期刊文献+
共找到1,228篇文章
< 1 2 62 >
每页显示 20 50 100
Study on purification process of electronic-rade cerium ammonium nitrate through crystallization
1
作者 Yinghan Wang Li Yang +3 位作者 Haoliang Wang Hao Wu Jingcai Cheng Chao Yang 《Chinese Journal of Chemical Engineering》 2025年第7期148-159,共12页
The purity of electronic-grade chemicals significantly impacts electronic components.Although crystallization has been used to purify cerium ammonium nitrate(CAN),the impurity removal mechanism underlying different cr... The purity of electronic-grade chemicals significantly impacts electronic components.Although crystallization has been used to purify cerium ammonium nitrate(CAN),the impurity removal mechanism underlying different crystallization parameters remains unclear.Traditional analytical methods of inductively coupled plasma mass spectrometry(ICP-MS)have problems in detecting trace Fe accurately,because of the high concentration of Ce and interference of polyatomic ions.Therefore,this study developed a new method integrating the standard addition and internal standard methods and explored the role of the kinetic energy discrimination mode.This new approach effectively overcomes Ce-related matrix interference and fills the gap in ultra-trace impurity detection.Furthermore,the study investigated the effects of cooling rate,seed mass loading and seed size on the removal of Fe impurity.The seed mass loading affects the average crystal size through regulating secondary nucleation and crystal growth.The removal of Fe in CAN is determined by surface adsorption and agglomeration.Under the condition of the cooling rate of 0.2 K·min^(-1),and addition of 0.5%(mass)600-680 μm seeds,the Fe content is the lowest,at only 0.24 mg·L^(-1),and the Fe removal rate reaches 92.28%. 展开更多
关键词 Electronic-grade chemicals CRYSTALLIZATION Removal of impurities ICP-MS Cerium ammonium nitrate
在线阅读 下载PDF
Enhancing sensitivity,selectivity,and intelligence of gas detection based on field-effect transistors:Principle,process,and materials
2
作者 Rabia Sultana Song Wang +6 位作者 Misbah Sehar Abbasi Kamran Ahmad Shah Muhammad Mubeen Luxi Yang Qiyu Zhang Zepeng Li Yinghui Han 《Journal of Environmental Sciences》 2025年第8期174-199,共26页
A sensor,serving as a transducer,produces a quantifiable output in response to a predetermined input stimulus,which may be of a chemical or physical nature.The field of gas detection has experienced a substantial surg... A sensor,serving as a transducer,produces a quantifiable output in response to a predetermined input stimulus,which may be of a chemical or physical nature.The field of gas detection has experienced a substantial surge in research activity,attributable to the diverse functionalities and enhanced accessibility of advanced active materials.In this work,recent advances in gas sensors,specifically those utilizing Field Effect Transistors(FETs),are summarized,including device configurations,response characteristics,sensor materials,and application domains.In pursuing high-performance artificial olfactory systems,the evolution of FET gas sensors necessitates their synchronization with material advancements.These materials should have large surface areas to enhance gas adsorption,efficient conversion of gas input to detectable signals,and strong mechanical qualities.The exploration of gas-sensitive materials has covered diverse categories,such as organic semiconductor polymers,conductive organic compounds and polymers,metal oxides,metal-organic frameworks,and low-dimensional materials.The application of gas sensing technology holds significant promise in domains such as industrial safety,environmental monitoring,and medical diagnostics.This comprehensive review thoroughly examines recent progress,identifies prevailing technical challenges,and outlines prospects for gas detection technology utilizing field effect transistors.The primary aim is to provide a valuable reference for driving the development of the next generation of gas-sensitive monitoring and detection systems characterized by improved sensitivity,selectivity,and intelligence. 展开更多
关键词 Gas detection Field Effect Transistor(FET)gas sensors Adsorption Gas sensitivematerials Applications Technical advancements
原文传递
Valence electronic engineering of superhydrophilic Dy-evoked Ni-MOF outperforming RuO_(2) for highly efficient electrocatalytic oxygen evolution 被引量:3
3
作者 Zhiyang Huang Miao Liao +6 位作者 Shifan Zhang Lixia Wang Mingcheng Gao Zuyang Luo Tayirjan Taylor Isimjan Bao Wang Xiulin Yang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期244-252,I0007,共10页
