期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
江汉平原小麦渍害精细化风险评估
1
作者 李励漫 李芬 +3 位作者 许福丽 邓超众 向前 熊勤学 《灌溉排水学报》 2025年第4期65-71,共7页
【目的】渍害是江汉平原小麦生长的主要农业气象灾害,为评估江汉平原小麦渍害风险。【方法】基于2000—2020年全球无缝隙日地表土壤湿度数据集,综合考虑生育时期和品种的耐渍性、土壤温度对受渍阈值的影响,重构了受渍程度指数(WI),研究... 【目的】渍害是江汉平原小麦生长的主要农业气象灾害,为评估江汉平原小麦渍害风险。【方法】基于2000—2020年全球无缝隙日地表土壤湿度数据集,综合考虑生育时期和品种的耐渍性、土壤温度对受渍阈值的影响,重构了受渍程度指数(WI),研究江汉平原小麦渍害风险。【结果】江汉平原海拔与历年WI均值显著负相关,其相关系数高达-0.83;4月降水量是影响江汉平原WI的关键因子;荆州区、监利市、潜江市、汉川市、江陵县、仙桃市、天门市、枝江市、当阳市、汉阳区为渍害高风险区,钟祥市、沙洋县、京山市、荆门市、应城市为渍害低风险区,江汉平原小麦受渍阈值WI=10.97。【结论】新增了生育时期和土壤温度产生的耐渍性差异对渍害影响的小麦渍害风险评估方法较现有其他方法更为全面,绘制1km~2空间分辨率的江汉平原小麦渍害风险图为区域小麦生产提供了重要的指导依据。 展开更多
关键词 受渍程度指数 小麦渍害 气象产量 江汉平原 风险评估
在线阅读 下载PDF
基于心理感受等值点的大屏对比度研究
2
作者 杜曼晴 何淼 +4 位作者 李静波 王婷婷 仓龙 侯天俏 方妙丹 《人类工效学》 2023年第2期51-55,63,共6页
目的 针对智慧大屏的文字背景对比度设计,讨论在不同观察距离、字号和对比度极性下大屏的对比度标准。方法 实验为29(对比度水平)*2(观察距离)*2(字号)*2(对比度极性)的组内设计,因变量为被试的清晰度评分。实验共23位被试参与。结果 ... 目的 针对智慧大屏的文字背景对比度设计,讨论在不同观察距离、字号和对比度极性下大屏的对比度标准。方法 实验为29(对比度水平)*2(观察距离)*2(字号)*2(对比度极性)的组内设计,因变量为被试的清晰度评分。实验共23位被试参与。结果 与移动端相比,大屏端的对比度标准更高。观察距离和对比度极性均对大屏对比度标准产生影响。观察距离越远,对比度标准越高;与正极性相比,负极性对比度标准更高。3米观察距离下,负极性文本的最小对比度不低于6.5,加强对比度不低于10;正极性文本的最小对比度不低于6,加强对比度不低于9.7米观察距离下,负极性文本的最小对比度不低于8.5,加强对比度不低于12.5;正极性文本的最小对比度不低于6.5,加强对比度不低于9.5。结论 结果可用于指导大屏端的文本背景对比度设计。 展开更多
关键词 工业设计 移动终端 人机交互 用户体验 智慧大屏 文字背景对比度 WCAG标准 观察距离 对比度极性 清晰度感受
在线阅读 下载PDF
不同观看距离下的大屏适宜字号研究
3
作者 何淼 杜曼晴 《人类工效学》 2023年第5期32-38,共7页
目的针对超大型屏幕的字号设计,探索在不同的观看距离下,文字和数字的适宜字号。方法实验为4(字号大小;10 pt、12 pt、14 pt和16 pt)*3(观看距离;3 m、5 m和7 m)的组内设计,因变量为被试完成任务的反应时和对不同字号的主观清晰度评分... 目的针对超大型屏幕的字号设计,探索在不同的观看距离下,文字和数字的适宜字号。方法实验为4(字号大小;10 pt、12 pt、14 pt和16 pt)*3(观看距离;3 m、5 m和7 m)的组内设计,因变量为被试完成任务的反应时和对不同字号的主观清晰度评分。实验共招募24位被试参与。结果观看距离会显著影响被试的反应时和清晰度评分。在同一字号下,观看距离越远,被试的反应时越长,清晰度评分也越低。结合反应时与主观清晰度评分,得出在3 m观看距离下的大屏字号建议不低于12pt,而在5 m和7 m观看距离下的大屏字号建议不低于14pt,文字与数字的字号建议不存在差异。结论研究结果可用于指导大屏的适宜字号设计,设计及开发人员应结合大屏的观看距离应用适宜的字号大小。 展开更多
关键词 人机交互 界面 产品设计 字号 文字 数字 观看距离 大屏 易读性 可用性 用户体验
在线阅读 下载PDF
Theoretical and numerical investigation of the effects of in-situ stresses and dual-borehole combinations in eccentric decoupled charge blasting
4
作者 Yao Yin Minxing Song +3 位作者 Yu Feng Zhongqiang Liu Xiaohui Chen Qing Sun 《Rock Mechanics Bulletin》 2025年第2期86-96,共11页
Eccentric decoupled charge(EDC)blasting is a widely used technique for rock fragmentation and tunnel excavation,yet the underlying rock damage mechanisms,particularly in relation to in-situ stresses and multi-borehole... Eccentric decoupled charge(EDC)blasting is a widely used technique for rock fragmentation and tunnel excavation,yet the underlying rock damage mechanisms,particularly in relation to in-situ stresses and multi-borehole combinations,remain underexplored.First,we developed an analytical model for single-borehole EDC blasting,providing insights into the theoretical relationship between the formation of different rock damage zones around the borehole and various influencing factors,including decoupling coefficient,in-situ stress,rock and explosive properties,and peak blast pressure.Using afinite elementfluid-solid coupling algorithm,we performed numerical simulations for a simple case of single-borehole EDC blasting,verifying the effectiveness of the adopted numerical approach.We then performed numerical simulations for dual-borehole EDC blasting with varying in-situ stress