Assessing individual differences and variability in animal movement patterns is essential to improve our understanding of the evolution and ontogeny of migratory strategies.In long-distance migratory species,fledged j...Assessing individual differences and variability in animal movement patterns is essential to improve our understanding of the evolution and ontogeny of migratory strategies.In long-distance migratory species,fledged juveniles often rely on an extremely restricted time span to learn the essential skills for survival and to prepare for migration,possibly the most risky phase of their lives.Collecting detailed information on the dynamics of the movements during the crucial pre-migratory phase is hence essential to understand the solutions developed by migratory species in different environmental contexts.Here,we used high-resolution GPS/GSM transmitters to collect information on the movement ecology of seven juvenile Montagu's Harriers(Circus pygargus)born in central Italy,investigating their early life stages,namely the post-fledging dependence period(PFDP)and the pre-migratory phase(PMP),until autumn migration.After fledging,individuals showed high variability(both in space and time)in home range size,daily distances covered(6.88±11.44 km/day),distance from the nest(1.45±2.8 km)and PFDP length(23.3±5.3 days).Residence time at the natal site significantly decreased,while time interval between revists in the natal area significantly increased,as the PFDP progressed.During the PMP,explored areas and distance from the nest(max value up to 320.8 km)varied among individuals,despite daily distances covered(27±40 km/day)and time allocation between traveling(60.7%)and foraging(39.3%)were similar across individuals.The PMP lasted 38±14 days.Land cover composition of foraging locations was mostly represented by agricultural lands(~78.2%),though habitat use differed among individuals.More than 76%of such locations were outside protected areas.This individual-based tracking study represents a novel approach that improves previous knowledge based on field studies on the early life stages of the Montagu's Harrier.High inter-individual variability in movement patterns,broad-range exploratory movements and foraging locations outside the protected area network make the application of standard conservation measures difficult,raising concerns about the long-term preservation of this vulnerable migratory species in Italy.展开更多
The increasing conversion of agricultural land to organic farming requires the development of specifically adapted cultivars.So far,in tomato there is lack of research for selection of germplasm suitable for sustainab...The increasing conversion of agricultural land to organic farming requires the development of specifically adapted cultivars.So far,in tomato there is lack of research for selection of germplasm suitable for sustainable agroecosystems.In this study,we investigated the genotypic and environmental factors affecting the variation of plant,fruits,and root traits in 39 tomato genotypes grown under organic farming conditions.Four independent experiments were conducted in Italy and Spain across two consecutive seasons in 2019 and 2020.For all traits,the factorial linear regression model to estimate the main effects of genotype(G),location(L),year of cultivation(Y)and their interactions,revealed highly significant(P<0.001)variations,with the G factor being largely predominant for most traits.The implementation of the“which-won-where”,“mean performance versus stability”and“discriminative vs representativeness”patterns in the GGE(Genotype plus Genotype by Environment interaction)analysis,allowed the identification of superior cultivars with high stability across the testing environments.Genomic characterization with 30890 high quality SNPs from dd RADseq genotyping analysis,revealed that a specific cluster of cherry tomato accessions were low performing in terms of yield and fruit weight,on the contrary,showed a high content of soluble solids,which in agreement with GGE analysis.Results of this study provide a framework for the potential use of this locally adapted tomato germplasm to address the needs of more sustainable agriculture.展开更多
This study systematically investigated the microstructural evolution of binary Ni-Cu alloys(Cu55Ni45,Cu60Ni40,and Ni65Cu35)under deep undercooling conditions.The controlled rapid solidification experiments combined wi...This study systematically investigated the microstructural evolution of binary Ni-Cu alloys(Cu55Ni45,Cu60Ni40,and Ni65Cu35)under deep undercooling conditions.The controlled rapid solidification experiments combined with optical microscopy and electron backscatter diffraction(EBSD)analysis demonstrate that increasing undercooling(ΔT)can induce a consistent sequence of microstructural transitions:coarse dendrites,fine equiaxed grains(first refinement),oriented fine dendrites,and fine equiaxed grains(second refinement).Two distinct grain refinement events are identified,with critical undercooling thresholds(ΔT)dependent on composition:increasing Cu content increases the critical undercoolingΔT*required for the second refinement(Cu55Ni45:227 K;Cu60Ni40:217 K;Ni65Cu35:200 K).The BCT(Bridgman Crystal Growth)model quantitatively elucidates this behavior,revealing a shift from solute-diffusion-dominated growth at low undercooling to thermally dominated diffusion at high undercooling(ΔT).Crucially,refined grains at high undercooling exhibit smaller sizes(10μm)and higher uniformity than those at low undercooling(20μm).These findings provide fundamental insights into non-equilibrium solidification mechanisms and establish a foundation for designing high-performance Ni-Cu alloys via deep undercooling processing.展开更多
The integration of academic research methodologies into design thinking processes presents a transformative approach to addressing complex challenges in group housing,fostering inclusive,sustainable,and user-centered ...The integration of academic research methodologies into design thinking processes presents a transformative approach to addressing complex challenges in group housing,fostering inclusive,sustainable,and user-centered solutions.This research explores how methodologies such as Participatory Action Research,post-occupancy evaluations,and Research through Design can be systematically embedded within design thinking to bridge the gap between academic rigor and empathy-driven,iterative design practices.By synthesizing these paradigms,the study proposes a framework for group housing design that prioritizes co-design processes,empathy-based data collection,and participatory evaluation,while emphasizing adaptability through sociocultural insights and user feedback.Case studies analysis demonstrate the effectiveness of flexible,community-driven design,while emerging technologies like IoT-enabled cohousing signal new opportunities for innovation.Challenges,including scalability,long-term validation,and reconciling user autonomy with professional expertise,are critically analyzed.Ultimately,this research advances a hybrid methodology to redefine the conceptualization,implementation,and assessment of group housing,offering actionable pathways to achieve affordable,inclusive,and context-sensitive housing solutions.展开更多