Tackling the problem of poor conductivity and catalytic stability of pristine metal-organic frameworks(MOFs) is crucial to improve their oxygen evolution reaction(OER) performance.Herein,we introduce a novel strategy ... Tackling the problem of poor conductivity and catalytic stability of pristine metal-organic frameworks(MOFs) is crucial to improve their oxygen evolution reaction(OER) performance.Herein,we introduce a novel strategy of dysprosium(Dy) doping,using the unique 4f orbitals of this rare earth element to enhance electrocatalytic activity of MOFs.Our method involves constructing Dy-doped Ni-MOF(Dy@Ni-MOF) nanoneedles on carbon cloth via a Dy-induced valence electronic perturbation approach.Experiments and density functional theory(DFT) calculations reveal that Dy doping can effectively modify the electronic structure of the Ni active centers and foster a strong electronic interaction between Ni and Dy.The resulting benefits include a reduced work function and a closer proximity of the d-band center to the Fermi level,which is conducive to improving electrical conductivity and promoting the adsorption of oxygen-containing intermediates.Furthermore,the Dy@Ni-MOF achieves superhydrophilicity,ensuring effective electrolyte contact and thus accelerating reaction kinetics,Ex-situ and in-situ analysis results manifest Dy_(2)O_(3)/NiOOH as the actual active species.Therefore,Dy@Ni-MOF shows impressive OER performance,significantly surpassing Ni-MOF.Besides,the overall water splitting device with Dy@NiMOF as an anode delivers a low cell voltage of 1.51 V at 10 mA cm^(-2) and demonstrates long-term stability for 100 h,positioning it as a promising substitute for precious metal catalysts. 展开更多
关键词 Dy@Ni-MOF Dy incorporation Electronic interaction SUPERHYDROPHILICITY Oxygen evolution reaction
在线阅读 下载PDF
Structural Engineering of Anode Materials for Low-Temperature Lithium-Ion Batteries:Mechanisms,Strategies,and Prospects 被引量:4
4
作者 Guan Wang Guixin Wang +2 位作者 Linfeng Fei Lina Zhao Haitao Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第8期169-195,共27页
The severe degradation of electrochemical performance for lithium-ion batteries(LIBs)at low temperatures poses a significant challenge to their practical applications.Consequently,extensive efforts have been contribut... The severe degradation of electrochemical performance for lithium-ion batteries(LIBs)at low temperatures poses a significant challenge to their practical applications.Consequently,extensive efforts have been contributed to explore novel anode materials with high electronic conductivity and rapid Li^(+)diffusion kinetics for achieving favorable low-temperature performance of LIBs.Herein,we try to review the recent reports on the synthesis and characterizations of low-temperature anode materials.First,we summarize the underlying mechanisms responsible for the performance degradation of anode materials at subzero temperatures.Second,detailed discussions concerning the key pathways(boosting electronic conductivity,enhancing Li^(+)diffusion kinetics,and inhibiting lithium dendrite)for improving the low-temperature performance of anode materials are presented.Third,several commonly used low-temperature anode materials are briefly introduced.Fourth,recent progress in the engineering of these low-temperature anode materials is summarized in terms of structural design,morphology control,surface&interface modifications,and multiphase materials.Finally,the challenges that remain to be solved in the field of low-temperature anode materials are discussed.This review was organized to offer valuable insights and guidance for next-generation LIBs with excellent low-temperature electrochemical performance. 展开更多
关键词 Low-temperature performance Anode materials Microstructural regulations Surface modifications
在线阅读 下载PDF
Recovery of cathode copper and ternary precursors from CuS slag derived by waste lithium-ion batteries:Process analysis and evaluation 被引量:2
5
作者 Yun Wei Lei Zhou +9 位作者 Wenbin Hu Liming Yang Guang Yang Chaoqiang Wang Hui Shi Fei Han Yufa Feng Xuan Ding Penghui Shao Xubiao Luo 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第7期178-182,共5页
The efficient and environmentally friendly recycling technology of waste residue that including abundant heavy metal produced during the recovery of lithium batteries has become a research hotspot.Herein,a novelty pro... The efficient and environmentally friendly recycling technology of waste residue that including abundant heavy metal produced during the recovery of lithium batteries has become a research hotspot.Herein,a novelty process of acid leaching-selective electrodeposition-deep impurity removal-regeneration was proposed to recovery of the CuS slag,which has been efficient transferred to high purity cathode copper and commercially available ternary precursors.Copper cathode with a purity of 99.67%was prepared under electrochemical reaction conditions at-0.55 V for 2 h.A novel impurity remover-Mn powder,which was used to remove the residual impurities and as a feedstock for the ternary precursor.Finally,NCM523 was regenerated by co-precipitation.The process is superior to the traditional process in economy,energy consumption,CO_(2)emissions,product purity and process duration.This study provides a new approach for solid waste recovery and precious metal enrichment. 展开更多
