Mango farming significantly contributes to the economy,particularly in developing countries.However,mango trees are susceptible to various diseases caused by fungi,viruses,and bacteria,and diagnosing these diseases at...Mango farming significantly contributes to the economy,particularly in developing countries.However,mango trees are susceptible to various diseases caused by fungi,viruses,and bacteria,and diagnosing these diseases at an early stage is crucial to prevent their spread,which can lead to substantial losses.The development of deep learning models for detecting crop diseases is an active area of research in smart agriculture.This study focuses on mango plant diseases and employs the ConvNeXt and Vision Transformer(ViT)architectures.Two datasets were used.The first,MangoLeafBD,contains data for mango leaf diseases such as anthracnose,bacterial canker,gall midge,and powdery mildew.The second,SenMangoFruitDDS,includes data for mango fruit diseases such as Alternaria,Anthracnose,Black Mould Rot,Healthy,and Stem and Rot.Both datasets were obtained from publicly available sources.The proposed model achieved an accuracy of 99.87%on the MangoLeafBD dataset and 98.40%on the MangoFruitDDS dataset.The results demonstrate that ConvNeXt and ViT models can effectively diagnose mango diseases,enabling farmers to identify these conditions more efficiently.The system contributes to increased mango production and minimizes economic losses by reducing the time and effort needed for manual diagnostics.Additionally,the proposed system is integrated into a mobile application that utilizes the model as a backend to detect mango diseases instantly.展开更多
Innovation in learning algorithms has made retinal vessel segmentation and automatic grading tech-niques crucial for clinical diagnosis and prevention of diabetic retinopathy.The traditional methods struggle with accu...Innovation in learning algorithms has made retinal vessel segmentation and automatic grading tech-niques crucial for clinical diagnosis and prevention of diabetic retinopathy.The traditional methods struggle with accuracy and reliability due to multi-scale variations in retinal blood vessels and the complex pathological relationship in fundus images associated with diabetic retinopathy.While the single-modal diabetic retinopathy grading network addresses class imbalance challenges and lesion representation in fundus image data,dual-modal diabetic retinopathy grading methods offer superior performance.However,the scarcity of dual-modal data and the lack of effective feature fusion methods limit their potential due to multi-scale variations.This paper addresses these issues by focusing on multi-scale retinal vessel segmentation,dual feature fusion,data augmentation,and attention-based grading.The proposed model aims to improve comprehensive segmentation for retinal images with varying vessel thicknesses.It employs a dual-branch parallel architecture that integrates a transformer encoder with a convolutional neural network encoder to extract local and global information for synergistic saliency learning.Besides that,the model uses residual structures and attention modules to extract critical lesions,enhancing the accuracy and reliability of diabetic retinopathy grading.To evaluate the efficacy of the proposed approach,this study compared it with other pre-trained publicly open models,ResNet152V2,ConvNext,Efficient Net,DenseNet,and Swin Transform,with the same developmental parameters.All models achieved approximately 85%accuracy with the same image preparation method.However,the proposed approach outperforms and optimizes existing models by achieving an accuracy of 99.17%,99.04%,and 99.24%,on Kaggle APTOS19,IDRiD,and EyePACS datasets,respectively.These results support the model’s utility in helping ophthalmologists diagnose diabetic retinopathy more rapidly and accurately.展开更多
The growing usage of Android smartphones has led to a significant rise in incidents of Android malware andprivacy breaches.This escalating security concern necessitates the development of advanced technologies capable...The growing usage of Android smartphones has led to a significant rise in incidents of Android malware andprivacy breaches.This escalating security concern necessitates the development of advanced technologies capableof automatically detecting andmitigatingmalicious activities in Android applications(apps).Such technologies arecrucial for safeguarding user data and maintaining the integrity of mobile devices in an increasingly digital world.Current methods employed to detect sensitive data leaks in Android apps are hampered by two major limitationsthey require substantial computational resources and are prone to a high frequency of false positives.This meansthat while attempting to identify security breaches,these methods often consume considerable processing powerand mistakenly flag benign activities as malicious,leading to inefficiencies and reduced reliability in malwaredetection.The proposed approach includes a data preprocessing step that removes duplicate samples,managesunbalanced datasets,corrects inconsistencies,and imputes missing values to ensure data accuracy.The Minimaxmethod is then used to normalize numerical data,followed by feature vector extraction using the Gain ratio andChi-squared test to identify and extract the most significant characteristics using an appropriate prediction model.This study focuses on extracting a subset of attributes best suited for the task and recommending a predictivemodel based on domain expert opinion.The proposed method is evaluated using Drebin and TUANDROMDdatasets containing 15,036 and 4,464 benign and malicious samples,respectively.The empirical result shows thatthe RandomForest(RF)and Support VectorMachine(SVC)classifiers achieved impressive accuracy rates of 98.9%and 98.8%,respectively,in detecting unknown Androidmalware.A sensitivity analysis experiment was also carriedout on all three ML-based classifiers based on MAE,MSE,R2,and sensitivity parameters,resulting in a flawlessperformance for both datasets.This approach has substantial potential for real-world applications and can serve asa valuable tool for preventing the spread of Androidmalware and enhancing mobile device security.展开更多