conditions and borehole combinations.The results indicate that:(1)rock damage is primarily concentrated on the eccentric side of the borehole due to its smaller decoupling coefficients and the resulting larger peak blast pressure;(2)the formation of through cracks between two boreholes is highly dependent on the relative angleφbetween them,while the extent and direction of the cracks are largely controlled by the application of in-situ stress.This work provides a theoretical basis and reference for optimizing the design of multi-borehole contour blasting in deep rock excavation under significant in-situ stresses,facilitating desired crack propagation while minimizing damage to the surrounding rock. 展开更多
关键词 Eccentric decoupled charge blasting Dual-borehole combination In-situ stress effect Analytical model Numerical simulation
在线阅读 下载PDF
EVA2.0:Investigating Open-domain Chinese Dialogue Systems with Large-scale Pre-training 被引量:2
5
作者 Yuxian Gu Jiaxin Wen +8 位作者 Hao Sun Yi Song Pei Ke Chujie Zheng Zheng Zhang Jianzhu Yao Lei Liu Xiaoyan Zhu Minlie Huang 《Machine Intelligence Research》 EI CSCD 2023年第2期207-219,共13页
Large-scale pre-training has shown remarkable performance in building open-domain dialogue systems.However,previous works mainly focus on showing and evaluating the conversational performance of the released dialogue ... Large-scale pre-training has shown remarkable performance in building open-domain dialogue systems.However,previous works mainly focus on showing and evaluating the conversational performance of the released dialogue model,ignoring the discussion of some key factors towards a powerful human-like chatbot,especially in Chinese scenarios.In this paper,we conduct extensive experiments to investigate these under-explored factors,including data quality control,model architecture designs,training approaches,and decoding strategies.We propose EVA2.0,a large-scale pre-trained open-domain Chinese dialogue model with 2.8 billion parameters,and will make our models and codes publicly available.Automatic and human evaluations show that EVA2.0 significantly outperforms other open-source counterparts.We also discuss the limitations of this work by presenting some failure cases and pose some future research directions on large-scale Chinese open-domain dialogue systems. 展开更多
关键词 Natural language processing deep learning(DL) large-scale pre-training dialogue systems Chinese open-domain conversational model
原文传递
Informer:Irregular traffic detection for containerized microservices RPC in the real world 被引量:1
6
作者 Jiyu Chen Heqing Huang Hao Chen 《High-Confidence Computing》 2022年第2期69-78,共10页
Containerized microservices have been widely deployed in the industry.Meanwhile,security issues also arise.Many security enhancement mechanisms for containerized microservices require predefined rules and policies.How... Containerized microservices have been widely deployed in the industry.Meanwhile,security issues also arise.Many security enhancement mechanisms for containerized microservices require predefined rules and policies.However,it is challenging when it comes to thousands of microservices and a massive amount of real-time unstructured data.Hence,automatic policy generation becomes indispensable.In