Different habitat types exert particular challenges to ecological performance,ultimately having a strong influence on the evolution of morphology.Although it is well known that external morphology can evolve under the...Different habitat types exert particular challenges to ecological performance,ultimately having a strong influence on the evolution of morphology.Although it is well known that external morphology can evolve under the selective pressure of habitat structure,the evolutionary response of internal morphological traits remains vastly unexplored.Here,we test for morphological divergence between arenicolous and nonarenicolous species in a clade of tropidurid lizards,considering external morphological proportions and limb muscle dimensions.We found that arenicolous species seem to have evolved internal and external morphological adaptations that separate them from other habitat specialists.Moreover,comparative analyses suggested that the traits that differed the most between arenicolous and nonarenicolous lizards might have evolved divergently towards different optima.Additionally,the axis of higher morphological divergence between arenicolous and nonarenicolous species represented an important proportion of the morphological diversity within our sample,indicating that the hypothetical adaptive divergence of internal and external traits has contributed significantly to phenotypic diversity.Our results show that evolutionary associations between morphology and habitat use can be detected on both external body proportions and muscle morphology.Moreover,they highlight the emergent importance of internal anatomical traits in ecomorphological studies,especially when such traits are directly involved in determining functional performance.展开更多
The management of agricultural wastes is essential for resource conservation and environmental sustainability.Due to escalating worries regarding plastic pollution and the surging expenses linked to petroleum-based pl...The management of agricultural wastes is essential for resource conservation and environmental sustainability.Due to escalating worries regarding plastic pollution and the surging expenses linked to petroleum-based plastics,there has been a notable transition towards the creation of biodegradable alternatives sourced from natural materials.Biofibres and bioplastics,especially those derived from agricultural waste,have garnered significant attention for their prospective uses in food packaging,biomedical sciences,and sustainable manufacturing.This study examines the viability of employing banana peel as a natural and environmentally sustainable raw material for the production of biodegradable bioplastic sheets.Due to its abundant polysaccharides and lignocellulosic fibers,banana peel presents advantageous structural and mechanical characteristics for bioplastic manufacturing.Experimental findings demonstrate that bioplastic derived from banana peels has enhanced biodegradability and environmental compatibility relative to traditional synthetic plastics,positioning it as a feasible alternative to mitigate the worldwide plastic waste epidemic.An optimal formulation was constructed using Design Expert software,comprising 55.38 g of banana peel,27.63 g of fish scales,and 20 g of chitosan powder.This formulation improves the film’s tensile strength,flexibility,and degradation rate,ensuring its efficacy in industrial applications including food packaging and molding.The study’s results highlight the promise of bioplastics made from banana peels as an economical and sustainable alternative,decreasing dependence on petroleum-based plastics and alleviating environmental pollution.展开更多
Cyber-Physical Systems(CPS)represent an integration of computational and physical elements,revolutionizing industries by enabling real-time monitoring,control,and optimization.A complementary technology,Digital Twin(D...Cyber-Physical Systems(CPS)represent an integration of computational and physical elements,revolutionizing industries by enabling real-time monitoring,control,and optimization.A complementary technology,Digital Twin(DT),acts as a virtual replica of physical assets or processes,facilitating better decision making through simulations and predictive analytics.CPS and DT underpin the evolution of Industry 4.0 by bridging the physical and digital domains.This survey explores their synergy,highlighting how DT enriches CPS with dynamic modeling,realtime data integration,and advanced simulation capabilities.The layered architecture of DTs within CPS is examined,showcasing the enabling technologies and tools vital for seamless integration.The study addresses key challenges in CPS modeling,such as concurrency and communication,and underscores the importance of DT in overcoming these obstacles.Applications in various sectors are analyzed,including smart manufacturing,healthcare,and urban planning,emphasizing the transformative potential of CPS-DT integration.In addition,the review identifies gaps in existing methodologies and proposes future research directions to develop comprehensive,scalable,and secure CPSDT systems.By synthesizing insights fromthe current literature and presenting a taxonomy of CPS and DT,this survey serves as a foundational reference for academics and practitioners.The findings stress the need for unified frameworks that align CPS and DT with emerging technologies,fostering innovation and efficiency in the digital transformation era.展开更多
Cloud diurnal variation is crucial for regulating cloud radiative effects and atmospheric dynamics.However,it is often overlooked in the evaluation and development of climate models.Thus,this study aims to investigate...Cloud diurnal variation is crucial for regulating cloud radiative effects and atmospheric dynamics.However,it is often overlooked in the evaluation and development of climate models.Thus,this study aims to investigate the daily mean(CFR)and diurnal variation(CDV)of cloud fraction across high-,middle-,low-level,and total clouds in the FGOALS-f3-L general circulation model.The bias of total CDV is decomposed into the model biases in CFRs and CDVs of clouds at all three levels.Results indicate that the model generally underestimates low-level cloud fraction during the daytime and high-/middle-level cloud fraction at nighttime.The simulation biases of low clouds,especially their CDV biases,dominate the bias of total CDV.Compensation effects exist among the bias decompositions,where the negative contributions of underestimated daytime low-level cloud fraction are partially offset by the opposing contributions from biases in high-/middle-level clouds.Meanwhile,the bias contributions have notable land–ocean differences and region-dependent characteristics,consistent with the model biases in these variables.Additionally,the study estimates the influences of CFR and CDV biases on the bias of shortwave cloud radiative effects.It reveals that the impacts of CDV biases can reach half of those from CFR biases,highlighting the importance of accurate CDV representation in climate models.展开更多
Nerve guidance conduits(NGCs)effectively support and guide the regeneration of injured nerves.However,traditional NGCs often lack essential growth factors and fail to create a biomimetic microenvironment conducive to ...Nerve guidance conduits(NGCs)effectively support and guide the regeneration of injured nerves.However,traditional NGCs often lack essential growth factors and fail to create a biomimetic microenvironment conducive to nerve regrowth.This study develops a highly bionic nerve guidance conduit(HB-NGC)using hybrid high-voltage electrotechnologies that integrate electrospinning with electrohydrodynamic(EHD)printing.The outer layer consists of electrospun polycaprolactone fibers loaded with carboxyl-multi-walled carbon nanotubes,while the inner layer is composed of highly aligned polycaprolactone fibers created by EHD printing.The tubular core of the HB-NGC is filled with hyaluronic acid methacryloyl(HAMA)hydrogel encapsulating bone marrow mesenchymal stem cells(BMSCs).This highly biomimetic NGC is conductive,capable of guiding axon growth,and sustainably releases growth factors,effectively mimicking the structure,function,and characteristics of natural peripheral nerves.Its distinctive architectural layers provide an exceptional bionic microenvironment by restoring physical pathways,facilitating electrical signal conduction,and supplying an extracellular matrix(ECM)environment enriched with essential growth factors.Additionally,the HB-NGC’s morphology,along with its physicochemical and mechanical properties,effectively bridges the gap between severed nerve ends.In vivo animal studies validate the HB-NGC’s effectiveness,highlighting its significant potential to enhance peripheral nerve regeneration.展开更多
