As an important chemical product,propylene(C_(3)H_(6))is widely used in production of many crucial chemical products such as polypropylene.Propane(C_(3)H_(8))is introduced as an inevitable gas impurity during the naph...As an important chemical product,propylene(C_(3)H_(6))is widely used in production of many crucial chemical products such as polypropylene.Propane(C_(3)H_(8))is introduced as an inevitable gas impurity during the naphtha cracking in propylene production.At present,thermal-driven energy-intensive cryogenic distillation is the most common purification method in industry.An energy-efficient,cost-effective and environmental-friendly separation technology is required to get polymer grade C_(3)H_(6)(higher than 99.5%).In face of the increasing demand of propylene,new separation technology based on porous adsorbents is expected to be a promising alternative.In recent years,metal-organic frameworks(MOFs)have obtained attention by their high porosity,regular adjustable pore shape and pore environment and keep making breakthroughs in separation and purification of many industrial gas mixtures,and are thus considered as one of the most potential types of adsorbents.The physical properties of C_(3)H_(6)and C_(3)H_(8),such as boiling point,size and kinetic diameter,are close to each other,making their separation a challenge.Most C_(3)H_(6)/C_(3)H_(8)sieving MOFs based on narrow sieving channels that restrict the access of molecules larger than their confined entrance purify mixtures at the cost of diffusion and capacity.To improve the adsorption of MOFs based on molecular sieving,a novel‘pearl-necklace’strategy was designed,which was named for its connected channel and molecular pocket vividly,but the diffusion limitation remains unsolved.展开更多
Computer analysis of electrocardiograms(ECGs)was introduced more than 50 years ago,with the aim to improve efficiency and clinical workflow.[1,2]However,inaccuracies have been documented in the literature.[3,4]Researc...Computer analysis of electrocardiograms(ECGs)was introduced more than 50 years ago,with the aim to improve efficiency and clinical workflow.[1,2]However,inaccuracies have been documented in the literature.[3,4]Research indicates that emergency department(ED)clinician interruptions occur every 4-10 min,which is significantly more common than in other specialties.[5]This increases the cognitive load and error rates and impacts patient care and clinical effi ciency.[1,2,5]De-prioritization protocols have been introduced in certain centers in the United Kingdom(UK),removing the need for clinician ECG interpretation where ECGs have been interpreted as normal by the machine.展开更多
Osteoarthritis(OA)is a prevalent degenerative joint disorder marked by chronic pain,inflammation,and cartilage loss,with current treatments limited to symptom relief.G protein-coupled receptors(GPCRs)play a pivotal ro...Osteoarthritis(OA)is a prevalent degenerative joint disorder marked by chronic pain,inflammation,and cartilage loss,with current treatments limited to symptom relief.G protein-coupled receptors(GPCRs)play a pivotal role in OA progression by regulating inflammation,chondrocyte survival,and matrix homeostasis.However,their multifaceted signaling,via G proteins orβ-arrestins,poses challenges for precise therapeutic targeting.Biased agonism,where ligands selectively activate specific GPCR pathways,emerges as a promising approach to optimize efficacy and reduce side effects.This review examines biased signaling in OAassociated GPCRs,including cannabinoid receptors(CB1,CB2),chemokine receptors(CCR2,CXCR4),protease-activated receptors(PAR-2),adenosine receptors(A1R,A2AR,A2BR,A3R),melanocortin receptors(MC1R,MC3R),bradykinin receptors(B2R),prostaglandin E2 receptors(EP-2,EP-4),and calcium-sensing receptors(CaSR).We analyze ligands in clinical trials and explore natural products from Traditional Chinese Medicine as potential biased agonists.These compounds,with diverse structures and bioactivities,offer novel therapeutic avenues.By harnessing biased agonism,this review underscores the potential for developing targeted,safer OA therapies that address its complex pathology,bridging molecular insights with clinical translation.展开更多
MgH_(2)is a promising solid-state hydrogen storage material.However,its high thermodynamics and sluggish kinetics hinder its practical application.Catalytic strategy is effective in improving its kinetic performance.N...MgH_(2)is a promising solid-state hydrogen storage material.However,its high thermodynamics and sluggish kinetics hinder its practical application.Catalytic strategy is effective in improving its kinetic performance.Nevertheless,the highly efficient catalysts or additives are normally of low-yield in fabrication with high cost.In this work,a novel structural LaVO_(4)fabricated by a low-cost method of spraying dry followed by a calcination is used as a catalytic additive for the hydrogen storage of MgH_(2).With an optimized addition of LaVO_(4),the overall hydrogen storage performances of MgH_(2)are significantly improved.An onset dehydrogenation temperature of only 183℃is obtained after an initial activation of dehydrogenation and hydrogenation.The system can desorb 5.7 wt%H_(2)at 250℃within 10 min and maintains a dehydrogenation capacity of 5.0 wt%H_(2)after 50 cycles.It is found that LaVO_(4)is transferred to lanthanum hydride and metallic vanadium in the initial dehydrogenation process,the former acts as a highly effective catalyst for the hydrogen storage of MgH_(2)and the latter undergoes reversible hydrogenation and dehydrogenation in the subsequent cycles.The structural design of the catalyst and its scalable fabrication are highly valuable in realizing the practical application of catalytic strategy for the hydrogen storage of MgH_(2).展开更多
Precipitation via thermal treatments is among the most effective approaches to strengthening and is widely applied in the Al industry. Thermal treatments combined with deformation are capable of finely regulating the ...Precipitation via thermal treatments is among the most effective approaches to strengthening and is widely applied in the Al industry. Thermal treatments combined with deformation are capable of finely regulating the process of precipitation and distribution of precipitates. Deformation-induced defects exert significant impacts on the precipitation and already present precipitates, which however is often overlooked. In this study, the interactions between deformation and precipitation/precipitates, and their impacts on mechanical properties were systematically investigated in the solution-treated (ST) Al-0.61Mg-1.17Si-0.5Cu (wt.%), processed by multi-pass equal channel angular pressing (ECAP) and thermal treatments. Novel deformation-mediated cyclic evolution of precipitates is discovered: ST→ (1,2 passes: deformation induced precipitation) Guinier Preston (GP) zones→ (An250/30) Q’ and L phases→ (3-pass: deformation induced fragmentation/resolution) spherical precipitates→ (4-pass: deformation induced further fragmentation/resolution) GP zones. On this basis, we extend the quasi-binary phase diagram of Al-Mg_(2)Si along deformation as the third dimension and construct an innovative defect phase diagram for the Al-Mg-Si-based system. To testify to the effect of deformation-mediated cyclic evolution of precipitation/precipitates on the optimum mechanical properties, peak-aging treatments were performed in samples of ST and 3-pass states. Based on the microscopic characterizations, a distinctive mechanism of peak-aging strengthening is proposed. Notably in the 3-pass ECAPed and peak-aged sample the dominant strengthening phases become the L precipitates that thrived from the segmented and spherical L phases, rather than β’’ precipitates in the solely peak-aged ST sample. Our work provides a feasible example for exploring the combined processing technique of multi-step deformation and thermal treatments, to optimize the mechanical properties.展开更多