关键词 CuS slag ELECTRODEPOSITION Cathode copper Ternary precursor Solid waste recovery
原文传递
Comprehensive evaluation of an ionic liquid based deep purification process for NH_(3)-containing industrial gas 被引量:1
6
作者 Guoxiong Zhan Fei Cao +8 位作者 Jianjun Chen Zhen Chen Yuanmeng Duan Fei Chang Shaojuan Zeng Yinge Bai Zengxi Li Xiangping Zhang Junhua Li 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2024年第2期698-708,共11页
Ammonia(NH_(3))emission has caused serious environment issues and aroused worldwide concern.The emerging ionic liquid(IL)provides a greener way to efficiently capture NH_(3).This paper provides rigorous process simula... Ammonia(NH_(3))emission has caused serious environment issues and aroused worldwide concern.The emerging ionic liquid(IL)provides a greener way to efficiently capture NH_(3).This paper provides rigorous process simulation,optimization and assessment for a novel NH_(3)deep purification process using IL.The process was designed and investigated by simulation and optimization using ionic liquid[C_(4)im][NTF_(2)]as absorbent.Three objective functions,total purification cost(TPC),total process CO_(2)emission(TPCOE)and thermal efficiency(ηeff)were employed to optimize the absorption process.Process simulation and optimization results indicate that at same purification standard and recovery rate,the novel process can achieve lower cost and CO_(2)emission compared to benchmark process.After process optimization,the optimal functions can achieve 0.02726$/Nm~3(TPC),311.27 kg CO_(2)/hr(TP-COE),and 52.21%(ηeff)for enhanced process.Moreover,compared with conventional process,novel process could decrease over$3 million of purification cost and 10000 tons of CO_(2)emission during the life cycle.The results provide a novel strategy and guidance for deep purification of NH_(3)capture. 展开更多
关键词 NH_(3) Capture Process Ionic Liquid Process Simulation Process Optimization Deep purification
原文传递
Overview of in-situ oxygen production technologies for lunar resources 被引量:1
7
作者 Youpeng Xu Sheng Pang +5 位作者 Liangwei Cong Guoyu Qian Dong Wang Laishi Li Yusheng Wu Zhi Wang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第2期233-255,共23页
The rich resources and unique environment of the Moon make it an ideal location for human expansion and the utilization of extraterrestrial resources.Oxygen,crucial for supporting human life on the Moon,can be extract... The rich resources and unique environment of the Moon make it an ideal location for human expansion and the utilization of extraterrestrial resources.Oxygen,crucial for supporting human life on the Moon,can be extracted from lunar regolith,which is highly rich in oxygen and contains polymetallic oxides.This oxygen and metal extraction can be achieved using existing metallurgical techniques.Furthermore,the ample reserves of water ice on the Moon offer another means for oxygen production.This paper offers a detailed overview of the leading technologies for achieving oxygen production on the Moon,drawing from an analysis of lunar resources and environmental conditions.It delves into the principles,processes,advantages,and drawbacks of water-ice electrolysis,two-step oxygen production from lunar regolith,and one-step oxygen production from lunar regolith.The two-step methods involve hydrogen reduction,carbothermal reduction,and hydrometallurgy,while the one-step methods encompass fluorination/chlorination,high-temperature decomposition,molten salt electrolysis,and molten regolith electrolysis(MOE).Following a thorough comparison of raw materials,equipment,technology,and economic viability,MOE is identified as the most promising approach for future in-situ oxygen production on the Moon.Considering the corrosion characteristics of molten lunar regolith at high temperatures,along with the Moon's low-gravity environment,the development of inexpensive and stable inert anodes and electrolysis devices that can easily collect oxygen is critical for promoting MOE technology on the Moon.This review significantly contributes to our understanding of in-situ oxygen production technologies on the Moon and supports upcoming lunar exploration initiatives. 展开更多
关键词 lunar resources in-situ oxygen production space metallurgy molten lunar regolith electrolysis
在线阅读 下载PDF
Research progress and application of carbon sequestration in industrial flue gas by microalgae: A review 被引量:3