Recently,there have been several uses for digital image processing.Image fusion has become a prominent application in the domain of imaging processing.To create one final image that provesmore informative and helpful ...Recently,there have been several uses for digital image processing.Image fusion has become a prominent application in the domain of imaging processing.To create one final image that provesmore informative and helpful compared to the original input images,image fusion merges two or more initial images of the same item.Image fusion aims to produce,enhance,and transform significant elements of the source images into combined images for the sake of human visual perception.Image fusion is commonly employed for feature extraction in smart robots,clinical imaging,audiovisual camera integration,manufacturing process monitoring,electronic circuit design,advanced device diagnostics,and intelligent assembly line robots,with image quality varying depending on application.The research paper presents various methods for merging images in spatial and frequency domains,including a blend of stable and curvelet transformations,everageMax-Min,weighted principal component analysis(PCA),HIS(Hue,Intensity,Saturation),wavelet transform,discrete cosine transform(DCT),dual-tree Complex Wavelet Transform(CWT),and multiple wavelet transform.Image fusion methods integrate data from several source images of an identical target,thereby enhancing information in an extremely efficient manner.More precisely,in imaging techniques,the depth of field constraint precludes images from focusing on every object,leading to the exclusion of certain characteristics.To tackle thess challanges,a very efficient multi-focus wavelet decomposition and recompositionmethod is proposed.The use of these wavelet decomposition and recomposition techniques enables this method to make use of existing optimized wavelet code and filter choice.The simulated outcomes provide evidence that the suggested approach initially extracts particular characteristics from images in order to accurately reflect the level of clarity portrayed in the original images.This study enhances the performance of the eXtreme Gradient Boosting(XGBoost)algorithm in detecting brain malignancies with greater precision through the integration of computational image analysis and feature selection.The performance of images is improved by segmenting them employing the K-Means algorithm.The segmentation method aids in identifying specific regions of interest,using Particle Swarm Optimization(PCA)for trait selection and XGBoost for data classification.Extensive trials confirm the model’s exceptional visual performance,achieving an accuracy of up to 97.067%and providing good objective indicators.展开更多
基金funded by Princess Nourah bint Abdulrahman University and Researchers Supporting Project number(PNURSP2025R346)Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘Mango farming significantly contributes to the economy,particularly in developing countries.However,mango trees are susceptible to various diseases caused by fungi,viruses,and bacteria,and diagnosing these diseases at an early stage is crucial to prevent their spread,which can lead to substantial losses.The development of deep learning models for detecting crop diseases is an active area of research in smart agriculture.This study focuses on mango plant diseases and employs the ConvNeXt and Vision Transformer(ViT)architectures.Two datasets were used.The first,MangoLeafBD,contains data for mango leaf diseases such as anthracnose,bacterial canker,gall midge,and powdery mildew.The second,SenMangoFruitDDS,includes data for mango fruit diseases such as Alternaria,Anthracnose,Black Mould Rot,Healthy,and Stem and Rot.Both datasets were obtained from publicly available sources.The proposed model achieved an accuracy of 99.87%on the MangoLeafBD dataset and 98.40%on the MangoFruitDDS dataset.The results demonstrate that ConvNeXt and ViT models can effectively diagnose mango diseases,enabling farmers to identify these conditions more efficiently.The system contributes to increased mango production and minimizes economic losses by reducing the time and effort needed for manual diagnostics.Additionally,the proposed system is integrated into a mobile application that utilizes the model as a backend to detect mango diseases instantly.
基金funded by Princess Nourah bint Abdulrahman University and Researchers Supporting Project number(PNURSP2025R346)Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘Innovation in learning algorithms has made retinal vessel segmentation and automatic grading tech-niques crucial for clinical diagnosis and prevention of diabetic retinopathy.The traditional methods struggle with accuracy and reliability due to multi-scale variations in retinal blood vessels and the complex pathological relationship in fundus images associated with diabetic retinopathy.While the single-modal diabetic retinopathy grading network addresses class imbalance challenges and lesion representation in fundus image data,dual-modal diabetic retinopathy grading methods offer superior performance.However,the scarcity of dual-modal data and the lack of effective feature fusion methods limit their potential due to multi-scale variations.This paper addresses these issues by focusing on multi-scale retinal vessel segmentation,dual feature fusion,data augmentation,and attention-based grading.The proposed model aims to improve comprehensive segmentation for retinal images with varying vessel thicknesses.It employs a dual-branch parallel architecture that integrates a transformer encoder with a convolutional neural network encoder to extract local and global information for synergistic saliency learning.Besides that,the model uses residual structures and attention modules to extract critical lesions,enhancing the accuracy and reliability of diabetic retinopathy grading.To evaluate the efficacy of the proposed approach,this study compared it with other pre-trained publicly open models,ResNet152V2,ConvNext,Efficient Net,DenseNet,and Swin Transform,with the same developmental parameters.All models achieved approximately 85%accuracy with the same image preparation method.However,the proposed approach outperforms and optimizes existing models by achieving an accuracy of 99.17%,99.04%,and 99.24%,on Kaggle APTOS19,IDRiD,and EyePACS datasets,respectively.These results support the model’s utility in helping ophthalmologists diagnose diabetic retinopathy more rapidly and accurately.