Lightweight deep learning models are increasingly required in resource-constrained environments such as mobile devices and the Internet of Medical Things(IoMT).Multi-head convolution with channel attention can facilit...Lightweight deep learning models are increasingly required in resource-constrained environments such as mobile devices and the Internet of Medical Things(IoMT).Multi-head convolution with channel attention can facilitate learning activations relevant to different kernel sizes within a multi-head convolutional layer.Therefore,this study investigates the capability of novel lightweight models incorporating residual multi-head convolution with channel attention(ResMHCNN)blocks to classify medical images.We introduced three novel lightweight deep learning models(BT-Net,LCC-Net,and BC-Net)utilizing the ResMHCNN block as their backbone.These models were crossvalidated and tested on three publicly available medical image datasets:a brain tumor dataset from Figshare consisting of T1-weighted magnetic resonance imaging slices of meningioma,glioma,and pituitary tumors;the LC25000 dataset,which includes microscopic images of lung and colon cancers;and the BreaKHis dataset,containing benign and malignant breast microscopic images.The lightweight models achieved accuracies of 96.9%for 3-class brain tumor classification using BT-Net,and 99.7%for 5-class lung and colon cancer classification using LCC-Net.For 2-class breast cancer classification,BC-Net achieved an accuracy of 96.7%.The parameter counts for the proposed lightweight models—LCC-Net,BC-Net,and BT-Net—are 0.528,0.226,and 1.154 million,respectively.The presented lightweight models,featuring ResMHCNN blocks,may be effectively employed for accurate medical image classification.In the future,these models might be tested for viability in resource-constrained systems such as mobile devices and IoMT platforms.展开更多
Sessile oak(Quercus petraea(Matt.)Liebl.)is widely distributed across most of Europe particularly the hills and lower mountain ranges,so is considered“the oak of the mountains”.This species grows on a wide variety o...Sessile oak(Quercus petraea(Matt.)Liebl.)is widely distributed across most of Europe particularly the hills and lower mountain ranges,so is considered“the oak of the mountains”.This species grows on a wide variety of soils and at altitudes ranging from sea level to 2200 m,especially in Atlantic and sub-Mediterranean climates,and it is sensitive to low winter temperatures,early and late frosts,as well as high summer temperatures.Sessile oak forms both pure and mixed stands especially with broadleaves such as European beech,European hornbeam,small-leaved lime and Acer spp.These form the understorey of sessile oak stands,promoting the natural shedding of lower branches of the oak and protecting the trunk against epicormic branches.Sessile oak is a long-lived,light-demanding and wind-firm species,owing to its taproot and heart-shaped root system.Its timber,one of the most valuable in Europe,is important for fur-niture-making(both solid wood and veneer),construction,barrels,railway sleepers,and is also used as fuelwood.It is one of the few major tree species in Europe that is regener-ated by seed(naturally or artificially)and by stump shoots in high forest,coppice-with-standards and coppice forests.Sessile oak forests are treated in both regular and irregular systems involving silvicultural techniques such as uniform shelterwood,group shelterwood,irregular shelterwood,irregular high forest,coppice-with-standards and simple coppice.Young naturally regenerated stands are managed by weeding,release cutting and cleaning-respacing,keeping the stands quite dense for good natural pruning.Plantations are based on(1)2-4-year old bare-root or container-grown seedlings produced in nurseries using seeds from genetic resources,seed stands and seed orchards.The density of sessile oak plantations(mostly in rows,but also in clusters)is usually between 4000 and 6000 ind.ha^(−1).Sessile oak silviculture of mature stands includes crown thinning,focus-ing on final crop trees(usually a maximum of 100 ind.ha^(−1))and targeting the production of large-diameter and high quality trees at long rotation ages(mostly over 120 years,sometimes 250-300 years).In different parts of Europe,conversion of simple coppices and coppice-with-standards to high forests is continuing.Even though manage-ment of sessile oak forests is very intensive and expensive,requiring active human intervention,the importance of this species in future European forests will increase in the con-text of climate change due to its high resistance to distur-bance,superior drought tolerance and heat stress resistance.展开更多
Currently,there is a lack of effective medicines capable of halting or reve rsing the progression of neurodegenerative disorde rs,including amyotrophic lateral sclerosis,Parkinson s disease,multiple sclerosis,or Alzhe...Currently,there is a lack of effective medicines capable of halting or reve rsing the progression of neurodegenerative disorde rs,including amyotrophic lateral sclerosis,Parkinson s disease,multiple sclerosis,or Alzheimer s disease.Given the unmet medical need,it is necessary to reevaluate the existing para digms of how to to rget these diseases.When considering neurodegenerative diseases from a systemic neurometabolic perspective,it becomes possible to explain the shared pathological features.This innovative approach presented in this paper draws upon exte nsive research conducted by the authors and researchers worldwide.In this review,we highlight the importance of metabolic mitochondrial dysfunction in the context of neurodegenerative diseases.We provide an overview of the risk factors associated with developing neurodegenerative disorders,including genetic,epigenetic,and environmental fa ctors.Additionally,we examine pathological mechanisms implicated in these diseases such as oxidative stress,accumulation of misfolded proteins,inflammation,demyelination,death of neurons,insulin resistance,dysbiosis,and neurotransmitter disturbances.Finally,we outline a proposal for the restoration of mitochondrial metabolism,a crucial aspect that may hold the key to facilitating curative therapeutic interventions for neurodegenerative disorders in forthcoming advancements.展开更多
In this paper,we present a comprehensive system model for Industrial Internet of Things(IIoT)networks empowered by Non-Orthogonal Multiple Access(NOMA)and Mobile Edge Computing(MEC)technologies.The network comprises e...In this paper,we present a comprehensive system model for Industrial Internet of Things(IIoT)networks empowered by Non-Orthogonal Multiple Access(NOMA)and Mobile Edge Computing(MEC)technologies.The network comprises essential components such as base stations,edge servers,and numerous IIoT devices characterized by limited energy and computing capacities.The central challenge addressed is the optimization of resource allocation and task distribution while adhering to stringent queueing delay constraints and minimizing overall energy consumption.The system operates in discrete time slots and employs a quasi-static approach,with a specific focus on the complexities of task partitioning and the management of constrained resources within the IIoT context.This study makes valuable contributions to the field by enhancing the understanding of resourceefficient management and task allocation,particularly relevant in real-time industrial applications.Experimental results indicate that our proposed algorithmsignificantly outperforms existing approaches,reducing queue backlog by 45.32% and 17.25% compared to SMRA and ACRA while achieving a 27.31% and 74.12% improvement in Qn O.Moreover,the algorithmeffectively balances complexity and network performance,as demonstratedwhen reducing the number of devices in each group(Ng)from 200 to 50,resulting in a 97.21% reduction in complexity with only a 7.35% increase in energy consumption.This research offers a practical solution for optimizing IIoT networks in real-time industrial settings.展开更多