8
作者 Rui Wang Xue Wang Tingyu Zhu 《Journal of Environmental Sciences》 2025年第6期14-28,共15页
Global warming caused by the emission of CO_(2) in industrial flue gas has attractedmore and more attention.Therefore,to fix CO_(2) with high efficiency and environmentally friendly had become the hot research field.C... Global warming caused by the emission of CO_(2) in industrial flue gas has attractedmore and more attention.Therefore,to fix CO_(2) with high efficiency and environmentally friendly had become the hot research field.Compared with the traditional coal-fired power plant flue gas emission reduction technology,carbon fixation and emission reduction by microalgae is considered as a promising technology due to the advantages of simple process equipment,convenient operation and environmental protection.When the flue gas is treated by microalgae carbon fixation and emission reduction technology,microalgae cells can fix CO_(2) in the flue gas through photosynthesis,and simultaneously absorb NO_(x) and SO_(x) as nitrogen and sulfur sources required for growth.Meanwhile,they can also absorb mercury,selenium,arsenic,cadmium,lead and other heavy metal ions in the flue gas to obtain microalgae biomass.The obtained microalgae biomass can be further transformed into high valueadded products,which has broad development prospects.This paper reviews the mechanisms and pathways of CO_(2) sequestration,the mechanism and impacts of microalgal emission reduction of flue gas pollutants,and the applications of carbon sequestration in industrial flue gas by microalgae.Finally,this paper provides some guidelines and prospects for the research and application of green emission reduction technology for industrial flue gas. 展开更多
关键词 MICROALGAE Bio-mitigation Flue gas Carbon sequestration Carbon emission reduction Photosynthetic carbon fixation
原文传递
Vapor-phase conversion of waste silicon powders to silicon nanowires for ultrahigh and ultra-stable energy storage performance 被引量:1
9
作者 Hao Li Qiushi Chen +4 位作者 Lili Feng Yueling Zou Xuzhong Gong Zhi Wang Junhao Liu 《Journal of Energy Chemistry》 2025年第3期27-36,共10页
Silicon nanowires(SiNWs)have been used in a wide variety of applications over the past few decades due to their excellent material properties.The only drawback is the high production cost of SiNWs.The preparation of S... Silicon nanowires(SiNWs)have been used in a wide variety of applications over the past few decades due to their excellent material properties.The only drawback is the high production cost of SiNWs.The preparation of SiNWs from photovoltaic waste silicon(WSi)powders,which are high-volume industrial wastes,not only avoids the secondary energy consumption and environmental pollution caused by complicated recycling methods,but also realizes its high-value utilization.Herein,we present a method to rapidly convert photovoltaic WSi powders into SiNWs products.The flash heating and quenching provided by carbothermal shock induce the production of free silicon atoms from the WSi powders,which are rapidly reorganized and assembled into SiNWs during the vapor-phase process.This method allows for the one-step composite of SiNWs and carbon cloth(CC)and the formation of SiC at the interface of the silicon(Si)and carbon(C)contact to create a stable chemical connection.The obtained SiNWs-CC(SiNWs@CC)composites can be directly used as lithium anodes,exhibiting high initial coulombic efficiency(86.4%)and stable cycling specific capacity(2437.4 mA h g^(-1)at 0.5 A g^(-1)after 165 cycles).In addition,various SiNWs@C composite electrodes are easily prepared using this method. 展开更多
关键词 Photovoltaicwastesilicon powders Silicon nanowires Vapor-phaseconversion Lithium-ion batteries Silicon-carbon anode electrode
在线阅读 下载PDF
The use of a ternary metal sulfide loading on carbon fibers as the sulfur host for high performance low-temperature lithium sulfur batteries
10
作者 HE Xin ZUO Huai-yang +4 位作者 XIAO Ru QU Zhuo-yan SUN Zhen-hua WANG Bao Li Feng 《新型炭材料(中英文)》 北大核心 2025年第1期167-177,共11页