1.Introduction The strength-ductility trade-offdilemma has long been a per-sistent challenge in Al matrix composites(AMCs)[1,2].This is-sue primarily arises from the agglomeration of reinforcements at the grain bounda...1.Introduction The strength-ductility trade-offdilemma has long been a per-sistent challenge in Al matrix composites(AMCs)[1,2].This is-sue primarily arises from the agglomeration of reinforcements at the grain boundaries(GBs),which restricts local plastic flow dur-ing the plastic deformation and leads to stress concentration[3,4].Recently,the development of concepts aimed at achieving hetero-geneous grain has emerged as a promising approach for enhanc-ing comprehensive mechanical properties[5,6].展开更多
The thiol-imidazole functionalized(p-triphenyl-pentafluorobenzaldehyde)polymer(IMPTP)was prepared and quaternized with different side chains to obtain imidazolium-modified Me-IMPTP,He-IMPTP and BIM-IMPTP membranes for...The thiol-imidazole functionalized(p-triphenyl-pentafluorobenzaldehyde)polymer(IMPTP)was prepared and quaternized with different side chains to obtain imidazolium-modified Me-IMPTP,He-IMPTP and BIM-IMPTP membranes for application in high-temperature proton exchange membrane fuel cells(HT-PEMFCs).The presence of the thioether group in the polymers enabled radical scavenging for antioxidant properties,while imidazolium cations interacted strongly with H_(2)PO_(4) to prevent phosphoric acid(PA)leaching.The prepared BIM-IMPTP membrane incorporating bisimidazolium cation string with a long alkyl spacer demonstrated the highest mass retention of 82.93%after being immersed in Fenton's reagent for 24 h.Additionally,the PA-doped BIM-IMPTP membranes exhibited excellent PA retention under high-humidity conditions(80℃/100%RH).The single cell equipped with the BIM-IMPTP/320%PA membrane achieved a maximum power density(PDmax)of 945 mW cm^(-2)at 160℃.Among the four membranes with a similar acid doping content(ADC),the BIM-IMPTP/163%PA membrane with bis-cation pairs in the side chains exhibited a well-developed microphase-separated structure and high proton conductivity(119.0 mS cm^(-1)at 180℃).The single cell assembled with BIM-IMPTP/163%PA membrane maintained a PDmax of 613 mW cm^(-2)at 160℃ and demonstrated long-term operational stability under both 150/400 mA cm^(-2)and 80℃/200 mA cm^(-2)conditions.These results indicate that the introduction of thioether and bis-cation pairs in the structural design of polymers contributes significantly to the long-term stability of HT-PEMs.展开更多
Regolith,widely distributed on the Earth’s surface,constitutes a significant compartment of the Critical Zone,resulting from intricate interactions among the atmosphere,lithosphere,hydrosphere,and biosphere.Regolith ...Regolith,widely distributed on the Earth’s surface,constitutes a significant compartment of the Critical Zone,resulting from intricate interactions among the atmosphere,lithosphere,hydrosphere,and biosphere.Regolith formation critically influences nutrient release,soil production,and long-term climate regulation.Regolith development is governed by two primary processes:production and denudation.An urgent need exists to comprehensively understand these processes to refine our understanding of Critical Zone functions.This study investigates an in-situ regolith profile developed on granitic bedrock from a tropical region(Sanya,China).We conducted geochemical analyses,encompassing major,trace elements and mineralogical compositions as well as U-series isotopes,and applied the U-series disequilibrium method to investigate the formation history of this profile.Alternatively,dividing the regolith profile into sub-weathering zones provides a better explanation for the geochemical results,and a multi-stage model based on this subdivision effectively interprets the evolution of deep regolith.Utilizing this multi-stage model,regolith production rates is derived from the“gain and loss”model,ranging from 1.27±0.03 to 42.42±24.24 m/Ma.The production rates first increase from surface until a maximum rate is reached at the depth of∼160 cm and then decrease at further deeper horizons along the depth profile,and the variation of production rates follows a so-called“humped function”.This pioneering investigation into regolith production rates in the Chinese tropical region indicates that(1)the studied profile deviates from a steady state compared to the denudation rate derived from cosmogenic nuclides(^(10)Be_in-situ);(2)subdividing the deep profile based on geochemical data and U-series isotopic activity ratios is imperative for accurately determining regolith production rates;and(3)the combination of U-series disequilibrium and cosmogenic nuclides robustly evaluates the quantitative evolution state of regolith over long time scales.展开更多
In this study,AZ91D(Mg-9Al-Zn)alloys reinforced with 2 vol%TC4(Ti-6Al-4V)particles fabricated by semi-solid stir casting were extruded at different ratios,resulting in observed grain refinement effects.The research fi...In this study,AZ91D(Mg-9Al-Zn)alloys reinforced with 2 vol%TC4(Ti-6Al-4V)particles fabricated by semi-solid stir casting were extruded at different ratios,resulting in observed grain refinement effects.The research findings demonstrate that both TC4 andβ-Mg_(17)Al_(12) phases contribute to promoting dynamic recrystallization(DRX)nucleation.With increasing extrusion ratio,theβ-phase(Mg_(17)Al_(12))gradually fractures into smaller particles,leading to progressive grain refinement.Furthermore,the transition from〈01-10〉fiber texture to non-basal texture in theα-Mg matrix after hot extrusion is attributed to improved DRX behavior and activation of non-basal slip.As the extrusion ratio increases,the tensile strength and elongation(EL)of TC4_(p)/AZ91D composite improve significantly,reaching optimum comprehensive mechanical properties at an extrusion of 40:1 with a yield strength(YS)of 257 MPa,an ultimate tensile strength(UTS)of 357 MPa,and an EL of 9.7%.This remarkable strengthening effect is primarily attributed toβ-phase reinforcement,grain refinement strengthening,and strain hardening.展开更多
The generation of defects,such as cracks and pores,presents significant challenges for high-strength met-als and alloys fabricated by the quick-emerging additive manufacturing technology,and subsequent post-processing...The generation of defects,such as cracks and pores,presents significant challenges for high-strength met-als and alloys fabricated by the quick-emerging additive manufacturing technology,and subsequent post-processing treatments are often necessary before their practical applications.In this work,a novel heat treatment approach,involving a pre-softening treatment before hot isostatic pressing(HIP),is developed to facilitate the crack-healing in René142 superalloy produced through laser powder bed fusion.Results demonstrate that René142 alloy exhibits a propensity for severe cracking across a wide range of printing parameters,primarily in the form of solidification cracks and liquation cracks.These cracks are formed mainly due to a wide solidification range,the presence of a liquid film,and the concentration of resid-ual stress.The pre-softening solution heat treatment significantly reduces dislocation density and resid-ual stress levels,and the subsequent HIP together leads to a defect-free,dense structure for René142 superalloy.Consequently,the René142 alloy processed by the pre-softening HIP treatment achieves an excellent combination of yield strength(850 MPa),ultimate tensile strength(1227 MPa),and elongation(13.7%),with pseudo-equiaxed grains(120-150μm)and squareγ'precipitates(approximately 540 nm).These findings provide valuable insights for exploring crack elimination methods in other nickel-based superalloys fabricated through additive manufacturing.展开更多