In this work,several ceria-zirconia based catalysts with very lo w(and equimolar) metal contents were prepared,characterised and tested for the CO oxidatio n reaction(under lean and stoichiometric conditions),trying t...In this work,several ceria-zirconia based catalysts with very lo w(and equimolar) metal contents were prepared,characterised and tested for the CO oxidatio n reaction(under lean and stoichiometric conditions),trying to emulate those conditions found in a diesel oxidation catalyst(DOC) system from a diesel engine and those encountered under gasoline exhaust(λ=1).The metals chosen are Cu,Co,Ag and Pt(as a reliable benchmark).The results reveal enormous differences among reducibility and catalytic activity despite quite similar structural and textural properties of the catalysts,showing differences among dispersion(Ag-catalyst seems to present a low level of dispersion).This catalyst seems to be characterised,as well,by a strong electronic interaction between Ce and Ag centres which is suggested to yield an improved reducibility under H_(2)-TPR conditions.Nevertheless,the order in catalytic activity(Cu>Ag>Co≈Pt>>support) seems not to follow the order found in reducibility and the Cu-catalyst seems to be the most active independently on the reaction conditions,yielding nearly overlapped CO oxidation catalytic curves.Inte restingly,a stro ng correlation between the catalytic activity under the two conditions tested and the OSC values of the Ce_(0.8)Zr_(0.2)O_(2)-supported metal catalysts is found.Therefore,OSC parameter measured at 150℃ can be used as a relevant descriptor to evaluate the CO oxidation activity at low and medium conversions for the investigated catalysts,much better than the H_(2)-TPR measurements.展开更多
BACKGROUND There are limited studies investigating the association between type 2 diabetes mellitus(T2DM)and non-alcoholic fatty liver disease(NAFLD)in the region of Bihar,India.AIM To estimate the prevalence of NAFLD...BACKGROUND There are limited studies investigating the association between type 2 diabetes mellitus(T2DM)and non-alcoholic fatty liver disease(NAFLD)in the region of Bihar,India.AIM To estimate the prevalence of NAFLD in persons with newly diagnosed T2DM in the population of North Bihar,India.METHODS This single centre cross-sectional study was undertaken in the Research Centre for Diabetes Hypertension and Obesity,Samastipur,Bihar,India.Data were collected from persons newly diagnosed with T2DM or those diagnosed within 6 months of when the study was conducted between December 2022 to May 2023.RESULTS A total of 148 people with newly diagnosed T2DM were included(median age 47 years,46.6%female)and 109 patients with liver disease on ultrasound evaluation.The persons with liver disease consumed more fats and oils(88.1%vs 74.4%,P=0.042)and they had significantly greater body mass index(27.4 vs 23.0,P<0.001),waist circumference(37 vs 33,P<0.001),and waist-to-hip ratio(1.00 vs 0.70,P=0.025).Females were associated with greater liver disease[odds ratio(OR):3.09,95%confidence interval(CI):1.09-8.80,P=0.32].Waist circumference(OR:1.42,95%CI:1.22-1.66,P<0.001)and low-density lipoprotein cholesterol(OR:1.01,95%CI:1.01-1.02,P=0.048)were associated with any liver disease.The factors most associated with grade 2/3 liver disease was right upper quadrant pain or heaviness(OR:5.22,95%CI:1.40-19.41,P=0.14),greater income(OR:3.58,95%CI:1.28-10.04,P=0.015)and waist circumference(OR:1.31,95%CI:1.02-1.69,P=0.036).CONCLUSION NAFLD is common in new/recently diagnosed T2DM and disease burden is high and common among patients who are either high consumers of fats and oils or have obesity-associated markers.展开更多
In the real world,one of the most common problems in project management is the unpredictability of resources and timelines.An efficient way to resolve uncertainty problems and overcome such obstacles is through an ext...In the real world,one of the most common problems in project management is the unpredictability of resources and timelines.An efficient way to resolve uncertainty problems and overcome such obstacles is through an extended fuzzy approach,often known as neutrosophic logic.Our rigorous proposed model has led to the creation of an advanced technique for computing the triangular single-valued neutrosophic number.This innovative approach evaluates the inherent uncertainty in project durations of the planning phase,which enhances the potential significance of the decision-making process in the project.Our proposed method,for the first time in the neutrosophic set literature,not only solves existing problems but also introduces a new set of problems not yet explored in previous research.A comparative study using Python programming was conducted to examine the effectiveness of responsive and adaptive planning,as well as their differences from other existing models such as the classical critical path problem and the fuzzy critical path problem.The study highlights the use of neutrosophic logic in handling complex projects by illustrating an innovative dynamic programming framework that is robust and flexible,according to the derived results,and sets the stage for future discussions on its scalability and application across different industries.展开更多
This study investigates the three-dimensional(3D)effects introduced by the end walls for an aspect ratio of1 in ramp-induced shock wave boundary layer interactions.The simulations are performed using a symmetry bounda...This study investigates the three-dimensional(3D)effects introduced by the end walls for an aspect ratio of1 in ramp-induced shock wave boundary layer interactions.The simulations are performed using a symmetry boundary condition in the spanwise direction at free-stream Mach numbers in 3D.The simulations are performed using an in-house compressible supersonic solver“Open SBLIFVM”.Two free stream Mach numbers 2.5,and3 are used in the current work,and the simulated results are compared with the aspect ratio 1 simulations by Mangalagiri and Jammy.The inflow is initialized with a similarity solution;its Reynolds number based on the boundary layer thickness is adjusted such that the Reynolds number at the start of the ramp is kept at 3×10^(5)for all simulations.From the results,it is evident that the introduction of sidewalls resulted in a shorter centerline separation length when compared with the two-dimensional(2D)simulations.This contradicts the results at Mach 2 by Mangalgiri and Jammy where the vortex observed at Mach 2 in the central separation region disappeared with increasing free-stream Mach number.Additionally,the topology of interaction shifted from owl-like separation of the second kind to the first kind when the freestream Mach number increased from2 to 2.5.It can be concluded that the interaction topology is crucial to the increase or decrease of the central separation length when compared to 2D simulations.展开更多
