ET was most sensitive to the interconversion between forest and unused land, and was least sen- sitive to the interconversion between cropland and low-covered grassland.
基金Supported by 100 Talents Programme of The Chinese Academy of Sciences
文摘In this paper,we report the development of a bunch-by-bunch beam current acquisition system.Through a waveform-reconstruction algorithm,the system realizes high equivalent sampling rate with a relatively low inherent rate.Based on the EPICS environment,information communication with other systems can be achieved.Preliminary test results in commissioning the SSRF storage ring show that the system can reconstruct the beam waveform of single bunch,providing a convenient and reliable method for the top-up operation in the future.
基金Supported by the National Natural Science Foundation of China(Nos.40871115 and 40671095)
文摘Soil samples were collected from apple orchards 5,15,20,30,and 45 years old,and one adjacent forest soil was used as reference to investigate the free Cu2+ion activity in soil solution and the soil Cu fractionation in the solid phase following long-term application of copper fungicide,Bordeaux mixture,in apple orchards and to investigate the relationships among soil free Cu2+ions,Cu fractionation and soil microbial parameters.The total Cu concentration in the orchard soils varied from 21.8 to 141 mg kg-1,increasing with the orchard age,and the value for the reference soil was 12.5 mg kg-1.The free Cu2+ion concentrations in the soil solutions extracted by 0.01 mol L-1 KNO3 ranged from 3.13×10-8(reference)to 4.08×10-6 mol L-1(45 years-old orchard).The concentration of Cu complexed in the fulvic fraction increased with orchard age from 5.16 to 52.5 mg kg-1.This was also the case for other soil Cu fractions except the residual one.The residual soil Cu remained practically constant,ranging from 4.28 to 5.66 mg kg-1,suggesting that anthropogenic soil Cu mainly existed in the more labile active fractions.Regression analyses revealed that both the free Cu2+ions in the soil solution and the humic acid-complexed Cu fraction in the solid phase were strongly related with soil microbial parameters.
基金supported by the State Key Research Development Program of China (Grant 2016YFC0502002)Youth Innovation Research Team Project (LENOM2016Q0003)
文摘Due to the Tibetan Plateau’s unique high altitude and low temperature climate conditions,the region’s alpine steppe ecosystem is highly fragile and is suffering from severe degradation under the stress of increasing population,overgrazing,and climate change.The soil stoichiometry,a crucial part of ecological stoichiometry,provides a fundamental approach for understanding ecosystem processes by examining the relative proportions and balance of the three elements.Understanding the impact of degradation on the soil stoichiometry is vital for conservation and management in the alpine steppe on the Tibetan Plateau.This study aims to examine the response of soil stoichiometry to degradation and explore the underlying biotic and abiotic mechanisms in the alpine steppe.We conducted a field survey in a sequent degraded alpine steppe with seven levels inNorthern Tibet.The plant species,aboveground biomass,and physical and chemical soil properties such as the moisture content,temperature,pH,compactness,total carbon(C),total nitrogen(N),and total phosphorus(P)were measured and recorded.The results showed that the contents of soil C/N,C/P,and N/P consistently decreased along intensifying degradation gradients.Using regression analysis and a structural equation model(SEM),we found that the C/N,C/P,and N/P ratios were positively affected by the soil compactness,soil moisture content and species richness of graminoids but negatively affected by soil pH and the proportion of aboveground biomass of forbs.The soil temperature had a negative effect on the C/N ratio but showed positive effect on the C/P and N/P ratios.The current study shows that degradation-induced changes in abiotic and biotic conditions such as soil warming and drying,which accelerated the soil organic carbon mineralization,as well as the increase in the proportion of forbs,whichwere difficult to decompose and input less organic carbon into soil,resulted in the decreases in soil C/N,C/P,and N/P contents to a great extent.Our results provide a sound basis for sustainable conservation and management of the alpine steppe.