In the present study,three layers of aluminum(Al)and a single layer of copper(Cu)were joined by resistance rolling welding(RRW)and the impact of welding velocity on microstructure,mechanical property and electrical pr...In the present study,three layers of aluminum(Al)and a single layer of copper(Cu)were joined by resistance rolling welding(RRW)and the impact of welding velocity on microstructure,mechanical property and electrical property was investigated.The results showed that the welding velocity was identified as the most significant parameter.With decreasing the welding velocity from 11 mm/s to 1 mm/s,the mechanical property of the joints initially showed an increase,reaching a maximum coach-peel peak load of 185.25 N,due to the larger well bonded region,then decreased owing to the high-temperature softening of the base metal.The elec-trical resistance of the joint demonstrated a consistent varying,characterized by an initial decrease owing to the larger completely bonded region and then increased with the decreasing welding velocity due to the excessive generation of Al2Cu with high electrical resistance.A cooling system was thus utilized to reduce the welding temperature to relieve the high-temperature softening,that suc-cessfully improved the welding quality of the joint by an 11.5%increase in the coach-peel peak load.展开更多
Pre-stretching and annealing treatments were conducted on twin roll cast Mg-2Al-1Zn-1Ca(AZX211,in wt.%)plates with a rare earth-like texture.Varying amounts of deformation were applied along the rolling direction(RD)a...Pre-stretching and annealing treatments were conducted on twin roll cast Mg-2Al-1Zn-1Ca(AZX211,in wt.%)plates with a rare earth-like texture.Varying amounts of deformation were applied along the rolling direction(RD)and transverse direction(TD)of AZX211 alloy in order to modify its mechanical proper-ties at room temperature.The results demonstrate that pre-stretching treatment effectively enhances the yield strength(YS),especially along the RD.The strengthening mechanism is attributed to the production of a large number of dislocations and sub-grain boundaries,but the work-hardening ability of the plate will be greatly weakened.Additionally,annealing treatment substantially improves the plasticity and in-plane anisotropy and restores the work-hardening ability.The notable distinction in the pre-stretching process between different directions lies in the underlying deformation mechanism.In case of RD,de-formation is predominantly governed by the slip mechanism of{0002}{11−20}basal slip and{10−10}{11−20}prismatic slip,while along the TD,deformation is primarily controlled by{0002}{11−20}basal slip without significant twinning deformation.When a 6%pre-stretching is conducted,the initial rare earth-like texture of the sample transforms into a symmetrically distributed double-peak basal texture,accompanied by grain refinement.This texture transformation is chiefly due to the dominance of{0002}{11−20}basal slip-driven deformation.Moreover,the annealed sample maintains a strong basal texture,owing to strain-induced recrystallization.展开更多
Osteoporosis represents a prevalent and debilitating comorbidity in patients diagnosed with type 2 diabetes mellitus(T2DM),which is characterized by suppressed osteoblast function and disrupted bone microarchitecture....Osteoporosis represents a prevalent and debilitating comorbidity in patients diagnosed with type 2 diabetes mellitus(T2DM),which is characterized by suppressed osteoblast function and disrupted bone microarchitecture.In this study,we utilized male C57BL/6 J mice to investigate the role of SIRT3 in T2DM.Decreased SIRT3 expression and impaired mitochondrial quality control mechanism are observed in both in vitro and in vivo models of T2DM.Mechanistically,SIRT3 suppression results in hyperacetylation of FOXO3,hindering the activation of the PINK1/PRKN mediated mitophagy pathway and resulting in accumulation of dysfunctional mitochondria.Genetical overexpression or pharmacological activation of SIRT3 restores deacetylation status of FOXO3,thus facilitating mitophagy and ameliorating osteogenic impairment in T2DM.Collectively,our findings highlight the fundamental regulatory function of SIRT3 in mitochondrial quality control,crucial for maintaining bone homeostasis in T2DM.These insights not only enhance our understanding of the molecular mechanisms underlying diabetic osteoporosis but also identify SIRT3 as a promising therapeutic target for diabetic osteoporosis.展开更多
Mg alloy matrix composites reinforced with short carbon fibers(C_(sf)/Mg)are considered as potential candidates for integrated structural-functional electronic parts that satisfy the requirements of lightweight,excell...Mg alloy matrix composites reinforced with short carbon fibers(C_(sf)/Mg)are considered as potential candidates for integrated structural-functional electronic parts that satisfy the requirements of lightweight,excellent mechanical properties,and heat dissipation.However,the different characteristics of C_(sf)and Mg alloy make the interface a critical issue affecting the synergistic improvement of thermal and mechanical properties of the composites.Here,Cu coating with different thicknesses is introduced to modify the C_(sf)/Mg interface,so as to simultaneously enhance the thermal and mechanical performances,which can combine the advantages of coating modification and matrix alloying.Results reveal that thermal diffusivity(TD)of 3-C_(sf)-Cu/Mg composites is as high as 22.12 mm^(2)/s and an enhancement of 52.97%is achieved compared with C_(sf)/Mg composites,as well as 16.3%enhancement of ultimate compressive strength(UCS)in the longitudinal direction,8.84%improvement of UCS in the transverse direction,and 53.08%increasement of ultimate tensile strength(UTS).Such improvement can be ascribed to the formation of intermetallic compounds.The formation of intermetallic compounds can not only effectively alleviate the lattice distortion of the matrix and decrease interfacial thermal resistance,but also bear the loads.Our work is of great significance for designing C_(sf)/Mg composites with integrated structure and function.展开更多
1.Introduction.Cold Spray(CS)is a highly advanced solid-state metal depo-sition process that was first developed in the 1980s.This innovative technique involves the high-speed(300-1200 m/s)impact deposition of micron-...1.Introduction.Cold Spray(CS)is a highly advanced solid-state metal depo-sition process that was first developed in the 1980s.This innovative technique involves the high-speed(300-1200 m/s)impact deposition of micron-sized particles(5-50μm)to fabricate coatings[1-3].CS has been extensively used in a variety of coating applications,such as aerospace,automotive,energy,medical,marine,and others,to provide protection against high temperatures,corrosion,erosion,oxidation,and chemicals[4,5].Nowadays,the technical interest in CS is twofold:(i)as a repair process for damaged components,and(ii)as a solid-state additive manufacturing process.Compared to other fusion-based additive manufacturing(AM)technologies,Cold Spray Additive Manufacturing(CSAM)is a new member of the AM family that can enable the fabrication of deposits without undergoing melting.The chemical composition has been largely preserved from the powder to the deposit due to the minimal oxidation.The significant advantages of CSAM over other additive manufacturing processes include a high production rate,unlimited deposition size,high flexibility,and suitability for repairing damaged parts.展开更多