One of the most pressing crises facing the world today is climate change and its impact on the Earth’s ecosystems and human societies.Climate change is currently progressing most rapidly in the polar regions,and its ...One of the most pressing crises facing the world today is climate change and its impact on the Earth’s ecosystems and human societies.Climate change is currently progressing most rapidly in the polar regions,and its effects are already evident,making the polar regions an early indicator of global climate change.Changes in these areas affect sea level rise,ecosystems,weather patterns,and feedback mechanisms that influence global climate.Thus,understanding the polar regions is critical for predicting future changes and developing strategies for mitigation and adaptation(IPCC,2023).The IPCC Special Report on the Ocean and Cryosphere in a Changing Climate also emphasizes the interconnectedness of the polar cryosphere,ocean,and human societies,underscoring that climate action is not just an environmental issue but a matter of human survival(IPCC,2019).Given the urgent need for international collaboration to address the impacts of climate change in the polar regions,it is crucial that scientific findings are effectively shared across borders and disciplines.The International Polar Year 2032-33(Interim IPY Secretariat,2024),currently being planned,underscores this need by encouraging international cooperation and effective knowledge exchange across polar research communities.展开更多
文摘Assessing individual differences and variability in animal movement patterns is essential to improve our understanding of the evolution and ontogeny of migratory strategies.In long-distance migratory species,fledged juveniles often rely on an extremely restricted time span to learn the essential skills for survival and to prepare for migration,possibly the most risky phase of their lives.Collecting detailed information on the dynamics of the movements during the crucial pre-migratory phase is hence essential to understand the solutions developed by migratory species in different environmental contexts.Here,we used high-resolution GPS/GSM transmitters to collect information on the movement ecology of seven juvenile Montagu's Harriers(Circus pygargus)born in central Italy,investigating their early life stages,namely the post-fledging dependence period(PFDP)and the pre-migratory phase(PMP),until autumn migration.After fledging,individuals showed high variability(both in space and time)in home range size,daily distances covered(6.88±11.44 km/day),distance from the nest(1.45±2.8 km)and PFDP length(23.3±5.3 days).Residence time at the natal site significantly decreased,while time interval between revists in the natal area significantly increased,as the PFDP progressed.During the PMP,explored areas and distance from the nest(max value up to 320.8 km)varied among individuals,despite daily distances covered(27±40 km/day)and time allocation between traveling(60.7%)and foraging(39.3%)were similar across individuals.The PMP lasted 38±14 days.Land cover composition of foraging locations was mostly represented by agricultural lands(~78.2%),though habitat use differed among individuals.More than 76%of such locations were outside protected areas.This individual-based tracking study represents a novel approach that improves previous knowledge based on field studies on the early life stages of the Montagu's Harrier.High inter-individual variability in movement patterns,broad-range exploratory movements and foraging locations outside the protected area network make the application of standard conservation measures difficult,raising concerns about the long-term preservation of this vulnerable migratory species in Italy.
基金supported by the European Union's Horizon 2020 Research and Innovation Programme under Grant No.774244(Breeding for resilient,efficient and sustainable organic vegetable productionBRESOV)by‘RGV-FAO'project funded by the Italian Ministry of Agriculture,Food Sovereignty and Forests。
文摘The increasing conversion of agricultural land to organic farming requires the development of specifically adapted cultivars.So far,in tomato there is lack of research for selection of germplasm suitable for sustainable agroecosystems.In this study,we investigated the genotypic and environmental factors affecting the variation of plant,fruits,and root traits in 39 tomato genotypes grown under organic farming conditions.Four independent experiments were conducted in Italy and Spain across two consecutive seasons in 2019 and 2020.For all traits,the factorial linear regression model to estimate the main effects of genotype(G),location(L),year of cultivation(Y)and their interactions,revealed highly significant(P<0.001)variations,with the G factor being largely predominant for most traits.The implementation of the“which-won-where”,“mean performance versus stability”and“discriminative vs representativeness”patterns in the GGE(Genotype plus Genotype by Environment interaction)analysis,allowed the identification of superior cultivars with high stability across the testing environments.Genomic characterization with 30890 high quality SNPs from dd RADseq genotyping analysis,revealed that a specific cluster of cherry tomato accessions were low performing in terms of yield and fruit weight,on the contrary,showed a high content of soluble solids,which in agreement with GGE analysis.Results of this study provide a framework for the potential use of this locally adapted tomato germplasm to address the needs of more sustainable agriculture.
基金Funded by the Central Government-Guided Local Development Fund Project(No.YDZJSX2025D042)the Key R&D Program of Shanxi Province(No.202202150401018)+1 种基金the Basic Research Program of Shanxi Province(No.20210302124220)the State Key Laboratory of CAD/CG of Zhejiang University(No.A2325)。
文摘This study systematically investigated the microstructural evolution of binary Ni-Cu alloys(Cu55Ni45,Cu60Ni40,and Ni65Cu35)under deep undercooling conditions.The controlled rapid solidification experiments combined with optical microscopy and electron backscatter diffraction(EBSD)analysis demonstrate that increasing undercooling(ΔT)can induce a consistent sequence of microstructural transitions:coarse dendrites,fine equiaxed grains(first refinement),oriented fine dendrites,and fine equiaxed grains(second refinement).Two distinct grain refinement events are identified,with critical undercooling thresholds(ΔT)dependent on composition:increasing Cu content increases the critical undercoolingΔT*required for the second refinement(Cu55Ni45:227 K;Cu60Ni40:217 K;Ni65Cu35:200 K).The BCT(Bridgman Crystal Growth)model quantitatively elucidates this behavior,revealing a shift from solute-diffusion-dominated growth at low undercooling to thermally dominated diffusion at high undercooling(ΔT).Crucially,refined grains at high undercooling exhibit smaller sizes(10μm)and higher uniformity than those at low undercooling(20μm).These findings provide fundamental insights into non-equilibrium solidification mechanisms and establish a foundation for designing high-performance Ni-Cu alloys via deep undercooling processing.
文摘The integration of academic research methodologies into design thinking processes presents a transformative approach to addressing complex challenges in group housing,fostering inclusive,sustainable,and user-centered solutions.This research explores how methodologies such as Participatory Action Research,post-occupancy evaluations,and Research through Design can be systematically embedded within design thinking to bridge the gap between academic rigor and empathy-driven,iterative design practices.By synthesizing these paradigms,the study proposes a framework for group housing design that prioritizes co-design processes,empathy-based data collection,and participatory evaluation,while emphasizing adaptability through sociocultural insights and user feedback.Case studies analysis demonstrate the effectiveness of flexible,community-driven design,while emerging technologies like IoT-enabled cohousing signal new opportunities for innovation.Challenges,including scalability,long-term validation,and reconciling user autonomy with professional expertise,are critically analyzed.Ultimately,this research advances a hybrid methodology to redefine the conceptualization,implementation,and assessment of group housing,offering actionable pathways to achieve affordable,inclusive,and context-sensitive housing solutions.