The use of lithium-sulfur(Li-S)batteries is limited by sulfur redox reactions involving multi-phase transformations,especially at low-temperatures.To address this issue,we report a material(FCNS@NCFs)consisting of nit... The use of lithium-sulfur(Li-S)batteries is limited by sulfur redox reactions involving multi-phase transformations,especially at low-temperatures.To address this issue,we report a material(FCNS@NCFs)consisting of nitrogen-doped carbon fibers loaded with a ternary metal sulf-ide((Fe,Co,Ni)_(9)S_(8))for use as the sulfur host in Li-S batteries.This materi-al was prepared using transfer blot filter paper as the carbon precursor,thiourea as the source of nitrogen and sulfur,and FeCl_(3)·6H_(2)O,CoCl_(2)·6H_(2)O and NiCl_(2)·6H_(2)O as the metal ion sources.It was synthesized by an impreg-nation method followed by calcination.The nitrogen doping significantly in-creased the conductivity of the host,and the metal sulfides have excellent catalytic activities.Theoretical calculations,and adsorption and deposition experiments show that active sites on the surface of FCNS@NCFs selectively adsorb polysulfides,facilitate rapid adsorption and conversion,prevent cathode passivation and inhib-it the polysulfide shuttling.The FCNS@NCFs used as the sulfur host has excellent electrochemical properties.Its initial dis-charge capacity is 1639.0 mAh g^(−1) at 0.2 C and room temperature,and it remains a capacity of 1255.1 mAh g^(−1) after 100 cycles.At−20~C,it has an initial discharge capacity of 1578.5 mAh g^(−1) at 0.2 C,with a capacity of 867.5 mAh g^(−1) after 100 cycles.Its excellent performance at both ambient and low temperatures suggests a new way to produce high-performance low-temper-ature Li-S batteries. 展开更多
关键词 Lithium sulfur batteries Low temperature Transition metal sulfides Sulfur conversion kinetics
在线阅读 下载PDF
The Logic and Architecture of Future Data Systems
11
作者 Jinghai Li Li Guo 《Engineering》 2025年第4期14-15,共2页
This article presents views on the future development of data science,with a particular focus on its importance to artificial intel-ligence(AI).After discussing the challenges of data science,it elu-cidates a possible... This article presents views on the future development of data science,with a particular focus on its importance to artificial intel-ligence(AI).After discussing the challenges of data science,it elu-cidates a possible approach to tackle these challenges by clarifying the logic and principles of data related to the multi-level complex-ity of the world.Finally,urgently required actions are briefly outlined. 展开更多
关键词 data sciencewith data science artificial intelligence future data systems data scienceit challenges clarifying logic principles data ARCHITECTURE
在线阅读 下载PDF
The Development of Artificial Intelligence:Toward Consistency in the Logical Structures of Datasets,AI Models,Model Building,and Hardware?
12
作者 Li Guo Jinghai Li 《Engineering》 2025年第7期13-17,共5页
The aim of this article is to explore potential directions for the development of artificial intelligence(AI).It points out that,while current AI can handle the statistical properties of complex systems,it has difficu... The aim of this article is to explore potential directions for the development of artificial intelligence(AI).It points out that,while current AI can handle the statistical properties of complex systems,it has difficulty effectively processing and fully representing their spatiotemporal complexity patterns.The article also discusses a potential path of AI development in the engineering domain.Based on the existing understanding of the principles of multilevel com-plexity,this article suggests that consistency among the logical structures of datasets,AI models,model-building software,and hardware will be an important AI development direction and is worthy of careful consideration. 展开更多
关键词 CONSISTENCY datasets model building ai models artificial intelligence ai explore potential directions HARDWARE artificial intelligence
在线阅读 下载PDF
Bayesian optimization of operational and geometric parameters of microchannels for targeted droplet generation
13
作者 Zifeng Li Xiaoping Guan +3 位作者 Jingchang Zhang Qiang Guo Qiushi Xu Ning Yang 《Chinese Journal of Chemical Engineering》 2025年第8期244-253,共10页
Integrating Bayesian Optimization with Volume of Fluid (VOF) simulations, this work aims to optimize the operational conditions and geometric parameters of T-junction microchannels for target droplet sizes. Bayesian O... Integrating Bayesian Optimization with Volume of Fluid (VOF) simulations, this work aims to optimize the operational conditions and geometric parameters of T-junction microchannels for target droplet sizes. Bayesian Optimization utilizes Gaussian Process (GP) as its core model and employs an adaptive search strategy to efficiently explore and identify optimal combinations of operational parameters within a limited parameter space, thereby enabling rapid optimization of the required parameters to achieve the target droplet size. Traditional methods typically rely on manually selecting a series of operational parameters and conducting multiple simulations to gradually approach the target droplet size. This process is time-consuming and prone to getting trapped in local optima. In contrast, Bayesian Optimization adaptively adjusts its search strategy, significantly reducing computational costs and effectively exploring global optima, thus greatly improving optimization efficiency. Additionally, the study investigates the impact of rectangular rib structures within the T-junction microchannel on droplet generation, revealing how the channel geometry influences droplet formation and size. After determining the target droplet size, we further applied Bayesian Optimization to refine the rib geometry. The integration of Bayesian Optimization with computational fluid dynamics (CFD) offers a promising tool and provides new insights into the optimal design of microfluidic devices. 展开更多