The exploratory synthesis and structural characterization of twodimensional(2D)honeycomb structured Ru-based compounds are key focuses in inorganic materials research,due to the various exotic electronic states arisin...The exploratory synthesis and structural characterization of twodimensional(2D)honeycomb structured Ru-based compounds are key focuses in inorganic materials research,due to the various exotic electronic states arising from the interplay of electron correlations and spinorbit coupling.Among these compounds,α-RuCl_(3) and RuBr_(3) are considered as the most promising candidates for quantum spin liquid(QSL)materials[1–3].As a homolog,α-RuI3 has attracted significant interest,but it still remains relatively unexplored.Recently,it was synthesized by high-temperature and high-pressure solid-state reaction,but reported to be different crystal structures by independent groups.Ni et al.and Nawa et al.considerα-RuI3 to be R-3(3R)and P-31c(2H)space group,respectively[4,5].Both structures have typical 2D characteristics,in which the edge-sharing RuI6 octahedra form honeycomb layers stacked along the c-axis.The primary difference lies in that the honeycomb layers stack in ABCABC mode in the 3R phase,while in ABAB mode in the 2H phase(Fig.S1).Yang et al.discussed the stability of 3R and 2H polymorphs in terms of the total energies and dynamics,finding both structures are stable.However,the total energy of the 2H phase is slightly higher,2.58 meV than that of the 3R analog[6].When it comes to the conductivity behaviour,α-RuCl3 andα-RuBr_(3) are semiconductors as normally observed in QSL materials.In contrast,α-RuI_(3) exhibits metallic response.In 2D materials,the band structure may be drastically modified by altering the stacking order[7].Hence,determining the crystal structure ofα-RuI_(3) is urgently required,which is a key step in comprehensive and in-depth analysis of its physical properties.展开更多
This study introduces a comprehensive and automated framework that leverages data-driven method-ologies to address various challenges in shale gas development and production.Specifically,it harnesses the power of Auto...This study introduces a comprehensive and automated framework that leverages data-driven method-ologies to address various challenges in shale gas development and production.Specifically,it harnesses the power of Automated Machine Learning(AutoML)to construct an ensemble model to predict the estimated ultimate recovery(EUR)of shale gas wells.To demystify the“black-box”nature of the ensemble model,KernelSHAP,a kernel-based approach to compute Shapley values,is utilized for elucidating the influential factors that affect shale gas production at both global and local scales.Furthermore,a bi-objective optimization algorithm named NSGA-Ⅱ is seamlessly incorporated to opti-mize hydraulic fracturing designs for production boost and cost control.This innovative framework addresses critical limitations often encountered in applying machine learning(ML)to shale gas pro-duction:the challenge of achieving sufficient model accuracy with limited samples,the multidisciplinary expertise required for developing robust ML models,and the need for interpretability in“black-box”models.Validation with field data from the Fuling shale gas field in the Sichuan Basin substantiates the framework's efficacy in enhancing the precision and applicability of data-driven techniques.The test accuracy of the ensemble ML model reached 83%compared to a maximum of 72%of single ML models.The contribution of each geological and engineering factor to the overall production was quantitatively evaluated.Fracturing design optimization raised EUR by 7%-34%under different production and cost tradeoff scenarios.The results empower domain experts to conduct more precise and objective data-driven analyses and optimizations for shale gas production with minimal expertise in data science.展开更多
The prevalence of bacterial digestive diseases in plateau animals has caused considerable losses to the Tibetan live‑stock industry.Therefore,this study aimed to isolate safe lactic acid bacteria(LAB)with beneficial p...The prevalence of bacterial digestive diseases in plateau animals has caused considerable losses to the Tibetan live‑stock industry.Therefore,this study aimed to isolate safe lactic acid bacteria(LAB)with beneficial probiotic proper‑ties to protect yaks from intestinal diseases.After 16S rDNA matching,four strains of Lactobacillus fermentum(A4),Pediococcus pentosaceus(A3.4 and A1.2),and Pediococcus acidilactici(B1.9)were isolated from the intestinal tissues and content of healthy yaks.The results indicated that A4 was more tolerant to bile salt(0.3%),while A3.4 had better stability in an acidic(pH=3.0)environment.The results of the antibacterial activity test suggested that the isolates inhibited most pathogenic bacteria by up to 20%,except for A3.4,which inhibited Pasteurella and Staphylococcus aureus by more than 20%.Moreover,the results of the antioxidant test demonstrated that A4 and A3.4 had potent antioxidant activity.In addition,the drug sensitivity test revealed that the isolates were susceptible to commonly used antibiotics.In terms of safety,the isolates promoted growth,enhanced intestinal development,and protected the intestinal barrier without causing any adverse effects.In conclusion,LAB isolated from yak intestinal contents are potential probiotics with excellent antibacterial properties.展开更多
A gradient coating containing collagen and inorganic strontium/calcium phosphate(Sr/CaP)was fabricated on plasma-electrolytically oxidised magnesium via one-step cathodic electrodeposition.First,Sr-doped dicalcium pho...A gradient coating containing collagen and inorganic strontium/calcium phosphate(Sr/CaP)was fabricated on plasma-electrolytically oxidised magnesium via one-step cathodic electrodeposition.First,Sr-doped dicalcium phosphate dihydrate and hydroxyapatite(DCPD and HA)was deposited,followed by a collagen/CaP layer.The morphological evolution,sequential degradation behaviour,and in vitro bio-properties of the coatings were investigated.The incorporation of collagen remarkably refined the morphology of the CaP,and a more aggregated nano-spherical morphology was observed with increasing collagen concentration.Sr could partially replace Ca in the CaP crystals.Collagen combined with CaP formed a relatively stable skeletal frame,which provided sufficient barrier properties and more sites for the re-precipitation of bone tissue,as well as a more promising proliferation and differentiation ability of osteoblasts.A gradient coating that matches the requirements of bone growth at various periods is suggested for implantation.展开更多
Graphene nanosheets have attracted great attention in the field of nanotechnology applications due to their extraordinary mechanical properties.While the structural defects such as gaps will occur during the preparati...Graphene nanosheets have attracted great attention in the field of nanotechnology applications due to their extraordinary mechanical properties.While the structural defects such as gaps will occur during the preparation of graphene laminates,which will greatly damage the performance of the macroscopic material.Hence,a simple and promising mechanical compression method is used to improve the mechanical properties of graphene laminates.However,the roles of the densification process in the mechanical enhancement mechanism of graphene laminates are not clear.In our work,the mechanical enhancement of the compressed graphene(PG)laminates was investigated by the coarse-grained molecular dynamics simulation method.The tensile strength of PG model could be increased by increasing the graphene nanosheet size and the degree of compression in the system.And the model has the stronger van der Waals effect between graphene sheets due to the larger graphene size as well as the higher overlap ratio.Furthermore,two kinds of PG laminates were prepared by densification method,and the tensile strength was consistent with the upward trend of the PG model.This work provides an in-depth understanding on the mechanical enhancement of the densification process and lays a foundation for the future practical application of graphene laminates.展开更多
基金support of the National Natural Science Foundation of China(Nos.22378369 and 22205207)Major Project of Natural Science Foundation of Zhejiang Province(LD24B060001).