文摘Different habitat types exert particular challenges to ecological performance,ultimately having a strong influence on the evolution of morphology.Although it is well known that external morphology can evolve under the selective pressure of habitat structure,the evolutionary response of internal morphological traits remains vastly unexplored.Here,we test for morphological divergence between arenicolous and nonarenicolous species in a clade of tropidurid lizards,considering external morphological proportions and limb muscle dimensions.We found that arenicolous species seem to have evolved internal and external morphological adaptations that separate them from other habitat specialists.Moreover,comparative analyses suggested that the traits that differed the most between arenicolous and nonarenicolous lizards might have evolved divergently towards different optima.Additionally,the axis of higher morphological divergence between arenicolous and nonarenicolous species represented an important proportion of the morphological diversity within our sample,indicating that the hypothetical adaptive divergence of internal and external traits has contributed significantly to phenotypic diversity.Our results show that evolutionary associations between morphology and habitat use can be detected on both external body proportions and muscle morphology.Moreover,they highlight the emergent importance of internal anatomical traits in ecomorphological studies,especially when such traits are directly involved in determining functional performance.
文摘The management of agricultural wastes is essential for resource conservation and environmental sustainability.Due to escalating worries regarding plastic pollution and the surging expenses linked to petroleum-based plastics,there has been a notable transition towards the creation of biodegradable alternatives sourced from natural materials.Biofibres and bioplastics,especially those derived from agricultural waste,have garnered significant attention for their prospective uses in food packaging,biomedical sciences,and sustainable manufacturing.This study examines the viability of employing banana peel as a natural and environmentally sustainable raw material for the production of biodegradable bioplastic sheets.Due to its abundant polysaccharides and lignocellulosic fibers,banana peel presents advantageous structural and mechanical characteristics for bioplastic manufacturing.Experimental findings demonstrate that bioplastic derived from banana peels has enhanced biodegradability and environmental compatibility relative to traditional synthetic plastics,positioning it as a feasible alternative to mitigate the worldwide plastic waste epidemic.An optimal formulation was constructed using Design Expert software,comprising 55.38 g of banana peel,27.63 g of fish scales,and 20 g of chitosan powder.This formulation improves the film’s tensile strength,flexibility,and degradation rate,ensuring its efficacy in industrial applications including food packaging and molding.The study’s results highlight the promise of bioplastics made from banana peels as an economical and sustainable alternative,decreasing dependence on petroleum-based plastics and alleviating environmental pollution.
文摘Cyber-Physical Systems(CPS)represent an integration of computational and physical elements,revolutionizing industries by enabling real-time monitoring,control,and optimization.A complementary technology,Digital Twin(DT),acts as a virtual replica of physical assets or processes,facilitating better decision making through simulations and predictive analytics.CPS and DT underpin the evolution of Industry 4.0 by bridging the physical and digital domains.This survey explores their synergy,highlighting how DT enriches CPS with dynamic modeling,realtime data integration,and advanced simulation capabilities.The layered architecture of DTs within CPS is examined,showcasing the enabling technologies and tools vital for seamless integration.The study addresses key challenges in CPS modeling,such as concurrency and communication,and underscores the importance of DT in overcoming these obstacles.Applications in various sectors are analyzed,including smart manufacturing,healthcare,and urban planning,emphasizing the transformative potential of CPS-DT integration.In addition,the review identifies gaps in existing methodologies and proposes future research directions to develop comprehensive,scalable,and secure CPSDT systems.By synthesizing insights fromthe current literature and presenting a taxonomy of CPS and DT,this survey serves as a foundational reference for academics and practitioners.The findings stress the need for unified frameworks that align CPS and DT with emerging technologies,fostering innovation and efficiency in the digital transformation era.
基金supported by the National Natural Science Foundation of China[grant number 42275074].
文摘Cloud diurnal variation is crucial for regulating cloud radiative effects and atmospheric dynamics.However,it is often overlooked in the evaluation and development of climate models.Thus,this study aims to investigate the daily mean(CFR)and diurnal variation(CDV)of cloud fraction across high-,middle-,low-level,and total clouds in the FGOALS-f3-L general circulation model.The bias of total CDV is decomposed into the model biases in CFRs and CDVs of clouds at all three levels.Results indicate that the model generally underestimates low-level cloud fraction during the daytime and high-/middle-level cloud fraction at nighttime.The simulation biases of low clouds,especially their CDV biases,dominate the bias of total CDV.Compensation effects exist among the bias decompositions,where the negative contributions of underestimated daytime low-level cloud fraction are partially offset by the opposing contributions from biases in high-/middle-level clouds.Meanwhile,the bias contributions have notable land–ocean differences and region-dependent characteristics,consistent with the model biases in these variables.Additionally,the study estimates the influences of CFR and CDV biases on the bias of shortwave cloud radiative effects.It reveals that the impacts of CDV biases can reach half of those from CFR biases,highlighting the importance of accurate CDV representation in climate models.
基金supported by the Natural Science Foundation of Hebei Province of China(Nos.H2020202002 and H2023202001)the Natural Science Foundation of Tianjin City of China(No.24JCQNJC01180)Science Research Project of Hebei Educational Department(No.BJK2023034).
文摘Nerve guidance conduits(NGCs)effectively support and guide the regeneration of injured nerves.However,traditional NGCs often lack essential growth factors and fail to create a biomimetic microenvironment conducive to nerve regrowth.This study develops a highly bionic nerve guidance conduit(HB-NGC)using hybrid high-voltage electrotechnologies that integrate electrospinning with electrohydrodynamic(EHD)printing.The outer layer consists of electrospun polycaprolactone fibers loaded with carboxyl-multi-walled carbon nanotubes,while the inner layer is composed of highly aligned polycaprolactone fibers created by EHD printing.The tubular core of the HB-NGC is filled with hyaluronic acid methacryloyl(HAMA)hydrogel encapsulating bone marrow mesenchymal stem cells(BMSCs).This highly biomimetic NGC is conductive,capable of guiding axon growth,and sustainably releases growth factors,effectively mimicking the structure,function,and characteristics of natural peripheral nerves.Its distinctive architectural layers provide an exceptional bionic microenvironment by restoring physical pathways,facilitating electrical signal conduction,and supplying an extracellular matrix(ECM)environment enriched with essential growth factors.Additionally,the HB-NGC’s morphology,along with its physicochemical and mechanical properties,effectively bridges the gap between severed nerve ends.In vivo animal studies validate the HB-NGC’s effectiveness,highlighting its significant potential to enhance peripheral nerve regeneration.