关键词 Bayesian optimization VOF Microchannels CFD Rib structure Optimal design
在线阅读 下载PDF
Synergistic solvent extraction system of bis(pyridin-2-ylmethyl)dodecan-1-amine and dinonylnaphthalene for enhanced selective extraction of nickel and cobalt
14
作者 Bharat Prasad Sharma Tianzhang Wang +3 位作者 Yufeng Liang Jinping Xiong Liangrong Yang Zheng Li 《Chinese Journal of Chemical Engineering》 2025年第1期10-18,共9页
Simultaneous recovery of Ni and Co from Fe(Ⅲ)and AI is a critical challenge in hydrometallurgical processes.Recognized solvent extraction systems often struggle with selectivity and effective performance in mixed met... Simultaneous recovery of Ni and Co from Fe(Ⅲ)and AI is a critical challenge in hydrometallurgical processes.Recognized solvent extraction systems often struggle with selectivity and effective performance in mixed metal ion environments.Herein,a new synergistic solvent extraction(SSX)system comprised of a novel pyridine analog,N,N-bis(pyridin-2-ylmethyl)dodecan-1-amine(BPMDA),and dinonylnaphthalene sulfonic acid(DNNSA)with tributyl phosphate as phase modifier is introduced.The SSX system demonstrates high extraction performance achieving>90%for Ni and>97%for Co in a singlestage extraction process,with high selectivity.Under optimal conditions,the selectivity sequence is observed as Co^(2+)(>97%)>Ni^(2+)(>90%)>Mn^(2+)(<20%)>Fe^(3+)(<10%)>Mg^(2+)(<5%)>Al^(3+)(<2%)>Ca^(2+)(<1%).Spectroscopic analysis evidences the preferential binding of BPMDA with Ni and Co in the presence of DNNSA,concurrently achieving a significant reduction in the co-extraction of Fe(Ⅲ)and Al.The selective complexation of Ni and Co using the SSX system offers a highly efficient and selective approach for their extraction,with promising potential for applications in recovery-based processes. 展开更多
关键词 Nickel and cobalt extraction Synergistic solvent extraction DNNSA Pyridine HYDROMETALLURGY
在线阅读 下载PDF
Structural characteristics and viscous behaviors of Al_(2)O_(3)-CaO-SiO_(2)-Fe_(2)O_(3) slags
15
作者 Renze Xu Zhen Wang 《International Journal of Minerals,Metallurgy and Materials》 2025年第5期1068-1078,共11页
The high-temperature properties of the Al_(2)O_(3)-CaO-SiO_(2)-Fe_(2)O_(3) basic slag had significant influences on steelmaking opera-tions and waste slag utilization.To further clarify the structural characteristics ... The high-temperature properties of the Al_(2)O_(3)-CaO-SiO_(2)-Fe_(2)O_(3) basic slag had significant influences on steelmaking opera-tions and waste slag utilization.To further clarify the structural characteristics and properties of Al_(2)O_(3)-CaO-SiO_(2)-Fe_(2)O_(3)slags,the struc-tures and viscosities of the slags were researched.The slag liquidus temperature was determined,which decreased from 1365 to 1287℃ after 4.16wt%-8.52wt%Al_(2)O_(3) was added to the slags and then increased to 1356℃ after 17.07wt%Al_(2)O_(3) was added.Structure analysis indicated that increasing temperature depolymerized the structure of the 4.16wt%Al_(2)O_(3)-CaO-SiO_(2)-Fe_(2)O_(3) slag by decreasing the amount of complex AlO_(4) units and promoting the formation of simplified silicate monomers.The addition of Al_(2)O_(3) to slags could promote the polymerization of the slag structure by increasing the quantities of complex AlO_(4) tetrahedral and complicated Si-O units.Variations in the degree of structure polymerization showed similar trends at the same superheat degree and the same quenching temperature,and both samples could be used for analyzing the impact of Al_(2)O_(3) on slag structures.Finally,the viscous behavior of the present slag system was evaluated.Increasing Al_(2)O_(3) content could increase slag viscosity,and the apparent activation energy increased from 132.13 to 174.83 kJ/mol as the content of Al_(2)O_(3)increased from 4.16wt%to 17.07wt%. 展开更多
关键词 molten slag ALUMINA structure VISCOSITY spectroscopy
在线阅读 下载PDF
Eulerian-Lagrangian simulation of dispersed liquid flow in turbulent stirred tanks
16
作者 Jingchang Zhang Xiaoping Guan +1 位作者 Ning Yang Maximilian Lackner 《Chinese Journal of Chemical Engineering》 2025年第7期182-190,共9页