文摘As an important chemical product,propylene(C_(3)H_(6))is widely used in production of many crucial chemical products such as polypropylene.Propane(C_(3)H_(8))is introduced as an inevitable gas impurity during the naphtha cracking in propylene production.At present,thermal-driven energy-intensive cryogenic distillation is the most common purification method in industry.An energy-efficient,cost-effective and environmental-friendly separation technology is required to get polymer grade C_(3)H_(6)(higher than 99.5%).In face of the increasing demand of propylene,new separation technology based on porous adsorbents is expected to be a promising alternative.In recent years,metal-organic frameworks(MOFs)have obtained attention by their high porosity,regular adjustable pore shape and pore environment and keep making breakthroughs in separation and purification of many industrial gas mixtures,and are thus considered as one of the most potential types of adsorbents.The physical properties of C_(3)H_(6)and C_(3)H_(8),such as boiling point,size and kinetic diameter,are close to each other,making their separation a challenge.Most C_(3)H_(6)/C_(3)H_(8)sieving MOFs based on narrow sieving channels that restrict the access of molecules larger than their confined entrance purify mixtures at the cost of diffusion and capacity.To improve the adsorption of MOFs based on molecular sieving,a novel‘pearl-necklace’strategy was designed,which was named for its connected channel and molecular pocket vividly,but the diffusion limitation remains unsolved.
文摘Computer analysis of electrocardiograms(ECGs)was introduced more than 50 years ago,with the aim to improve efficiency and clinical workflow.[1,2]However,inaccuracies have been documented in the literature.[3,4]Research indicates that emergency department(ED)clinician interruptions occur every 4-10 min,which is significantly more common than in other specialties.[5]This increases the cognitive load and error rates and impacts patient care and clinical effi ciency.[1,2,5]De-prioritization protocols have been introduced in certain centers in the United Kingdom(UK),removing the need for clinician ECG interpretation where ECGs have been interpreted as normal by the machine.
基金supported by the National Key R&D Program of the Ministry of Science and Technology(2023YFC2509900)National Natural Science Foundation of China(82374106)+3 种基金National Natural Science Foundation of China(U22A20371)the Basic and Applied Basic Research Fund of Guangdong Province(2021B1515120061)the Shenzhen Science and Technology Innovation Committee(JCYJ20210324102006017)SZ-HK Joint Laboratory for Innovative Biomaterials under CAS-HK Joint Laboratories(2024-2028).
文摘Osteoarthritis(OA)is a prevalent degenerative joint disorder marked by chronic pain,inflammation,and cartilage loss,with current treatments limited to symptom relief.G protein-coupled receptors(GPCRs)play a pivotal role in OA progression by regulating inflammation,chondrocyte survival,and matrix homeostasis.However,their multifaceted signaling,via G proteins orβ-arrestins,poses challenges for precise therapeutic targeting.Biased agonism,where ligands selectively activate specific GPCR pathways,emerges as a promising approach to optimize efficacy and reduce side effects.This review examines biased signaling in OAassociated GPCRs,including cannabinoid receptors(CB1,CB2),chemokine receptors(CCR2,CXCR4),protease-activated receptors(PAR-2),adenosine receptors(A1R,A2AR,A2BR,A3R),melanocortin receptors(MC1R,MC3R),bradykinin receptors(B2R),prostaglandin E2 receptors(EP-2,EP-4),and calcium-sensing receptors(CaSR).We analyze ligands in clinical trials and explore natural products from Traditional Chinese Medicine as potential biased agonists.These compounds,with diverse structures and bioactivities,offer novel therapeutic avenues.By harnessing biased agonism,this review underscores the potential for developing targeted,safer OA therapies that address its complex pathology,bridging molecular insights with clinical translation.
基金supported by the National Natural Science Foundation of PR China(Nos.52071287,52125104 and 52072342)Natural Science Foundation of Zhejiang Province,PR China(No.LZ23E010002).
文摘MgH_(2)is a promising solid-state hydrogen storage material.However,its high thermodynamics and sluggish kinetics hinder its practical application.Catalytic strategy is effective in improving its kinetic performance.Nevertheless,the highly efficient catalysts or additives are normally of low-yield in fabrication with high cost.In this work,a novel structural LaVO_(4)fabricated by a low-cost method of spraying dry followed by a calcination is used as a catalytic additive for the hydrogen storage of MgH_(2).With an optimized addition of LaVO_(4),the overall hydrogen storage performances of MgH_(2)are significantly improved.An onset dehydrogenation temperature of only 183℃is obtained after an initial activation of dehydrogenation and hydrogenation.The system can desorb 5.7 wt%H_(2)at 250℃within 10 min and maintains a dehydrogenation capacity of 5.0 wt%H_(2)after 50 cycles.It is found that LaVO_(4)is transferred to lanthanum hydride and metallic vanadium in the initial dehydrogenation process,the former acts as a highly effective catalyst for the hydrogen storage of MgH_(2)and the latter undergoes reversible hydrogenation and dehydrogenation in the subsequent cycles.The structural design of the catalyst and its scalable fabrication are highly valuable in realizing the practical application of catalytic strategy for the hydrogen storage of MgH_(2).
基金supported by the National Natural Science Foundation of China(Grant Nos.U22A20187,52171007,52371111,and 52371177).
文摘Precipitation via thermal treatments is among the most effective approaches to strengthening and is widely applied in the Al industry. Thermal treatments combined with deformation are capable of finely regulating the process of precipitation and distribution of precipitates. Deformation-induced defects exert significant impacts on the precipitation and already present precipitates, which however is often overlooked. In this study, the interactions between deformation and precipitation/precipitates, and their impacts on mechanical properties were systematically investigated in the solution-treated (ST) Al-0.61Mg-1.17Si-0.5Cu (wt.%), processed by multi-pass equal channel angular pressing (ECAP) and thermal treatments. Novel deformation-mediated cyclic evolution of precipitates is discovered: ST→ (1,2 passes: deformation induced precipitation) Guinier Preston (GP) zones→ (An250/30) Q’ and L phases→ (3-pass: deformation induced fragmentation/resolution) spherical precipitates→ (4-pass: deformation induced further fragmentation/resolution) GP zones. On this basis, we extend the quasi-binary phase diagram of Al-Mg_(2)Si along deformation as the third dimension and construct an innovative defect phase diagram for the Al-Mg-Si-based system. To testify to the effect of deformation-mediated cyclic evolution of precipitation/precipitates on the optimum mechanical properties, peak-aging treatments were performed in samples of ST and 3-pass states. Based on the microscopic characterizations, a distinctive mechanism of peak-aging strengthening is proposed. Notably in the 3-pass ECAPed and peak-aged sample the dominant strengthening phases become the L precipitates that thrived from the segmented and spherical L phases, rather than β’’ precipitates in the solely peak-aged ST sample. Our work provides a feasible example for exploring the combined processing technique of multi-step deformation and thermal treatments, to optimize the mechanical properties.