this paper,we focus on the automatic solution for the security problem:irregular traffic detection for RPCs.We propose Informer,a two-phase machine learning framework to track the traffic of each RPC and automatically report anomalous points.We first identify RPC chain patterns using density-based clustering techniques and build a graph for each critical pattern.Next,we solve the irregular RPC traffic detection problem as a prediction problem for attributed graphs with time series by leveraging spatial-temporal graph convolution networks.Since the framework builds multiple models and makes individual predictions for each RPC chain pattern,it can be efficiently updated upon legitimate changes in any graphs.In evaluations,we applied Informer to a dataset containing more than 7 billion lines of raw RPC logs sampled from a large Kubernetes system for two weeks.We provide two case studies of detected real-world threats.As a result,our framework found fine-grained RPC chain patterns and accurately captured the anomalies in a dynamic and complicated microservice production scenario,which demonstrates the effectiveness of Informer.Furthermore,we extensively evaluated the risk of adversarial attacks for our prediction model under different reality constraints and showed that the model is robust to such attacks in most real-world scenarios. 展开更多
关键词 Containers Microservices GCN RPC Anomaly detection Adversarial attacks
在线阅读 下载PDF
A Communication Theory Perspective on Prompting Engineering Methods for Large Language Models 被引量:1
7
作者 Yuan-Feng Song Yuan-Qin He +4 位作者 Xue-Fang Zhao Han-Lin Gu Di Jiang Hai-Jun Yang Li-Xin Fan 《Journal of Computer Science & Technology》 SCIE EI CSCD 2024年第4期984-1004,共21页
The springing up of large language models(LLMs)has shifted the community from single-task-orientated natural language processing(NLP)research to a holistic end-to-end multi-task learning paradigm.Along this line of re... The springing up of large language models(LLMs)has shifted the community from single-task-orientated natural language processing(NLP)research to a holistic end-to-end multi-task learning paradigm.Along this line of research endeavors in the area,LLM-based prompting methods have attracted much attention,partially due to the technological advantages brought by prompt engineering(PE)as well as the underlying NLP principles disclosed by various prompting methods.Traditional supervised learning usually requires training a model based on labeled data and then making predictions.In contrast,PE methods directly use the powerful capabilities of existing LLMs(e.g.,GPT-3 and GPT-4)via composing appropriate prompts,especially under few-shot or zero-shot scenarios.Facing the abundance of studies related to the prompting and the ever-evolving nature of this field,this article aims to 1)illustrate a novel perspective to review existing PE methods within the well-established communication theory framework,2)facilitate a better/deeper understanding of developing trends of existing PE methods used in three typical tasks,and 3)shed light on promising research directions for future PE methods. 展开更多
关键词 prompting method large language model communication theory
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部