基金the Chinese Academy of Sciences Action-plan for West Development (KZCX2-XB3-07) for financial support"Western Light" Talents Training Program of Chinese Academy of Sciences (XBBS200811)
文摘Root growth and spatial and temporal distribution in the 0-100 cm soil profiles of three common annual halophytes Salsola subcrassa, Suaeda acuminate and Petrosimonia sibirica distributed in a saline desert in north- ern Xinjiang, China were studied in 2009 and 2010. The results showed that the root systems of the three halo- phytes were of the taproot type, vertically distributed in the 90-cm soil profile, and were deepest in late July. Their taproots reached maximum depth rapidly, early in the growth period, but with rare lateral roots. They were then dug out in an orderly way, from bottom to top, exhibiting vertical development first and then horizontal development. The distribution of specific root length, which reflects the characteristics of the feeder root, was gradually increased from top to bottom, whereas root weight displayed an opposite distribution pattern. The root length distribution of the three halophytes was concentrated (62% to 76%) in the middle soil profile (20-60 cm), with less distribution in the surface (0-20 cm) and bottom (60-90 cm) soil profiles. The results indicated that the roots of the three annual halophytes grew rapidly into the deeper soil layer after germination, which ensured the plant survival and uptake of water and nutrition, and thus built up a strong tolerance to an arid, high-salt environment.
基金supported by the Chinese TMSR Strategic Pioneer Science and Technology Project(No.XDA02010000)the National Natural Science Foundation of China(No.91326201)the Frontier Science Key Program of the Chinese Academy of Sciences(No.QYZDY-SSW-JSC016)
文摘The molten salt reactor(MSR), as one of the Generation Ⅳ advanced nuclear systems, has attracted a worldwide interest due to its excellent performances in safety, economics, sustainability, and proliferation resistance. The aim of this work is to provide and evaluate possible solutions to fissile 233 U production and further the fuel transition to thorium fuel cycle in a thermal MSR by using plutonium partitioned from light water reactors spent fuel. By using an in-house developed tool, a breeding and burning(B&B) scenario is first introduced and analyzed from the aspects of the evolution of main nuclides, net 233 U production, spectrum shift, and temperature feedback coefficient. It can be concluded that such a Th/Pu to Th/^(233)U transition can be accomplished by employing a relatively fast fuel reprocessing with a cycle time less than 60 days. At the equilibrium state, the reactor can achieve a conversion ratio of about 0.996 for the 60-day reprocessing period(RP) case and about 1.047 for the 10-day RP case.The results also show that it is difficult to accomplish such a fuel transition with limited reprocessing(RP is 180 days),and the reactor operates as a converter and burns the plutonium with the help of thorium. Meanwhile, a prebreeding and burning(PB&B) scenario is also analyzed briefly with respect to the net 233 U production and evolution of main nuclides. One can find that it is more efficient to produce 233 U under this scenario, resulting in a double time varying from about 1.96 years for the 10-day RP case to about 6.15 years for the 180-day RP case.
基金supported in part by the National Natural Science Foundation of China(No.11421505)the Major State Basic Research Development Program in China(No.2014CB845401)
文摘The two-particle momentum correlation is influenced by the nuclear force between two particles,which has been intensively studied for nucleons and nuclei,but not much for antinucleons or antinuclei.In this proceeding,we present our STAR measurements on momentum correlation function of antiproton-antiproton and proton-proton in Au+Au collisions at S_(NN)^(1/2)= 200 GeV at the Relativistic Heavy Ion Collider.Attractive nuclear force between two antiprotons is demonstrated,and the strong interaction parameters(the scattering length and the effective range) are determined.This measurement serves as an additional verification of CPT symmetry.The present information on the strong force in the antiproton-antiproton system provides a fundamental ingredient towards understanding the structure of more sophisticated antinuclei.
基金supported by the National Natural Science Foundation of China (Nos. 41290253, 40772116)the National Basic Research Program of China (973 Projects) (Nos.2010CB83340, 2013CB955904)
文摘The north-trending Liupan Shan (六盘山) is an important tectonic boundary between the Tibetan Plateau and the Ordos platform. The Late Cenozoic red earth deposits of the Liupan Shan record its tectonic history and environmental effects. In this article we report a new Late Cenozoic red earth section from an intermontane basin in the southern part of the Liupan Shan. Lithofacies analysis, paleomagnetic and fission-track chronologies, and paleocurrent analysis have been employed to identi- fy the tectonic uplift events of the Liupan Shan. Based on the age constraints of mammal fossils, the pa- leomagnetic polarity zones of the Huating (华亭) Section can be approximately correlated with the standard polarity zones that lie between C3An.2n and C5n.ln of the Geomagnetic Polar- ity Timescale; the bottom age of this section is approximately 10 Ma. Based on this and the previous studies, we infer that a tectonic event commenced in the southern Liupan Shan in this interval between 8.3 and 8.7 Ma, accompanied by a remarkable increase in sediment accumulation rate. Field observations, fission-track dating, determinations of grain-size frequency distribu- tions and the vertebrate fossils found there suggest that the red earth deposits were reworked by water and mainly transported by fluvial-alluvial processes from the adjacent area.