基金support by the National Natural Science Foundation of China(Grant Nos.U23A20546 and 52271010)the Chinese National Natural Science Fund for Distinguished Young Scholars(Grant No.52025015)the Natural Science Foundation of Tianjin City(No.21JCZDJC00510).
文摘1.Introduction The strength-ductility trade-offdilemma has long been a per-sistent challenge in Al matrix composites(AMCs)[1,2].This is-sue primarily arises from the agglomeration of reinforcements at the grain boundaries(GBs),which restricts local plastic flow dur-ing the plastic deformation and leads to stress concentration[3,4].Recently,the development of concepts aimed at achieving hetero-geneous grain has emerged as a promising approach for enhanc-ing comprehensive mechanical properties[5,6].
基金supported by the National Natural Science Foundation of China(No.22179047)the Development of Scientific and Technological Project of Jilin Province(20230201139GX).
文摘The thiol-imidazole functionalized(p-triphenyl-pentafluorobenzaldehyde)polymer(IMPTP)was prepared and quaternized with different side chains to obtain imidazolium-modified Me-IMPTP,He-IMPTP and BIM-IMPTP membranes for application in high-temperature proton exchange membrane fuel cells(HT-PEMFCs).The presence of the thioether group in the polymers enabled radical scavenging for antioxidant properties,while imidazolium cations interacted strongly with H_(2)PO_(4) to prevent phosphoric acid(PA)leaching.The prepared BIM-IMPTP membrane incorporating bisimidazolium cation string with a long alkyl spacer demonstrated the highest mass retention of 82.93%after being immersed in Fenton's reagent for 24 h.Additionally,the PA-doped BIM-IMPTP membranes exhibited excellent PA retention under high-humidity conditions(80℃/100%RH).The single cell equipped with the BIM-IMPTP/320%PA membrane achieved a maximum power density(PDmax)of 945 mW cm^(-2)at 160℃.Among the four membranes with a similar acid doping content(ADC),the BIM-IMPTP/163%PA membrane with bis-cation pairs in the side chains exhibited a well-developed microphase-separated structure and high proton conductivity(119.0 mS cm^(-1)at 180℃).The single cell assembled with BIM-IMPTP/163%PA membrane maintained a PDmax of 613 mW cm^(-2)at 160℃ and demonstrated long-term operational stability under both 150/400 mA cm^(-2)and 80℃/200 mA cm^(-2)conditions.These results indicate that the introduction of thioether and bis-cation pairs in the structural design of polymers contributes significantly to the long-term stability of HT-PEMs.
基金supported by The National Natural Science Foundation of China(42303060)The China Scholarship Council(CSC,201906250131).
文摘Regolith,widely distributed on the Earth’s surface,constitutes a significant compartment of the Critical Zone,resulting from intricate interactions among the atmosphere,lithosphere,hydrosphere,and biosphere.Regolith formation critically influences nutrient release,soil production,and long-term climate regulation.Regolith development is governed by two primary processes:production and denudation.An urgent need exists to comprehensively understand these processes to refine our understanding of Critical Zone functions.This study investigates an in-situ regolith profile developed on granitic bedrock from a tropical region(Sanya,China).We conducted geochemical analyses,encompassing major,trace elements and mineralogical compositions as well as U-series isotopes,and applied the U-series disequilibrium method to investigate the formation history of this profile.Alternatively,dividing the regolith profile into sub-weathering zones provides a better explanation for the geochemical results,and a multi-stage model based on this subdivision effectively interprets the evolution of deep regolith.Utilizing this multi-stage model,regolith production rates is derived from the“gain and loss”model,ranging from 1.27±0.03 to 42.42±24.24 m/Ma.The production rates first increase from surface until a maximum rate is reached at the depth of∼160 cm and then decrease at further deeper horizons along the depth profile,and the variation of production rates follows a so-called“humped function”.This pioneering investigation into regolith production rates in the Chinese tropical region indicates that(1)the studied profile deviates from a steady state compared to the denudation rate derived from cosmogenic nuclides(^(10)Be_in-situ);(2)subdividing the deep profile based on geochemical data and U-series isotopic activity ratios is imperative for accurately determining regolith production rates;and(3)the combination of U-series disequilibrium and cosmogenic nuclides robustly evaluates the quantitative evolution state of regolith over long time scales.
基金the Guangdong Major Project of Basic and Applied Basic Research(2020B0301030006)the Guangdong Provincial Academy of Sciences Fund(2020GDASYL-20200101001)the Natural Science Foundation of Hubei Province,China(2023AFB1033).
文摘In this study,AZ91D(Mg-9Al-Zn)alloys reinforced with 2 vol%TC4(Ti-6Al-4V)particles fabricated by semi-solid stir casting were extruded at different ratios,resulting in observed grain refinement effects.The research findings demonstrate that both TC4 andβ-Mg_(17)Al_(12) phases contribute to promoting dynamic recrystallization(DRX)nucleation.With increasing extrusion ratio,theβ-phase(Mg_(17)Al_(12))gradually fractures into smaller particles,leading to progressive grain refinement.Furthermore,the transition from〈01-10〉fiber texture to non-basal texture in theα-Mg matrix after hot extrusion is attributed to improved DRX behavior and activation of non-basal slip.As the extrusion ratio increases,the tensile strength and elongation(EL)of TC4_(p)/AZ91D composite improve significantly,reaching optimum comprehensive mechanical properties at an extrusion of 40:1 with a yield strength(YS)of 257 MPa,an ultimate tensile strength(UTS)of 357 MPa,and an EL of 9.7%.This remarkable strengthening effect is primarily attributed toβ-phase reinforcement,grain refinement strengthening,and strain hardening.
基金support of the National Natural Science Foundation of China(Project Nos.52371012 and 52301060).
文摘The generation of defects,such as cracks and pores,presents significant challenges for high-strength met-als and alloys fabricated by the quick-emerging additive manufacturing technology,and subsequent post-processing treatments are often necessary before their practical applications.In this work,a novel heat treatment approach,involving a pre-softening treatment before hot isostatic pressing(HIP),is developed to facilitate the crack-healing in René142 superalloy produced through laser powder bed fusion.Results demonstrate that René142 alloy exhibits a propensity for severe cracking across a wide range of printing parameters,primarily in the form of solidification cracks and liquation cracks.These cracks are formed mainly due to a wide solidification range,the presence of a liquid film,and the concentration of resid-ual stress.The pre-softening solution heat treatment significantly reduces dislocation density and resid-ual stress levels,and the subsequent HIP together leads to a defect-free,dense structure for René142 superalloy.Consequently,the René142 alloy processed by the pre-softening HIP treatment achieves an excellent combination of yield strength(850 MPa),ultimate tensile strength(1227 MPa),and elongation(13.7%),with pseudo-equiaxed grains(120-150μm)and squareγ'precipitates(approximately 540 nm).These findings provide valuable insights for exploring crack elimination methods in other nickel-based superalloys fabricated through additive manufacturing.
基金supported by the National Key Research and Development Program of China(Grant No.2023YFB3407400)the National Natural Science Foundation of China(Grant No.52475386,Grant No.52025058).