Liquid-liquid dispersion is often performed in stirred tanks,which are valued for their ease of operation,high droplet generation rate and effective droplet dispersion.Many relevant simulations use the Eulerian-Euleri... Liquid-liquid dispersion is often performed in stirred tanks,which are valued for their ease of operation,high droplet generation rate and effective droplet dispersion.Many relevant simulations use the Eulerian-Eulerian method,combining population balance equations with statistical models to forecast droplet breakage.Conversely,the Eulerian-Lagrangian(E-L)method provides precise tracking of individual droplets,which is crucial for simulating dispersion processes.However,E-L simulation faces challenges in integrating droplet breakage effectively.To address this issue,our research introduces a probabilistic approach for droplet breakages.It assumes that a longer time increases the likelihood of breakup;a droplet breaks if the calculated probability exceeds a random value from 0 to 1.Consequently,the simulated breakage frequency becomes independent of the Lagrangian time step.The Sauter mean diameter and droplet size distribution can be accurately predicted by this probabilistic approach.By closely monitoring droplet motion,we reveal the complexity of droplet trajectories and the detailed patterns of circulation in stirred tanks.These insights contribute to a deeper understanding of liquidliquid dispersion dynamics. 展开更多
关键词 Eulerian-Lagrangian method Liquid-liquid dispersion Droplet breakage Stirred vessel Turbulent flow Computational fluid dynamics
在线阅读 下载PDF
Effects of vanadium valences on the solubility in Fe_(2)TiO_(5) for helping to understand calcification roasting of vanadium slag
17
作者 Zhengpei Yan Shili Zheng Yang Zhang 《International Journal of Minerals,Metallurgy and Materials》 2025年第12期2920-2929,共10页
Vanadium is a strategic metal in many countries,and it is mainly extracted from vanadium slag produced in titanomagnetite metallurgy.The traditional sodium roasting process for vanadium extraction poses environmental ... Vanadium is a strategic metal in many countries,and it is mainly extracted from vanadium slag produced in titanomagnetite metallurgy.The traditional sodium roasting process for vanadium extraction poses environmental threats,and a green calcification pro-cess has been proposed.However,the vanadium extraction rate in the calcification process is much lower than in the sodium roasting pro-cess,which is related to vanadium solid solubility in Fe_(2)TiO_(5).Previous studies about vanadium behavior in Fe_(2)TiO_(5) were conducted in air,with a vanadium oxidation state of V5+.Vanadium with lower oxidation states has been detected in the tailings in the calcification process.The present paper studied the effects of vanadium oxidation states on the solid solubility in Fe_(2)TiO_(5) through solid-state reaction,X-ray diffraction characterization,transmission electron microscopy characterization,X-ray photoelectron spectroscopy analysis,and solid solu-tion modeling.The relative interaction values between vanadium oxides and Fe_(2)TiO_(5) are obtained as|L_(V_(2)O_(3))|>|L_(V_(2)O_(4))|>|L_(V_(2)O_(5)),indicating that vanadium with lower valence is preferable to be solid dissolved in Fe_(2)TiO_(5).The results imply that insufficiently oxidized vanadium increases the vanadium content in the Fe_(2)TiO_(5) phase during vanadium slag’s calcification roasting.Besides,experimental conditions op-timization shows that higher experimental temperature,vanadium introduction as V2O3,and a high-purity argon atmosphere would lead to higher vanadium solubility in Fe_(2)TiO_(5),and high temperature is beneficial for the release of vanadium from vanadium-containing Fe_(2)TiO_(5) when dissociated in air. 展开更多
关键词 vanadium slag pseudobrookite VANADIUM VALENCE oxidation state solid solution
在线阅读 下载PDF
Effects of internals on macroscopic fluid dynamics in a bubble column
18
作者 Shijie Liu Jin Liang +4 位作者 Qin Li Hui Yu Haoliang Wang Xiangyang Li Chao Yang 《Chinese Journal of Chemical Engineering》 2025年第1期19-29,共11页
The effects of internals on liquid mixing and gas-liquid mass transfer have rarely been investigated in bubble columns,and the commonly used measurement method overestimates significantly overall gas holdup.Firstly,ga... The effects of internals on liquid mixing and gas-liquid mass transfer have rarely been investigated in bubble columns,and the commonly used measurement method overestimates significantly overall gas holdup.Firstly,gas holdup measurement method is improved by conducting multi-point liquid level measurement and using net fluid volume instead of bed volume to calculate gas holdup.Then,a stable conductivity method for liquid macromixing has been established by shielding large bubbles using#16nylon mesh.Subsequently,the influences of internal coverage(=12.6%,18.9% and 25.1%) on macroscopic fluid dynamics in a bubble column with a free wall area are systematically investigated.It is found that the presence of internals has a notable effect on macroscopic fluid dynamics.The overall gas holdup and gas-liquid volumetric mass transfer coefficient decrease,and the macromixing time decreases with the increase of internal cross-sectional area coverage.These are mainly caused by the uneven distribution of airflow due to the low resistance in the free wall area.This design makes maintenance easier,but in reality,the reactor performance has decreased.Further improvements will be made to the reactor performance based on such a configuration through flow guidance using baffles. 展开更多