基金Princess Nourah bint Abdulrahman University and Researchers Supporting Project Number(PNURSP2024R346)Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘The growing usage of Android smartphones has led to a significant rise in incidents of Android malware andprivacy breaches.This escalating security concern necessitates the development of advanced technologies capableof automatically detecting andmitigatingmalicious activities in Android applications(apps).Such technologies arecrucial for safeguarding user data and maintaining the integrity of mobile devices in an increasingly digital world.Current methods employed to detect sensitive data leaks in Android apps are hampered by two major limitationsthey require substantial computational resources and are prone to a high frequency of false positives.This meansthat while attempting to identify security breaches,these methods often consume considerable processing powerand mistakenly flag benign activities as malicious,leading to inefficiencies and reduced reliability in malwaredetection.The proposed approach includes a data preprocessing step that removes duplicate samples,managesunbalanced datasets,corrects inconsistencies,and imputes missing values to ensure data accuracy.The Minimaxmethod is then used to normalize numerical data,followed by feature vector extraction using the Gain ratio andChi-squared test to identify and extract the most significant characteristics using an appropriate prediction model.This study focuses on extracting a subset of attributes best suited for the task and recommending a predictivemodel based on domain expert opinion.The proposed method is evaluated using Drebin and TUANDROMDdatasets containing 15,036 and 4,464 benign and malicious samples,respectively.The empirical result shows thatthe RandomForest(RF)and Support VectorMachine(SVC)classifiers achieved impressive accuracy rates of 98.9%and 98.8%,respectively,in detecting unknown Androidmalware.A sensitivity analysis experiment was also carriedout on all three ML-based classifiers based on MAE,MSE,R2,and sensitivity parameters,resulting in a flawlessperformance for both datasets.This approach has substantial potential for real-world applications and can serve asa valuable tool for preventing the spread of Androidmalware and enhancing mobile device security.
基金Princess Nourah bint Abdulrahman University and Researchers Supporting Project Number(PNURSP2024R346)Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘Recently,there have been several uses for digital image processing.Image fusion has become a prominent application in the domain of imaging processing.To create one final image that provesmore informative and helpful compared to the original input images,image fusion merges two or more initial images of the same item.Image fusion aims to produce,enhance,and transform significant elements of the source images into combined images for the sake of human visual perception.Image fusion is commonly employed for feature extraction in smart robots,clinical imaging,audiovisual camera integration,manufacturing process monitoring,electronic circuit design,advanced device diagnostics,and intelligent assembly line robots,with image quality varying depending on application.The research paper presents various methods for merging images in spatial and frequency domains,including a blend of stable and curvelet transformations,everageMax-Min,weighted principal component analysis(PCA),HIS(Hue,Intensity,Saturation),wavelet transform,discrete cosine transform(DCT),dual-tree Complex Wavelet Transform(CWT),and multiple wavelet transform.Image fusion methods integrate data from several source images of an identical target,thereby enhancing information in an extremely efficient manner.More precisely,in imaging techniques,the depth of field constraint precludes images from focusing on every object,leading to the exclusion of certain characteristics.To tackle thess challanges,a very efficient multi-focus wavelet decomposition and recompositionmethod is proposed.The use of these wavelet decomposition and recomposition techniques enables this method to make use of existing optimized wavelet code and filter choice.The simulated outcomes provide evidence that the suggested approach initially extracts particular characteristics from images in order to accurately reflect the level of clarity portrayed in the original images.This study enhances the performance of the eXtreme Gradient Boosting(XGBoost)algorithm in detecting brain malignancies with greater precision through the integration of computational image analysis and feature selection.The performance of images is improved by segmenting them employing the K-Means algorithm.The segmentation method aids in identifying specific regions of interest,using Particle Swarm Optimization(PCA)for trait selection and XGBoost for data classification.Extensive trials confirm the model’s exceptional visual performance,achieving an accuracy of up to 97.067%and providing good objective indicators.