基金supported by the Institute of Information&Communications Technology Planning&Evaluation(IITP)-Innovative Human Resource Development for Local Intellectualization program grant funded by the Korea government(MSIT)(IITP-2025-RS-2023-00259678)by INHA UNIVERSITY Research Grant.
文摘Lightweight deep learning models are increasingly required in resource-constrained environments such as mobile devices and the Internet of Medical Things(IoMT).Multi-head convolution with channel attention can facilitate learning activations relevant to different kernel sizes within a multi-head convolutional layer.Therefore,this study investigates the capability of novel lightweight models incorporating residual multi-head convolution with channel attention(ResMHCNN)blocks to classify medical images.We introduced three novel lightweight deep learning models(BT-Net,LCC-Net,and BC-Net)utilizing the ResMHCNN block as their backbone.These models were crossvalidated and tested on three publicly available medical image datasets:a brain tumor dataset from Figshare consisting of T1-weighted magnetic resonance imaging slices of meningioma,glioma,and pituitary tumors;the LC25000 dataset,which includes microscopic images of lung and colon cancers;and the BreaKHis dataset,containing benign and malignant breast microscopic images.The lightweight models achieved accuracies of 96.9%for 3-class brain tumor classification using BT-Net,and 99.7%for 5-class lung and colon cancer classification using LCC-Net.For 2-class breast cancer classification,BC-Net achieved an accuracy of 96.7%.The parameter counts for the proposed lightweight models—LCC-Net,BC-Net,and BT-Net—are 0.528,0.226,and 1.154 million,respectively.The presented lightweight models,featuring ResMHCNN blocks,may be effectively employed for accurate medical image classification.In the future,these models might be tested for viability in resource-constrained systems such as mobile devices and IoMT platforms.
文摘Sessile oak(Quercus petraea(Matt.)Liebl.)is widely distributed across most of Europe particularly the hills and lower mountain ranges,so is considered“the oak of the mountains”.This species grows on a wide variety of soils and at altitudes ranging from sea level to 2200 m,especially in Atlantic and sub-Mediterranean climates,and it is sensitive to low winter temperatures,early and late frosts,as well as high summer temperatures.Sessile oak forms both pure and mixed stands especially with broadleaves such as European beech,European hornbeam,small-leaved lime and Acer spp.These form the understorey of sessile oak stands,promoting the natural shedding of lower branches of the oak and protecting the trunk against epicormic branches.Sessile oak is a long-lived,light-demanding and wind-firm species,owing to its taproot and heart-shaped root system.Its timber,one of the most valuable in Europe,is important for fur-niture-making(both solid wood and veneer),construction,barrels,railway sleepers,and is also used as fuelwood.It is one of the few major tree species in Europe that is regener-ated by seed(naturally or artificially)and by stump shoots in high forest,coppice-with-standards and coppice forests.Sessile oak forests are treated in both regular and irregular systems involving silvicultural techniques such as uniform shelterwood,group shelterwood,irregular shelterwood,irregular high forest,coppice-with-standards and simple coppice.Young naturally regenerated stands are managed by weeding,release cutting and cleaning-respacing,keeping the stands quite dense for good natural pruning.Plantations are based on(1)2-4-year old bare-root or container-grown seedlings produced in nurseries using seeds from genetic resources,seed stands and seed orchards.The density of sessile oak plantations(mostly in rows,but also in clusters)is usually between 4000 and 6000 ind.ha^(−1).Sessile oak silviculture of mature stands includes crown thinning,focus-ing on final crop trees(usually a maximum of 100 ind.ha^(−1))and targeting the production of large-diameter and high quality trees at long rotation ages(mostly over 120 years,sometimes 250-300 years).In different parts of Europe,conversion of simple coppices and coppice-with-standards to high forests is continuing.Even though manage-ment of sessile oak forests is very intensive and expensive,requiring active human intervention,the importance of this species in future European forests will increase in the con-text of climate change due to its high resistance to distur-bance,superior drought tolerance and heat stress resistance.
文摘Currently,there is a lack of effective medicines capable of halting or reve rsing the progression of neurodegenerative disorde rs,including amyotrophic lateral sclerosis,Parkinson s disease,multiple sclerosis,or Alzheimer s disease.Given the unmet medical need,it is necessary to reevaluate the existing para digms of how to to rget these diseases.When considering neurodegenerative diseases from a systemic neurometabolic perspective,it becomes possible to explain the shared pathological features.This innovative approach presented in this paper draws upon exte nsive research conducted by the authors and researchers worldwide.In this review,we highlight the importance of metabolic mitochondrial dysfunction in the context of neurodegenerative diseases.We provide an overview of the risk factors associated with developing neurodegenerative disorders,including genetic,epigenetic,and environmental fa ctors.Additionally,we examine pathological mechanisms implicated in these diseases such as oxidative stress,accumulation of misfolded proteins,inflammation,demyelination,death of neurons,insulin resistance,dysbiosis,and neurotransmitter disturbances.Finally,we outline a proposal for the restoration of mitochondrial metabolism,a crucial aspect that may hold the key to facilitating curative therapeutic interventions for neurodegenerative disorders in forthcoming advancements.
基金the Deanship of Scientific Research at King Khalid University for funding this work through large group research project under Grant Number RGP2/474/44.
文摘In this paper,we present a comprehensive system model for Industrial Internet of Things(IIoT)networks empowered by Non-Orthogonal Multiple Access(NOMA)and Mobile Edge Computing(MEC)technologies.The network comprises essential components such as base stations,edge servers,and numerous IIoT devices characterized by limited energy and computing capacities.The central challenge addressed is the optimization of resource allocation and task distribution while adhering to stringent queueing delay constraints and minimizing overall energy consumption.The system operates in discrete time slots and employs a quasi-static approach,with a specific focus on the complexities of task partitioning and the management of constrained resources within the IIoT context.This study makes valuable contributions to the field by enhancing the understanding of resourceefficient management and task allocation,particularly relevant in real-time industrial applications.Experimental results indicate that our proposed algorithmsignificantly outperforms existing approaches,reducing queue backlog by 45.32% and 17.25% compared to SMRA and ACRA while achieving a 27.31% and 74.12% improvement in Qn O.Moreover,the algorithmeffectively balances complexity and network performance,as demonstratedwhen reducing the number of devices in each group(Ng)from 200 to 50,resulting in a 97.21% reduction in complexity with only a 7.35% increase in energy consumption.This research offers a practical solution for optimizing IIoT networks in real-time industrial settings.