关键词 Bubble column INTERNALS Macroscopic fluid dynamics MIXING Mass transfer
在线阅读 下载PDF
A brief review of preparation and applications of monolithic aerogels in atmospheric environmental purification
19
作者 Linfeng Nie Shuangde Li +2 位作者 Mengjie Cao Ning Han Yunfa Chen 《Journal of Environmental Sciences》 2025年第3期209-220,共12页
Monolithic aerogels are promising candidates for use in atmospheric environmental purification due to their structural advantages,such as fine building block size together with high specific surface area,abundant pore... Monolithic aerogels are promising candidates for use in atmospheric environmental purification due to their structural advantages,such as fine building block size together with high specific surface area,abundant pore structure,etc.Additionally,monolithic aerogels possess a unique monolithic macrostructure that sets them apart from aerogel powders and nanoparticles in practical environmental clean-up applications.This review delves into the available synthesis strategies and atmospheric environmental applications of monolithic aerogels,covering types of monolithic aerogels including SiO_(2),graphene,metal oxides and their combinations,along with their preparation methods.In particular,recent developments for VOC adsorption,CO_(2)capture,catalytic oxidation of VOCs and catalytic reduction of CO_(2)are highlighted.Finally,challenges and future opportunities for monolithic aerogels in the atmospheric environmental purification field are proposed.This reviewprovides valuable insights for designing and utilizing monolithic aerogel-based functional materials. 展开更多
关键词 Monolithic aerogel Environmental purification CATALYSIS Adsorption
原文传递
Development of multifunctional Co_(3)O_(4)-modified ZnIn_(2)S_(4) photocatalyst for the selective oxidation of biomass-derived 5-hydroxymethylfurfural
20
作者 Shan Jiang Zhenpan Chen +3 位作者 Shaofeng Xiong Hongxin Zhao Xishun Xiao Zhigang Shen 《Journal of Energy Chemistry》 2025年第10期830-838,共9页
The photocatalytic selective oxidation of biomass-derived 5-hydroxymethylfurfural(HMF)offers a sustainable alternative to thermal catalysis.However,the efficiency of this process is significantly limited by inadequate... The photocatalytic selective oxidation of biomass-derived 5-hydroxymethylfurfural(HMF)offers a sustainable alternative to thermal catalysis.However,the efficiency of this process is significantly limited by inadequate light absorption efficiency and the rapid recombination of photogenerated charge carriers in conventional photocatalysts.Herein,we developed a Co_(3)O_(4)/ZnIn_(2)S_(4)(Co_(3)O_(4)/ZIS)photocatalyst,in which Co_(3)O_(4)functions as a multifunctional cocatalyst.This photocatalyst significantly enhances the chemisorption and activation of HMF molecules through interfacial oxygen-hydroxyl interactions.Additionally,the incorporation of narrow-band gap Co_(3)O_(4)broadens the optical absorption range of the composite photocatalyst.Besides,integrating Co_(3)O_(4)with ZnIn_(2)S_(4)leads to a 5.9-fold increase in charge separation efficiency compared to pristine ZnIn_(2)S_(4).The optimized Co_(3)O_(4)/ZIS-3 photocatalyst(3 wt% Co_(3)O_(4)loading)exhibits exceptional selectivity and yield for 2,5-diformylfuran(DFF)under visible light irradiation,achieving 70.4%DFF selectivity with a 5.4-fold enhancement compared to pristine ZnIn_(2)S_(4).Scavenger experiments and electron spin resonance(ESR)spectroscopy indicate that superoxide radicals(O_(2)^(-))and h^(+)are the main active species driving the photocatalytic oxidation of HMF.Molecular simulations reveal that the activation of HMF and the transformation of the intermediate^(*)MF to^(*)DFF are more favorable over the Co_(3)O_(4)/ZIS composite due to lower activation barriers compared to those over ZnIn_(2)S_(4).Through this work,we aim to design highly efficient and affordable photocatalysts for biomass valorization and contribute valuable insights into the mechanisms of photocatalytic oxidation of HMF. 展开更多
关键词 PHOTOCATALYSIS Selective oxidation COCATALYST 5-HYDROXYMETHYLFURFURAL
在线阅读 下载PDF
上一页 1 2 62 下一页 到第
使用帮助 返回顶部