文摘In the present study,three layers of aluminum(Al)and a single layer of copper(Cu)were joined by resistance rolling welding(RRW)and the impact of welding velocity on microstructure,mechanical property and electrical property was investigated.The results showed that the welding velocity was identified as the most significant parameter.With decreasing the welding velocity from 11 mm/s to 1 mm/s,the mechanical property of the joints initially showed an increase,reaching a maximum coach-peel peak load of 185.25 N,due to the larger well bonded region,then decreased owing to the high-temperature softening of the base metal.The elec-trical resistance of the joint demonstrated a consistent varying,characterized by an initial decrease owing to the larger completely bonded region and then increased with the decreasing welding velocity due to the excessive generation of Al2Cu with high electrical resistance.A cooling system was thus utilized to reduce the welding temperature to relieve the high-temperature softening,that suc-cessfully improved the welding quality of the joint by an 11.5%increase in the coach-peel peak load.
基金supported by the National Natural Science Foundation of China(No.52001106)Hebei province(No.E2022202158).
文摘Pre-stretching and annealing treatments were conducted on twin roll cast Mg-2Al-1Zn-1Ca(AZX211,in wt.%)plates with a rare earth-like texture.Varying amounts of deformation were applied along the rolling direction(RD)and transverse direction(TD)of AZX211 alloy in order to modify its mechanical proper-ties at room temperature.The results demonstrate that pre-stretching treatment effectively enhances the yield strength(YS),especially along the RD.The strengthening mechanism is attributed to the production of a large number of dislocations and sub-grain boundaries,but the work-hardening ability of the plate will be greatly weakened.Additionally,annealing treatment substantially improves the plasticity and in-plane anisotropy and restores the work-hardening ability.The notable distinction in the pre-stretching process between different directions lies in the underlying deformation mechanism.In case of RD,de-formation is predominantly governed by the slip mechanism of{0002}{11−20}basal slip and{10−10}{11−20}prismatic slip,while along the TD,deformation is primarily controlled by{0002}{11−20}basal slip without significant twinning deformation.When a 6%pre-stretching is conducted,the initial rare earth-like texture of the sample transforms into a symmetrically distributed double-peak basal texture,accompanied by grain refinement.This texture transformation is chiefly due to the dominance of{0002}{11−20}basal slip-driven deformation.Moreover,the annealed sample maintains a strong basal texture,owing to strain-induced recrystallization.
基金supported by the National Key Research and Development Project (2021YFA1201404)National Natural Science Foundation of China Major Project (81991514)+6 种基金General Project (82272530, 82372459)Jiangsu Province Medical Innovation Center of Orthopedic Surgery (CXZX202214)Jiangsu Provincial Key Medical Center FoundationJiangsu Provincial Medical Outstanding Talent FoundationJiangsu Provincial Medical Youth Talent FoundationJiangsu Provincial Key Medical Talent Foundationthe Fundamental Research Funds for the Central Universities (14380493, 14380494)
文摘Osteoporosis represents a prevalent and debilitating comorbidity in patients diagnosed with type 2 diabetes mellitus(T2DM),which is characterized by suppressed osteoblast function and disrupted bone microarchitecture.In this study,we utilized male C57BL/6 J mice to investigate the role of SIRT3 in T2DM.Decreased SIRT3 expression and impaired mitochondrial quality control mechanism are observed in both in vitro and in vivo models of T2DM.Mechanistically,SIRT3 suppression results in hyperacetylation of FOXO3,hindering the activation of the PINK1/PRKN mediated mitophagy pathway and resulting in accumulation of dysfunctional mitochondria.Genetical overexpression or pharmacological activation of SIRT3 restores deacetylation status of FOXO3,thus facilitating mitophagy and ameliorating osteogenic impairment in T2DM.Collectively,our findings highlight the fundamental regulatory function of SIRT3 in mitochondrial quality control,crucial for maintaining bone homeostasis in T2DM.These insights not only enhance our understanding of the molecular mechanisms underlying diabetic osteoporosis but also identify SIRT3 as a promising therapeutic target for diabetic osteoporosis.
基金supported by the National Natural Science Foundation of China(grant no.52231004 and 52072305).
文摘Mg alloy matrix composites reinforced with short carbon fibers(C_(sf)/Mg)are considered as potential candidates for integrated structural-functional electronic parts that satisfy the requirements of lightweight,excellent mechanical properties,and heat dissipation.However,the different characteristics of C_(sf)and Mg alloy make the interface a critical issue affecting the synergistic improvement of thermal and mechanical properties of the composites.Here,Cu coating with different thicknesses is introduced to modify the C_(sf)/Mg interface,so as to simultaneously enhance the thermal and mechanical performances,which can combine the advantages of coating modification and matrix alloying.Results reveal that thermal diffusivity(TD)of 3-C_(sf)-Cu/Mg composites is as high as 22.12 mm^(2)/s and an enhancement of 52.97%is achieved compared with C_(sf)/Mg composites,as well as 16.3%enhancement of ultimate compressive strength(UCS)in the longitudinal direction,8.84%improvement of UCS in the transverse direction,and 53.08%increasement of ultimate tensile strength(UTS).Such improvement can be ascribed to the formation of intermetallic compounds.The formation of intermetallic compounds can not only effectively alleviate the lattice distortion of the matrix and decrease interfacial thermal resistance,but also bear the loads.Our work is of great significance for designing C_(sf)/Mg composites with integrated structure and function.
基金supported by the National Natural Science Foundation of China(No.52061135101 and 52001078)the German Research Foundation(DFG,No.448318292)+3 种基金the Technology Innovation Guidance Special Foundation of Shaanxi Province(No.2023GXLH-085)the Fundamental Research Funds for the Central Universities(No.D5000240161)the Project of Key areas of innovation team in Shaanxi Province(No.2024RS-CXTD-20)The author Yingchun Xie thanks the support from the National Key R&D Program(No.2023YFE0108000).
文摘1.Introduction.Cold Spray(CS)is a highly advanced solid-state metal depo-sition process that was first developed in the 1980s.This innovative technique involves the high-speed(300-1200 m/s)impact deposition of micron-sized particles(5-50μm)to fabricate coatings[1-3].CS has been extensively used in a variety of coating applications,such as aerospace,automotive,energy,medical,marine,and others,to provide protection against high temperatures,corrosion,erosion,oxidation,and chemicals[4,5].Nowadays,the technical interest in CS is twofold:(i)as a repair process for damaged components,and(ii)as a solid-state additive manufacturing process.Compared to other fusion-based additive manufacturing(AM)technologies,Cold Spray Additive Manufacturing(CSAM)is a new member of the AM family that can enable the fabrication of deposits without undergoing melting.The chemical composition has been largely preserved from the powder to the deposit due to the minimal oxidation.The significant advantages of CSAM over other additive manufacturing processes include a high production rate,unlimited deposition size,high flexibility,and suitability for repairing damaged parts.