基金Project supported by the Spanish Ministry of Science and Innovation/Research Spanish Agency (PID2019-105 542RB-100/AEI/10.13039/501100011033)the UE-FEDER funding and Generalitat Valenciana (CIPROM/2021/070)。
文摘In this work,several ceria-zirconia based catalysts with very lo w(and equimolar) metal contents were prepared,characterised and tested for the CO oxidatio n reaction(under lean and stoichiometric conditions),trying to emulate those conditions found in a diesel oxidation catalyst(DOC) system from a diesel engine and those encountered under gasoline exhaust(λ=1).The metals chosen are Cu,Co,Ag and Pt(as a reliable benchmark).The results reveal enormous differences among reducibility and catalytic activity despite quite similar structural and textural properties of the catalysts,showing differences among dispersion(Ag-catalyst seems to present a low level of dispersion).This catalyst seems to be characterised,as well,by a strong electronic interaction between Ce and Ag centres which is suggested to yield an improved reducibility under H_(2)-TPR conditions.Nevertheless,the order in catalytic activity(Cu>Ag>Co≈Pt>>support) seems not to follow the order found in reducibility and the Cu-catalyst seems to be the most active independently on the reaction conditions,yielding nearly overlapped CO oxidation catalytic curves.Inte restingly,a stro ng correlation between the catalytic activity under the two conditions tested and the OSC values of the Ce_(0.8)Zr_(0.2)O_(2)-supported metal catalysts is found.Therefore,OSC parameter measured at 150℃ can be used as a relevant descriptor to evaluate the CO oxidation activity at low and medium conversions for the investigated catalysts,much better than the H_(2)-TPR measurements.
文摘BACKGROUND There are limited studies investigating the association between type 2 diabetes mellitus(T2DM)and non-alcoholic fatty liver disease(NAFLD)in the region of Bihar,India.AIM To estimate the prevalence of NAFLD in persons with newly diagnosed T2DM in the population of North Bihar,India.METHODS This single centre cross-sectional study was undertaken in the Research Centre for Diabetes Hypertension and Obesity,Samastipur,Bihar,India.Data were collected from persons newly diagnosed with T2DM or those diagnosed within 6 months of when the study was conducted between December 2022 to May 2023.RESULTS A total of 148 people with newly diagnosed T2DM were included(median age 47 years,46.6%female)and 109 patients with liver disease on ultrasound evaluation.The persons with liver disease consumed more fats and oils(88.1%vs 74.4%,P=0.042)and they had significantly greater body mass index(27.4 vs 23.0,P<0.001),waist circumference(37 vs 33,P<0.001),and waist-to-hip ratio(1.00 vs 0.70,P=0.025).Females were associated with greater liver disease[odds ratio(OR):3.09,95%confidence interval(CI):1.09-8.80,P=0.32].Waist circumference(OR:1.42,95%CI:1.22-1.66,P<0.001)and low-density lipoprotein cholesterol(OR:1.01,95%CI:1.01-1.02,P=0.048)were associated with any liver disease.The factors most associated with grade 2/3 liver disease was right upper quadrant pain or heaviness(OR:5.22,95%CI:1.40-19.41,P=0.14),greater income(OR:3.58,95%CI:1.28-10.04,P=0.015)and waist circumference(OR:1.31,95%CI:1.02-1.69,P=0.036).CONCLUSION NAFLD is common in new/recently diagnosed T2DM and disease burden is high and common among patients who are either high consumers of fats and oils or have obesity-associated markers.
文摘In the real world,one of the most common problems in project management is the unpredictability of resources and timelines.An efficient way to resolve uncertainty problems and overcome such obstacles is through an extended fuzzy approach,often known as neutrosophic logic.Our rigorous proposed model has led to the creation of an advanced technique for computing the triangular single-valued neutrosophic number.This innovative approach evaluates the inherent uncertainty in project durations of the planning phase,which enhances the potential significance of the decision-making process in the project.Our proposed method,for the first time in the neutrosophic set literature,not only solves existing problems but also introduces a new set of problems not yet explored in previous research.A comparative study using Python programming was conducted to examine the effectiveness of responsive and adaptive planning,as well as their differences from other existing models such as the classical critical path problem and the fuzzy critical path problem.The study highlights the use of neutrosophic logic in handling complex projects by illustrating an innovative dynamic programming framework that is robust and flexible,according to the derived results,and sets the stage for future discussions on its scalability and application across different industries.
基金sponsored by the Department of Science and Technology,Science and Engineering Research Board(SERB),Core Research(Grant No.CRG/2020/03859)。
文摘This study investigates the three-dimensional(3D)effects introduced by the end walls for an aspect ratio of1 in ramp-induced shock wave boundary layer interactions.The simulations are performed using a symmetry boundary condition in the spanwise direction at free-stream Mach numbers in 3D.The simulations are performed using an in-house compressible supersonic solver“Open SBLIFVM”.Two free stream Mach numbers 2.5,and3 are used in the current work,and the simulated results are compared with the aspect ratio 1 simulations by Mangalagiri and Jammy.The inflow is initialized with a similarity solution;its Reynolds number based on the boundary layer thickness is adjusted such that the Reynolds number at the start of the ramp is kept at 3×10^(5)for all simulations.From the results,it is evident that the introduction of sidewalls resulted in a shorter centerline separation length when compared with the two-dimensional(2D)simulations.This contradicts the results at Mach 2 by Mangalgiri and Jammy where the vortex observed at Mach 2 in the central separation region disappeared with increasing free-stream Mach number.Additionally,the topology of interaction shifted from owl-like separation of the second kind to the first kind when the freestream Mach number increased from2 to 2.5.It can be concluded that the interaction topology is crucial to the increase or decrease of the central separation length when compared to 2D simulations.
文摘One of the most pressing crises facing the world today is climate change and its impact on the Earth’s ecosystems and human societies.Climate change is currently progressing most rapidly in the polar regions,and its effects are already evident,making the polar regions an early indicator of global climate change.Changes in these areas affect sea level rise,ecosystems,weather patterns,and feedback mechanisms that influence global climate.Thus,understanding the polar regions is critical for predicting future changes and developing strategies for mitigation and adaptation(IPCC,2023).The IPCC Special Report on the Ocean and Cryosphere in a Changing Climate also emphasizes the interconnectedness of the polar cryosphere,ocean,and human societies,underscoring that climate action is not just an environmental issue but a matter of human survival(IPCC,2019).Given the urgent need for international collaboration to address the impacts of climate change in the polar regions,it is crucial that scientific findings are effectively shared across borders and disciplines.The International Polar Year 2032-33(Interim IPY Secretariat,2024),currently being planned,underscores this need by encouraging international cooperation and effective knowledge exchange across polar research communities.