研究了Mg-12Gd-0.5Zr(GW120K)合金和Mg-12Gd-4Y-0.5Zr(GW124K)合金在350~500℃,应变速率为0.002~1 s^(-1)的热压缩行为,对合金的流变应力、显微组织进行分析,计算了合金的热变形激活能,构建并分析了合金的热加工图。结果表明:两种合金...研究了Mg-12Gd-0.5Zr(GW120K)合金和Mg-12Gd-4Y-0.5Zr(GW124K)合金在350~500℃,应变速率为0.002~1 s^(-1)的热压缩行为,对合金的流变应力、显微组织进行分析,计算了合金的热变形激活能,构建并分析了合金的热加工图。结果表明:两种合金的真应力真应变曲线都表现出动态再结晶的一般特征。添加Y后,合金的流变应力增高;在低温高应变速率(350℃,0.002 s^(-1))变形时,合金易出现45°角剪切断裂;在400℃变形时,在动态再结晶的晶界处析出第二相,添加Y后GW124K合金动态析出相的数量明显增多;在500℃变形时,发生完全动态再结晶,GW124K合金的再结晶晶粒尺寸(25μm)明显小于GW120K合金(40μm);GW120K合金的热变形激活能为218.788 k J·mol^(-1),添加Y后合金的热变形激活能增高至243.530 k J·mol^(-1);Mg-12Gd-(4Y)-0.5Zr两种合金的失稳区集中在低温高应变区域,添加Y后,合金的失稳区增大,可加工区域减小。展开更多
文摘研究了Mg-12Gd-0.5Zr(GW120K)合金和Mg-12Gd-4Y-0.5Zr(GW124K)合金在350~500℃,应变速率为0.002~1 s^(-1)的热压缩行为,对合金的流变应力、显微组织进行分析,计算了合金的热变形激活能,构建并分析了合金的热加工图。结果表明:两种合金的真应力真应变曲线都表现出动态再结晶的一般特征。添加Y后,合金的流变应力增高;在低温高应变速率(350℃,0.002 s^(-1))变形时,合金易出现45°角剪切断裂;在400℃变形时,在动态再结晶的晶界处析出第二相,添加Y后GW124K合金动态析出相的数量明显增多;在500℃变形时,发生完全动态再结晶,GW124K合金的再结晶晶粒尺寸(25μm)明显小于GW120K合金(40μm);GW120K合金的热变形激活能为218.788 k J·mol^(-1),添加Y后合金的热变形激活能增高至243.530 k J·mol^(-1);Mg-12Gd-(4Y)-0.5Zr两种合金的失稳区集中在低温高应变区域,添加Y后,合金的失稳区增大,可加工区域减小。
基金supported by the National Natural Science Foundation of China(Nos.U1804146,51905153,52111530068)the Science and Technology Innovation Team of Henan University of Science and Technology,China(No.2015XTD006)Major Science and Technology Project of Henan Province,China(No.221100230200)。