基金supported by the National Natural Science Foundation of China(No.22090041)the Program for Guangdong Introducing Innovative and Entrepreneurial Teams(No.2017ZT07C069)+1 种基金the Guangdong Basic and Applied Basic Research Foundation(No.2022B1515120014)the Natural Science Foundation of Zhejiang Province(No.LQ21A040010).
文摘The exploratory synthesis and structural characterization of twodimensional(2D)honeycomb structured Ru-based compounds are key focuses in inorganic materials research,due to the various exotic electronic states arising from the interplay of electron correlations and spinorbit coupling.Among these compounds,α-RuCl_(3) and RuBr_(3) are considered as the most promising candidates for quantum spin liquid(QSL)materials[1–3].As a homolog,α-RuI3 has attracted significant interest,but it still remains relatively unexplored.Recently,it was synthesized by high-temperature and high-pressure solid-state reaction,but reported to be different crystal structures by independent groups.Ni et al.and Nawa et al.considerα-RuI3 to be R-3(3R)and P-31c(2H)space group,respectively[4,5].Both structures have typical 2D characteristics,in which the edge-sharing RuI6 octahedra form honeycomb layers stacked along the c-axis.The primary difference lies in that the honeycomb layers stack in ABCABC mode in the 3R phase,while in ABAB mode in the 2H phase(Fig.S1).Yang et al.discussed the stability of 3R and 2H polymorphs in terms of the total energies and dynamics,finding both structures are stable.However,the total energy of the 2H phase is slightly higher,2.58 meV than that of the 3R analog[6].When it comes to the conductivity behaviour,α-RuCl3 andα-RuBr_(3) are semiconductors as normally observed in QSL materials.In contrast,α-RuI_(3) exhibits metallic response.In 2D materials,the band structure may be drastically modified by altering the stacking order[7].Hence,determining the crystal structure ofα-RuI_(3) is urgently required,which is a key step in comprehensive and in-depth analysis of its physical properties.
基金funded by the National Natural Science Foundation of China(42050104).
文摘This study introduces a comprehensive and automated framework that leverages data-driven method-ologies to address various challenges in shale gas development and production.Specifically,it harnesses the power of Automated Machine Learning(AutoML)to construct an ensemble model to predict the estimated ultimate recovery(EUR)of shale gas wells.To demystify the“black-box”nature of the ensemble model,KernelSHAP,a kernel-based approach to compute Shapley values,is utilized for elucidating the influential factors that affect shale gas production at both global and local scales.Furthermore,a bi-objective optimization algorithm named NSGA-Ⅱ is seamlessly incorporated to opti-mize hydraulic fracturing designs for production boost and cost control.This innovative framework addresses critical limitations often encountered in applying machine learning(ML)to shale gas pro-duction:the challenge of achieving sufficient model accuracy with limited samples,the multidisciplinary expertise required for developing robust ML models,and the need for interpretability in“black-box”models.Validation with field data from the Fuling shale gas field in the Sichuan Basin substantiates the framework's efficacy in enhancing the precision and applicability of data-driven techniques.The test accuracy of the ensemble ML model reached 83%compared to a maximum of 72%of single ML models.The contribution of each geological and engineering factor to the overall production was quantitatively evaluated.Fracturing design optimization raised EUR by 7%-34%under different production and cost tradeoff scenarios.The results empower domain experts to conduct more precise and objective data-driven analyses and optimizations for shale gas production with minimal expertise in data science.
基金supported by the Key Project of Tibet Autonomous Region(XZ202001ZY0044NXZ202101ZD0002N-05).
文摘The prevalence of bacterial digestive diseases in plateau animals has caused considerable losses to the Tibetan live‑stock industry.Therefore,this study aimed to isolate safe lactic acid bacteria(LAB)with beneficial probiotic proper‑ties to protect yaks from intestinal diseases.After 16S rDNA matching,four strains of Lactobacillus fermentum(A4),Pediococcus pentosaceus(A3.4 and A1.2),and Pediococcus acidilactici(B1.9)were isolated from the intestinal tissues and content of healthy yaks.The results indicated that A4 was more tolerant to bile salt(0.3%),while A3.4 had better stability in an acidic(pH=3.0)environment.The results of the antibacterial activity test suggested that the isolates inhibited most pathogenic bacteria by up to 20%,except for A3.4,which inhibited Pasteurella and Staphylococcus aureus by more than 20%.Moreover,the results of the antioxidant test demonstrated that A4 and A3.4 had potent antioxidant activity.In addition,the drug sensitivity test revealed that the isolates were susceptible to commonly used antibiotics.In terms of safety,the isolates promoted growth,enhanced intestinal development,and protected the intestinal barrier without causing any adverse effects.In conclusion,LAB isolated from yak intestinal contents are potential probiotics with excellent antibacterial properties.
基金support from Mobility Programme of the Sino-German Center(M-0056)National Natural Science Foundation of China(52101286)+2 种基金Natural Science Foundation of Liaoning Province(2022-YGJC-16)Fundamental Research Funds for the Central Universities(N2302017)Supported by Sichuan Science and Technology Program 2023ZYD0115Shenyang Young and Middle-aged Science and Technology Innovation Talent Support Program(RC231178).
文摘A gradient coating containing collagen and inorganic strontium/calcium phosphate(Sr/CaP)was fabricated on plasma-electrolytically oxidised magnesium via one-step cathodic electrodeposition.First,Sr-doped dicalcium phosphate dihydrate and hydroxyapatite(DCPD and HA)was deposited,followed by a collagen/CaP layer.The morphological evolution,sequential degradation behaviour,and in vitro bio-properties of the coatings were investigated.The incorporation of collagen remarkably refined the morphology of the CaP,and a more aggregated nano-spherical morphology was observed with increasing collagen concentration.Sr could partially replace Ca in the CaP crystals.Collagen combined with CaP formed a relatively stable skeletal frame,which provided sufficient barrier properties and more sites for the re-precipitation of bone tissue,as well as a more promising proliferation and differentiation ability of osteoblasts.A gradient coating that matches the requirements of bone growth at various periods is suggested for implantation.
基金supported by the National Natural Science Foundation of China(No.52075510).
文摘Graphene nanosheets have attracted great attention in the field of nanotechnology applications due to their extraordinary mechanical properties.While the structural defects such as gaps will occur during the preparation of graphene laminates,which will greatly damage the performance of the macroscopic material.Hence,a simple and promising mechanical compression method is used to improve the mechanical properties of graphene laminates.However,the roles of the densification process in the mechanical enhancement mechanism of graphene laminates are not clear.In our work,the mechanical enhancement of the compressed graphene(PG)laminates was investigated by the coarse-grained molecular dynamics simulation method.The tensile strength of PG model could be increased by increasing the graphene nanosheet size and the degree of compression in the system.And the model has the stronger van der Waals effect between graphene sheets due to the larger graphene size as well as the higher overlap ratio.Furthermore,two kinds of PG laminates were prepared by densification method,and the tensile strength was consistent with the upward trend of the PG model.This work provides an in-depth understanding on the mechanical enhancement of the densification process and lays a foundation for the future practical application of graphene laminates.